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Stereoselective Synthesis of b-Amino Ketones via
Direct Mannich-Type Reaction Catalyzed with

SO2�
4 =TiO2 and SO2�

4 =Nano TiO2

Masoud Samet,1 Bagher Eftekhari-Sis,2 Mohammed M. Hashemi,1

and Fateme Farmad1

1Department of Chemistry, Sharif University of Technology, Tehran, Iran
2Department of Chemistry, Faculty of Basic Science, University of

Maragheh, Maragheh, Iran

Abstract: At room temperature, SO2�
4 =TiO2 and SO2�

4 =nano-TiO2 efficiently
catalyze the direct Mannich-type reaction of varieties of in situ–generated
aldimines using aldehydes and anilines with ketones in a three-component
reaction under solvent-free conditions. The reaction proceeds rapidly and affords
the corresponding b-amino ketones in good to high yields with good to excellent
stereoselectivity. The catalyst can be recycled for subsequent reactions without
any appreciable loss of efficiency.

Keywords: b-Amino ketones, Mannich reaction, nano-TiO2, SO4
2�=TiO2

INTRODUCTION

b-Amino carbonyl compounds are attractive targets for chemical synth-
esis because of their prevalence and wide utility. One of their earliest
applications was in the preparation of important b-amino alcohols,
versatile synthetic intermediates for a large number of natural products,[1]

antibiotics,[2] and chiral auxiliaries.[3] Further, the b-amino carbonyl
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moiety is common in a large variety of biologically active compounds[4]

and finds use as an important intermediate for fine chemicals[5] and
pharmaceuticals.[6] Therefore, the development of new catalytic methods
for its preparation is of prime importance in organic synthesis. Catalytic
Mannich-type reactions have been reported by several groups as an
efficient method to prepare b-amino carbonyl compounds.[7]

Solid acids such as zeolites, oxides, and aluminophosphates and their
modified forms such as sulfated oxides have been extensively studied as
possible alternatives to conventional Lewis=Brønsted acid catalysts.[8]

Acidity of oxides increases on sulfate ion treatment,[9] and that of zeolites
increases by protonation.[10] The increase in acidity is due to an increase
in the number and the strength of acid sites. In several reactions the yield
and selectivity of a product depend not only on the concentration but
also on the strength of the acid sites. The solid superacids such as
SO2�

4 =TiO2 (H0<�11.93), which can be easily prepared, are sufficiently
stable at the elevated reaction temperature and regenerated conveniently.
Different kinds of solid superacids and the fields in which they are used
have been developed. They have been used in isomerization, alkylation,
acylation, polymerization, oligomerization, esterification, and oxidation
processes.[11]

As part of our research on chemical transformations,[12] herein we
report a simple and environmentally benign methodology for stereoselec-
tive synthesis of b-amino ketones via direct Mannich-type reaction of
aldehydes, anilines, and ketones under solvent-free conditions at room
temperature using SO2�

4 =TiO2 as catalyst.

RESULTS AND DISCUSSION

SO2�
4 =TiO2 was prepared, according to the literature,[13] by immersing

TiO2 in 1N H2SO4 solution for 30min, which was then decanted and
dried from 80 to 150�C. The resulting solid was calcinated at 200 to
500�C and powdered.

The SO2�
4 =TiO2-catalyzed direct Mannich-type reaction was first

studied with performed aniline, benzaldehyde, and cyclohexanone under
solvent-free conditions for 3 h at room temperature. 2-[Phenyl(phenyla-
mino)methyl]cyclohexanone was isolated in good yield (87%), with 89%
anti-selectivity. The overall reaction is shown in Scheme 1.

To examine the optimal conditions for SO2�
4 =TiO2-catalyzed direct

Mannich-type reaction of benzaldehyde, aniline, and cyclohexanone,
we carried out different experiments (entries 1–12, Table 1). The reaction
was carried out with aniline (1mmol), benzaldehyde (1mmol), and cyclo-
hexanone (3mmol) for 3 h under different conditions. Entries 1–7 show

4442 M. Samet et al.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 O

f 
M

el
bo

ur
ne

 L
ib

ra
ri

es
] 

at
 1

0:
24

 1
7 

Se
pt

em
be

r 
20

13
 



the effect of various solvents and solvent-free conditions on the yield and
stereoselectivity of the reaction. Good to excellent anti-selectivity was
observed in ethanol (EtOH) and CH2Cl2 and under solvent-free
conditions, whereas the reaction in organic solvent showed poor yield.
N-Benzylideneaniline was the only isolated product in H2O and
n-hexane, so we chose solvent-free conditions for good yield and good
anti-selectivity of the reaction and environmental acceptability. The opti-
mum amount of catalyst (0.03 g of SO2�

4 =TiO2) was determined from
experiments corresponding to entries 1 and 8–12. Entry 8 shows the cat-
alytic effect of SO2�

4 =TiO2 on the reaction. Entry 10 describes the yields
of three consecutive additions leading to corresponding b-amino ketone.
In these experiments, the product was isolated by filtration, the solid

Table 1. Mannich reaction of aniline, benzaldehyde, and cyclohexanone in
different conditions

Entry Solvent Catalyst (g) Yield (%) Anti=syn

1 Solvent-free 0.05 87 89=11
2 H2O 0.05 —a —
3 EtOH 0.05 35 94=6
4 CH2Cl2 0.05 20 96=4
5 n-Hexane 0.05 — —
6 Et2O 0.05 50 —
7 CH3CN 0.05 30 —
8 Solvent-free 0 0 —
9 Solvent-free 0.01 73 79=21
10 Solvent-free 0.03 92,90,89b 88=12
11 Solvent-free 0.07 73 78=22
12 Solvent-free 0.1 67 —

aMain product was imine.
bCatalyst was used over three runs.

Scheme 1. Direct Mannich-type reaction of aniline, benzaldehyde, and
cyclohexanone catalyzed with SO2�

4 =TiO2.
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residues were washed with dichloromethane and dried in air, and the
remaining catalyst was reloaded with fresh reagents for further runs.
No considerable decrease in the yield was observed, demonstrating
that SO2�

4 =TiO2 can be reused as a catalyst in direct Mannich-type
reactions.

Eleven examples of the direct Mannich-type reaction of anilines, aro-
matic and heteroaromatic aldehydes, and cyclic ketones are listed in
Table 2. The reactions were performed by adding cyclic ketones (3mmol)
to the mixture of anilines (1mmol) and benzaldehydes (1mmol) under
solvent-free conditions in the presence of SO2�

4 =TiO2 (0.03 g) at room
temperature. The data in Table 2 clearly show that the reaction gave
the corresponding b-amino ketones in good to excellent yield with good
to excellent anti-selectivity for cyclohexanone at room temperature.
Interestingly, in the case of cycloheptanone the reaction show reverse
stereoselectivity, and the syn isomer was formed in good yield (entries
9 and 10).

Table 2. Mannich reaction of anilines, aldehydes, and cyclic ketones catalyzed
with SO2�

4 =TiO2

Entry Ketone (n) Aniline (X) Aldehyde (X0) Time (h) Yield (%)a Anti=synb

1 1 H 4-Me 1 75 66=33
2 2 H H 3 92 88=12
3 2 H 4-Cl 2.5 85 61=39
4 2 H 4-NO2 3.5 89 65=35
5 2 H Furfural 1.5 80 59=41
6 2 3-Me H 2.5 81 60=40
7 2 3-Me 4-Cl 2.5 75 100=0
8 2 3-Me 4-NO2 3 95 75=25
9 3 H H 5.5 60 16=84
10 3 4-Cl H 5 70 34=66

aYields refer to isolated products.
bDiastereomeric ratio measured by 1HNMR spectroscopy analysis of the crude

reaction mixture.
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Similarly, the Mannich reaction of benzaldehydes and anilines with
acetophenone was investigated; the overall reaction is best formulated
in Scheme 2.

Also, SO2�
4 supported on the TiO2 nanoparticles was investigated as

catalyst in the Mannich reaction of aromatic aldehydes and anilines with
cyclohexanone (Table 3). Interestingly, it was shown that in the case of
aldehyde with an electron-withdrawing group such as 4-nitro benzalde-
hyde, the anti=syn ratio decreased from 65=35 and 75=25 (Table 2, entries
4 and 8) when SO2�

4 =TiO2 was used to 58=42 and 53=47 (Table 3, entries
3n and 6n) in the presence of SO2�

4 =nano-TiO2. In contrast, in the case of
benzaldehyde, this ratio was increased from 88=12 and 60=40 (Table 2,
entries 2 and 6) in the presence of SO2�

4 =TiO2 to 95=5 and 100=0

Scheme 2. Mannich reaction of anilines, benzaldehyde, and acetophenone.

Table 3. Mannich reaction of anilines, aldehydes, and cyclic ketones catalyzed
with SO2�

4 =nano-TiO2

Entry Ketone (n) Aniline (X) Aldehyde (X0) Time (h) Yield (%)a Anti=synb

1n 2 H H 3 90 95=5
2n 2 H 4-Cl 2.5 83 61=39
3n 2 H 4-NO2 3.5 89 58=42
4n 2 3-Me H 2.5 80 100=0
5n 2 3-Me 4-Cl 2.5 70 100=0
6n 2 3-Me 4-NO2 3 93 53=47

aYields refer to isolated products.
bDiastereomeric ratio measured by 1H-NMR spectroscopy analysis of the

crude reaction mixture.
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(Table 3, entries 1n and 4n) when SO2�
4 =nano-TiO2 was used as catalyst.

No considerable changes were shown in the yield or time of reaction.
Another characteristic feature of the present protocol is the strong

chemoselectivity of cyclohexanone toward aldimines, prepared in situ
from the reaction of aldehydes and amines, in preference to aldehydes
as shown in Scheme 3.

CONCLUSION

In summary, three-component Mannich reactions of aldehydes, anilines,
and ketones are efficiently catalyzed by SO2�

4 =TiO2 under solvent-free con-
ditions. Aromatic and heteroaromatic aldehydes can be successfully used
as the aldehyde component. Also, we have found that good to excellent
anti-selectivity was observed in the SO2�

4 =TiO2-catalyzed Mannich reac-
tion of cyclic ketones and aromatic aldimines in very short times at room
temperature under solvent-free conditions. When SO2�

4 =nano-TiO2 was
used as the catalyst, anti-selectivity decreased in the case of aldehyde with
electron-withdrawing groups and increased in the case of benzaldehyde.

EXPERIMENTAL

General Reaction Procedure

Benzaldehyde (1mmol), cyclohexanone (3 equiv.), and SO2�
4 =TiO2

(0.03 g), were added successively to aniline (1mmol) at room temperature
(20–25�C) and stirred at the same temperature for the appropriate time.
After completion of the reaction, CH2Cl2 (15ml) was added, and
the catalyst was removed by filtration. Filtrates were concentrated to
dryness. The crude mixture was washed with hexane to afford 2-
(phenyl-phenylamino-methyl)-cyclohexanone in 92% yield as an 88=12
anti=syn mixture. Products were obtained almost in pure form. In some

Scheme 3. Chemoselectivity of cyclohexanone toward aldimine in preference to
aldehydes.
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cases, further purification was carried out by column chromatography on
silica gel using petroleum ether=ethyl acetate. All products were known
and characterized by their spectroscopic data (IR and NMR) by compar-
ison with those reported in the litrature.[12a] Anti=syn ratio was deter-
mined by 1HNMR according to the literature.[12a]

Data

2-[(Phenylamino)(p-tolyl)methyl]cyclopantanone (1)

IR (KBr): n¼ 3393 (NH), 3039, 2955, 2871 (CH), 1724 (CO), 1603, 1510
(C=C), 1313 (NH) cm�1. 1H NMR (500MHz, CDCl3): d¼ 1.70–1.79
(m, 2H, CH2), 1.91–1.94 (m, 2H, CH2), 2.05–2.15 (m, 1H, CH2),
2.31–2.35 (m, 1H, CH2), 2.39 (s, 3H, CH3), 2.43–2.48 (m, 1H, CH), 4.1 (d,
3JH,H¼ 7.44Hz, 0.66H, CH, anti isomer), 4.18 (d, 3JH,H¼ 6.14Hz,
0.34H, CH, syn isomer), 5.11 (s, 1H, NH), 6.55 (d, 3JH, H¼ 7.69Hz, 2H,
CHAr), 6.65 (t, 3JH,H¼ 7.31Hz, 1H, CHAr), 7.07 (t, 3JH,H¼ 7.43Hz,
2H, CHAr), 7.14 (d, 3JH,H¼ 7.89Hz, 2H, CHAr), 7.29 (d, 3JH,H¼ 7.98Hz,
2H, CHAr) ppm.

2-[Phenyl(phenylamino)methyl]cyclohexanone (2)

1H NMR (500MHz, CDCl3): d¼ 1.73–1.76 (m, 2H, CH2), 1.89–1.98 (m,
4H, CH2), 2.38–2.48 (m, 2H, CH2), 2.79–2.80 (m, 1H, CH), 4.66 (d,
3JH,H¼ 4.99Hz, 0.88H, CH, anti isomer), 4.75 (s, 1H, NH), 4.84
(d, 3JH,H¼ 3.98Hz, 0.12H, CH, syn isomer), 6.57 (d, 3JH,H¼ 8.50Hz,
2H, CHAr), 6.66 (t, 3JH,H¼ 7.50Hz, 1H, CHAr), 7.09–7.12 (m, 2H,
CHAr), 7.26 (d, 3JH,H¼ 7.00Hz, 1H, CHAr), 7.34 (t, 3JH,H¼ 7.50Hz,
2H, CHAr), 7.41 (t, 3JH,H¼ 8.75Hz, 2H, CHAr) ppm.

2-[(4-Chlorophenyl)(phenylamino)methyl]cyclohexanone (3)

1H NMR (500MHz, CDCl3): d¼ 1.73–1.81 (m, 1H, CH2), 1.85–1.91 (m,
2H, CH2), 1.94–2.02 (m, 1H, CH2), 2.05–2.10 (m, 2H, CH2), 2.20–2.29
(m, 1H, CH), 2.35–2.48 (m, 1H, CH2), 2.74–2.82 (m, 1H, CH), 4.78 (d,
3JH,H¼ 4.90Hz, 0.61H, CH, anti isomer), 4.94 (d, 3JH,H¼ 3.65Hz,
0.39H, CH, syn isomer), 5.04 (s, 1H, NH), 6.51 (d, 3JH,H¼ 7.79Hz, 2H,
CHAr), 6.70 (d, 3JH,H¼ 7.40Hz, 1H, CHAr), 7.11 (t, 3JH,H¼ 8.11Hz, 2H,
CHAr), 7.60 (t, 3JH,H¼ 8.50Hz, 2H, CHAr), 8.20 (d, 3JH,H¼ 8.67Hz,
2H, CHAr) ppm.

Stereoselective Synthesis of b-Amino Ketones 4447
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2-[(p-Nitrophenyl)(phenylamino)methyl]cyclohexanone (4)

IR (KBr): n¼ 3373 (NH), 3032, 2948, 2858 (CH), 1699 (CO), 1601
(C=C), 1515, 1346 (NO2), 1287 (NH) cm�1. 1H NMR (500MHz,
CDCl3): d¼ 1.69–1.78 (m, 1H, CH2), 1.82–1.88 (m, 2H, CH2),
1.91–1.99 (m, 1H, CH2), 2.01–2.08 (m, 2H, CH2), 2.18–2.28 (m, 1H,
CH), 2.33–2.45 (m, 1H, CH2), 2.71–2.79 (m, 1H, CH), 4.75 (d,
3JH,H¼ 4.84Hz, 0.65H, CH, anti isomer), 4.90 (d, 3JH,H¼ 3.42Hz,
0.35H, CH, syn isomer), 4.93 (s, 1H, NH), 6.48 (d, 3JH,H¼ 7.77Hz, 2H,
CHAr), 6.67 (d, 3JH,H¼ 7.37Hz, 1H, CHAr), 7.07 (t, 3JH,H¼ 8.09Hz, 2H,
CHAr), 7.58 (t, 3JH,H¼ 8.49Hz, 2H, CHAr), 8.17 (d, 3JH,H¼ 8.64Hz,
2H, CHAr) ppm.

2-[Furan-2-yl(phenylamino)methyl]cyclohexanone (5)

1H NMR (500MHz, CDCl3): d¼ 1.69–1.76 (m, 3H, CH2), 1.91–1.95 (m,
3H, CH2), 2.31–2.47 (m, 2H, CH2), 2.91–3.15 (m, 1H, CH), 4.61 (s, 1H,
NH), 4.85 (d, 3JH,H¼ 5.36Hz, 0.59H, CH, anti isomer), 4.92
(d,3JH,H¼ 4.90Hz, 0.41H, CH, syn isomer), 6.23 (d, 1H, CHAr), 6.30
(d, 1H, CHAr), 6.69–6.73 (m, 3H, CHAr), 7.16–7.20 (m, 2H, CHAr),
7.34 (t, 1H, CHAr) ppm.

2-[Phenyl(m-tolylamino)methyl]cyclohexanone (6)

IR (KBr): n¼ 3351 (NH), 3038, 2944 (CH), 1702 (CO), 1602, 1538 (C=C),
1306 (NH) cm�1. 1H NMR (500MHz, CDCl3): d¼ 1.69–1.79 (m, 2H,
CH2), 1.82–1.98 (m, 4H, CH2), 2.20 (s, 3H, CH3), 2.33–2.37 (m, 1H,
CH2), 2.44–2.46 (m, 1H, CH2), 2.70–2.75 (m, 1H, CH), 4.63
(d, 3JH,H¼ 6.96Hz, 0.60H, CH, anti isomer), 4.72 (br. s, 1H, NH), 4.84
(d, 3JH,H¼ 3.47Hz, 0.40H, CH, syn isomer), 6.28 (d, 3JH,H¼ 6.35Hz,
1H, CHAr), 6.36 (s, 1H, CHAr), 6.45 (d, 3JH,H¼ 7.32Hz, 1H, CHAr),
6.93 (t, 3JH,H¼ 7.65Hz, 1H, CHAr), 7.23 (t, 3JH,H¼ 7.13Hz, 1H, CHAr),
7.32 (t, 3JH,H¼ 7.41Hz, 2H, CHAr), 7.41 (d, 3JH,H¼ 7.69Hz, 2H,
CHAr) ppm.

2-[(4-Chlorophenyl)(m-tolylamino)methyl]cyclohexanone (7)

IR (KBr): n¼ 3349 (NH), 3045, 2939, 2865 (CH), 1703 (CO), 1603, 1531
(C=C), 1487, 1300 (NH), 710 (C–Cl) cm�1. 1H NMR (500MHz, CDCl3):
d¼ 1.70–1.77 (m, 1H, CH2), 1.88–1.94 (m, 2H, CH2), 2.12–2.14 (m, 1H,
CH2), 2.21–2.29 (m, 2H, CH2), 2.37 (s, 3H, CH3), 2.43–2.48 (m, 1H,
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CH2), 2.53–2.57 (m, 1H, CH2), 2.87–2.92 (m, 1H, CH), 4.78 (d, 3JH,H¼
5.03Hz, 1H, CH, anti isomer), 4.96 (s, 1H, NH), 6.29 (t, 3JH,H¼ 7.76Hz,
1H, CHAr), 6.38 (s, 1H, CHAr), 6.56 (t, 3JH,H¼ 7.74Hz, 1H, CHAr), 6.99
(t, 3JH,H¼ 7.77Hz, 1H, CHAr), 7.63 (d, 3JH,H¼ 8.55Hz, 2H, CHAr), 8.22
(d, 3JH,H¼ 8.57Hz, 2H, CHAr) ppm.

2-[(p-Nitrophenyl)(m-tolylamino)methyl]cyclohexanone (8)

IR (KBr): n¼ 3373 (NH), 2948, 2858 (CH), 1699 (CO), 1601 (C=C), 1516,
1345 (NO2), 1300, 1100 (NH) cm�1. 1H NMR (500MHz, CDCl3):
d¼ 1.61–1.69 (m, 1H, CH2), 1.81–1.90 (m, 2H, CH2), 2.02–2.04 (m, 1H,
CH2), 2.10–2.14 (m, 2H, CH2), 2.27 (s, 3H, CH3), 2.35–2.40 (m, 1H,
CH2), 2.44–2.48 (m, 1H, CH2), 2.85–2.90 (m, 1H, CH), 4.74 (d,
3JH,H¼ 5.00Hz, 0.75H, CH, anti isomer), 4.89 (d, 3JH,H¼ 4.00Hz,
0.25H, CH, syn isomer), 4.91 (br. s, 1H, NH), 6.27 (t, 3JH,H¼ 7.78Hz,
1H, CHAr), 6.36 (s, 1H, CHAr), 6.50 (t, 3JH,H¼ 7.71Hz, 1H, CHAr), 6.96
(t, 3JH,H¼ 7.76Hz, 1H, CHAr), 7.61 (d, 3JH,H¼ 8.53Hz, 2H, CHAr),
8.20 (d, 3JH,H¼ 8.56Hz, 2H, CHAr) ppm.

2-[Phenyl(phenylamino)methyl]cycloheptanone (9)

1HNMR (500MHz, CDCl3): d¼ 1.28–1.38 (m, 2H,CH2), 1.45–1.64 (m, 2H,
CH2), 1.73–176 (m, 1H, CH2), 1.94 (m, 3H, CH2), 2.33–2.38 (m, 1H, CH2),
2.48–2.54 (m, 1H, CH2), 2.88–2.92 (m, 1H, CH), 4.47 (d, 3J¼ 7.50, 0.16H,
CH, anti isomer), 4.58 (d, 3J¼ 5.00, 0.84H, CH, syn isomer), 4.99 (s, 1H,
NH), 6.49 (t, 3J¼ 9.98, 2H, CHAr), 6.61 (t, 3J¼ 10.00, 1H, CHAr), 7.05 (t,
3J¼ 8.50, 2H, CHAr), 7.22–7.28 (m, 1H, CHAr), 7.3–7.39 (m, 4H, CHAr).

2-[(4-Chlorophenylamino)(phenyl)methyl]cycloheptanone (10)

1H NMR (500MHz, CDCl3): d¼ 1.30–1.37 (m, 2H, CH2), 1.48–1.65 (m,
2H, CH2), 1.75–1.77 (m, 1H, CH2), 1.97–2.03 (m, 3H, CH2), 2.34–2.40
(m, 1H, CH2), 2.51–2.56 (m, 1H, CH2), 2.91–2.94 (m, 1H, CH), 4.51
(d, 3JH,H¼ 7.48, 0.34H, CH, anti isomer), 4.63 (d, 3JH,H¼ 5.03, 0.66H,
CH, syn isomer), 5.01 (s, 1H, NH), 6.53 (d, 2H, CHAr), 7.11–7.17 (m,
5H, CHAr), 7.21–7.28 (m, 2H, CHAr).

2-[Phenyl(phenylamino)methyl]cyclohexanone (1n)

1H NMR (500MHz, CDCl3): d¼ 1.73–1.78 (m, 2H, CH2), 1.88–1.97 (m,
4H, CH2), 2.38–2.47 (m, 2H, CH2), 2.79–2.81 (m, 1H, CH), 4.67
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(d, 3JH,H¼ 4.99Hz, 0.95H, CH, anti isomer), 4.75 (s, 1H, NH), 4.84 (d,
3JH,H¼ 3.98Hz, 0.12H, CH, syn isomer), 6.57 (d, 3JH,H¼ 8.50Hz, 2H,
CHAr), 6.66 (t, 3JH,H¼ 7.50Hz, 1H, CHAr), 7.09–7.12 (m, 2H, CHAr),
7.26 (d, 3JH,H¼ 7.00Hz, 1H, CHAr), 7.34 (t, 3JH,H¼ 7.50Hz, 2H, CHAr),
7.41 (t, 3JH,H¼ 8.75Hz, 2H, CHAr) ppm.

2-[(4-Chlorophenyl)phenylamino)methyl]cyclohexanone (2n)

1H NMR (500MHz, CDCl3): d¼ 1.75–1.82 (m, 1H, CH2), 1.89–1.93 (m,
2H, CH2), 1.96–2.08 (m, 1H, CH2), 2.10–2.12 (m, 2H, CH2), 2.23–2.28
(m, 1H, CH), 2.37–2.49 (m, 1H, CH2), 2.75–2.84 (m, 1H, CH), 4.75 (s,
1H, NH), 4.84 (d, 3JH,H¼ 5.10Hz, 0.61H, CH, anti isomer), 4.89 (d,
3JH,H¼ 4.05, 0.39H, CH, syn isomer), 6.55 (d, 3JH,H¼ 7.79Hz, 2H,
CHAr), 6.79 (d, 3JH,H¼ 7.42Hz, 1H, CHAr), 7.16 (t, 3JH,H¼ 8.11Hz,
2H, CHAr), 7.66 (t, 3JH,H¼ 8.50Hz, 2H, CHAr), 8.23 (d, 3JH,H¼ 8.64Hz,
2H, CHAr) ppm.

2-[(p-Nitrophenyl)(phenylamino)methyl]cyclohexanone (3n)

1H NMR (500MHz, CDCl3): d¼ 1.67–1.76 (m, 1H, CH2), 1.80–1.86 (m,
2H, CH2), 1.89–1.97 (m, 1H, CH2), 1.99–2.06 (m, 2H, CH2), 2.16–2.26
(m, 1H, CH), 2.31–2.43 (m, 1H, CH2), 2.69–2.77 (m, 1H, CH), 4.73 (d,
3JH,H¼ 4.86Hz, 0.58H, CH, anti isomer), 4.88 (d, 3JH,H¼ 3.44Hz,
0.42H, CH, syn isomer), 4.91 (s, 1H, NH), 6.46 (d, 3JH,H¼ 7.74Hz, 2H,
CHAr), 6.65 (d, 3JH,H¼ 7.34Hz, 1H, CHAr), 7.04 (t, 3JH,H¼ 8.05Hz,
2H, CHAr), 7.50 (t, 3JH,H¼ 8.47Hz, 2H, CHAr), 8.15 (d, 3JH,H¼ 8.61
Hz, 2H, CHAr) ppm.

2-[Phenyl(m-tolylamino)methyl]cyclohexanone (4n)

1H NMR (500MHz, CDCl3): d¼ 1.74–1.82 (m, 2H, CH2), 1.92–2.01 (m,
4H, CH2), 2.25 (s, 3H, CH3), 2.37–2.39 (m, 1H, CH2), 2.46–2.49 (m, 1H,
CH2), 2.74–2.78 (m, 1H, CH), 4.63 (d, 3JH,H¼ 6.96Hz, 1H, CH, anti iso-
mer), 4.70 (s, 1H, NH), 6.31 (d, 3JH,H¼ 6.37Hz, 1H, CHAr), 6.38 (s, 1H,
CHAr), 6.46 (d, 3JH,H¼ 7.34Hz, 1H, CHAr), 6.95 (t, 3JH,H¼ 7.66Hz, 1H,
CHAr), 7.25 (t, 3JH,H¼ 7.15Hz, 1H, CHAr), 7.34 (t, 3JH,H¼ 7.42Hz, 2H,
CHAr), 7.40 (d, 3JH,H¼ 7.70Hz, 2H, CHAr) ppm.

2-[(4-Chlorophenyl)(m-tolylamino)methyl]cyclohexanone (5n)

1H NMR (500MHz, CDCl3): d¼ 1.72–1.85 (m, 3H, CH2), 1.96–2.01
(m, 3H, CH2), 2.64 (s, 3H, CH3), 2.35–2.36 (m, 1H, CH2), 2.43–2.47
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(m, 1H, CH2), 2.72–2.75 (m, 1H, CH), 4.60 (d, 3JH,H¼ 6.18Hz, 1H, CH,
anti isomer), 4.74 (s, 1H, NH), 6.29 (d, 3JH,H¼ 7.98Hz, 1H, CHAr), 6.35
(s, 1H, CHAr), 6.48 (d, 3JH,H¼ 7.43Hz, 1H, CHAr), 6.96 (t, 3JH,H¼
7.72Hz, 1H, CHAr), 7.31 (d, 3JH,H¼ 8.35Hz, 2H, CHAr), 7.35 (d,
3JH,H¼ 8.46Hz, 2H, CHAr) ppm.

2-[(p-Nitrophenyl)(m-tolylamino)methyl]cyclohexanone (6n)

1HNMR (500MHz, CDCl3): d¼ 1.59–1.67 (m, 1H, CH2), 1.78–1.89 (m,
2H, CH2), 1.99–2.01 (m, 1H, CH2), 2.08–2.11 (m, 2H, CH2), 2.24 (s,
3H, CH3), 2.34–2.37 (m, 1H, CH2), 2.41–2.46 (m, 1H, CH2), 2.84–2.88
(m, 1H, CH), 4.69 (d, 3JH,H¼ 5.1Hz, 0.53H, CH, anti isomer), 4.81 (d,
3JH,H¼ 4.47Hz, 0.47H, CH, syn isomer), 4.85 (s, 1H, NH), 6.25 (t,
3JH,H¼ 7.77Hz, 1H, CHAr), 6.33 (s, 1H, CHAr), 6.49 (t, 3JH,H¼ 7.69Hz,
1H, CHAr), 6.94 (t, 3JH,H¼ 7.75Hz, 1H, CHAr), 7.59 (d, 3JH,H¼
8.51Hz, 2H, CHAr), 8.18 (d, 3JH,H¼ 8.54Hz, 2H, CHAr) ppm.

REFERENCES

1. Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M. Chemo-
and diastereoselective reduction of b-enamino esters: A convenient synthesis
of both cis- and trans-c-amino alcohols and b-amino esters. J. Org. Chem.
1994, 59, 5328–5335, and references therein.

2. (a) Wang, Y. F.; Izawa, T.; Kobayashi, S.; Ohno, M. Stereocontrolled synth-
esis of (þ)-negamycin from an acyclic homoallylamine by 1,3-asymmetric
induction. J. Am. Chem. Soc. 1982, 104, 6465–6466; (b) Hashiguchi, S.;
Kawada, A.; Natsugari, H. Stereoselective synthesis of sperabillins and
related compounds. J. Chem. Soc., Perkin Trans. 1 1991, 2435–2444.

3. (a) Senanayake, C. H.; Fang, K.; Grover, P.; Bakale, R. P.; Vandenbassche, C.
P.;Wald, S. A. Rigid aminoalcohol backbone as a highly defined chiral template
for the preparation of optically active tertiary a-hydroxyl acids. Tetrahedron
Lett. 1999, 40, 819–822; (b) Genov, M.; Dimitrov, V.; Ivanova, V. New d-
aminoalcohol for the enantioselective addition of dialkylzincs to aldehydes.
Tetrahedron: Asymmetry 1997, 8, 3703–3706; (c) Hayashi, Y.; Rode, J. J.; Corey,
E. J. A novel chiral super-Lewis acidic catalyst for enantioselective synthesis. J.
Am. Chem. Soc. 1996, 118, 5502–5503; (d) Eliel, E. L.; He, X. C. Highly stereo-
selective syntheses involving N-alkyl-4,4,7a-trimethyl-trans-octahydro-1,3-
benzoxazine intermediates. J. Org. Chem. 1990, 55, 2114–2119.

4. (a) Traxler, P.; Trinks, U.; Buchdunger, E.; Mett, H.; Meyer, T.; Müller, M.;
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