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Abstract: Mercury(II)-mediated ring closure of N-[1-(2-allyl-
3-benzyloxy-4,6-dimethoxyphenyl)ethyl]acetamide 4 afforded
N-acetyl-5-benzyloxy-6,8-dimethoxy-1,3-trans-dimethyl-1,2,3,4-
tetrahydroisoquinoline 3. The product was shown to exist as a mix-
ture of rotamers by NMR spectroscopy, since signals coalesced at
higher temperatures. 2-[2-[1-(Acetylamino)ethyl]-6-(benzyloxy)-
3,5-dimethoxyphenyl]-1-methylethyl methanesulfonate 8 was also
cyclized with sodium hydride to afford rotameric products with the
same isoquinoline skeleton, but as a mixture of 1,3-cis- and trans-
dimethyl isomers.

Key words: amidomercuration, cyclization, isoquinoline, Mit-
sunobu, rotamers

The range of biological activities displayed by isoquino-
line alkaloids makes them perennially interesting com-
pounds to chemists and life scientists alike.1 Much recent
attention has been devoted, for example, to the koru-
pensamines such as 1 (korupensamine B) and their
binaphthyl dimers, for example michellamine B, which
show antimalarial and anti-HIV properties respectively
(Figure 1).2

Figure 1

As a result, a number of groups have reported syntheses of
these compounds3 and their analogues.4 In general the
syntheses rely on the assembly of a suitably substituted
tetrahydroisoquinoline, e.g. 2, and the coupling of this
unit with an appropriate naphthalene. Published syntheses
of the tetrahydroisoquinoline nucleus of many naturally
occurring products, including the michellamines, fre-
quently make use of the Bischler–Napieralski,5 Pomer-
anz–Fritsch6 or Pummerer7 reactions.

In this paper8 we describe a novel approach to an N-
acetyltetrahydroisoquinoline possessing a substitution
pattern common to several of the korupensamine and
michellamine naphthylisoquinoline alkaloids. This ap-
proach incorporates amidomercuration methodology for
the construction of the tetrahydroisoquinoline 3 from 4
(Figure 2). This methodology relies on an unusual N/C-3
disconnection9 as shown in the diagram below rather than
the traditional N/C-1/Ar disconnection. Furthermore, the
product is a mixture of N-acetyl rotamers.

Figure 2

The aromatic alcohol 5, an intermediate we have also used
for making isochromane ring systems,4h,i was treated with
phthalimide under Mitsunobu conditions10 as shown in
Scheme 1 to yield imide 6. Exposure of 6 to methyl-
amine11 afforded an unstable primary amine that was im-
mediately treated with acetic anhydride and pyridine to
produce amide 4.12 We were now in a position to test
whether we could access the tetrahydroisoquinoline sys-
tem by forming the N/C-3 bond. Using as analogy the syn-
thesis of isochromanes13 by oxymercuration of hydroxy-
alkenes related to 4, we envisaged making the target sys-
tem by intramolecular amidomercuration. Although this
type of reaction has been well investigated,14,15 it appears
to have no precedent in the isoquinoline series.

Reaction of 4 with mercury(II) acetate13 in a 1:1 water–
tetrahydrofuran mixture followed by reduction with sodi-
um borohydride gave the desired N-acetyl-1,3-trans-di-
methyltetrahydroisoquinoline 3 as a mixture of rotamers
in a poor yield of 21%. The low yield was due to the com-
petitive reaction of water with the mercurinium
intermediate14c to give the secondary alcohol 7 as a mix-
ture of diastereomers in 54% yield. The formation of un-
wanted alcohol 7 could be suppressed by reaction of
amide 4 with mercury(II) acetate in dry tetrahydrofuran,
affording the 1,3-trans-dimethyl product 3 as a mixture of
rotamers in a yield of 56% as the major product.16 A small
amount (~10%) of the cis-isomer was also evident as
shown by NMR spectroscopy.
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The 1H NMR spectrum of tetrahydroisoquinoline 3 was
quite complex owing to substantial peak doubling.17 It
was postulated that rotamers of 3 exist in solution as a re-
sult of hindered rotation of the amide, giving rise to this
doubling phenomenon.18 This hypothesis was substantiat-
ed with variable temperature 1H NMR spectroscopy ex-
periments and molecular modelling.19 NOE spectros-
copy20 indicated that the methyl groups on the heterocy-
clic core had a trans-relationship, implying that the het-
erocyclic ring adopts a boat-like conformation (Figure 3,
a). Both methyl substituents appear to occupy pseudo-ax-
ial positions to minimise 1,3-allylic strain21 (Figure 3, b).

As we had reasonable quantities of the unwanted alcohol
7 we also examined the conversion of this intermediate
into tetrahydroisoquinolines. Reaction of 7 with methane-
sulfonyl chloride and triethylamine (Scheme 2) afforded
mesylate 8 in quantitative yield. Exposure of 8 to sodium
hydride resulted in cyclization to afford tetrahydroiso-
quinolines 3 and 9 (85% yield) as an equimolar, insepara-
ble mixture of 1,3-cis- and trans-dimethyl isomers, each
occurring as a pair of amide rotamers.22 The formation of

a mixture of cis- and trans-cyclized products by nucleo-
philic displacement of mesylate by the amide nitrogen is
a consequence of 8 being a mixture of diastereomers.

Scheme 2 Reagents and conditions: a, MsCl, CH2Cl2, Et3N (100%);
b, NaH, THF (85%).

We have thus been successful in synthesizing an isoquin-
oline with the aromatic substitution pattern common to
several of the korupensamine and michellamine alkaloids,
albeit in racemic form, using a novel amidocyclization re-
action. Work is now in progress to investigate the gener-
ality of this approach for the preparation of substituted
isoquinolines and we plan to extend this to other natural
products.
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Figure 3 (a) Significant NOE interactions in 3. (b) Minimisation of
A1,3 strain in 3.
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