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Abstract A new and unexpected rhodium(I)-catalyzed cycloisomeriza-
tion of 1,6-enynes is reported. Several different alkyne substitution pat-
terns were evaluated under the reaction conditions, including a deuter-
ated derivative that provides some insight into the reaction
mechanism.

Key words rhodium, homogeneous catalysis, ring closure, isomeriza-
tion, enones

Previously we have published on rhodium(I)-catalyzed
C–H alkenylation and electrocyclization cascades for the
convergent assembly of 1,2-dihydropyridines 4 from α,β-un-
saturated imines 1 and alkynes 2 (Scheme 1).1,2 The 1,2-di-
hydropyridine products have further proven to be versatile
intermediates for the synthesis of a variety of heterocyclic
structures,1 including pyridines,1,3,4 piperidines,5 isoquinu-
clidines,6 and tropanes.7

Scheme 1  C–H alkenylation–electrocyclization cascade to provide 
1,2-dihydropyridines

To access complex, multicyclic heterocycles 6 with high
levels of regiocontrol we have explored the intramolecular
alkenylation of substrates 5 with the alkyne tethered to the

α,β-unsaturated imine via the nitrogen substituent
(Scheme 2).8 Subsequent electrocylization provides 6 with
bridgehead double bonds.

Scheme 2  Intramolecular C–H alkenylation–electrocyclization cascade 
of substrates 5 with alkynes tethered to the nitrogen

In the present study we explored cyclization of
1,6-enyne substrates 7 in which the alkynyl group is teth-
ered to the α,β-unsaturated imine functionality with a dif-
ferent connectivity than that used for 5 (Scheme 3). Howev-
er, to our surprise, the rhodium(I)-catalyzed reaction of
1,6-enynes 7 did not provide any of the expected bicyclic
products 8, but rather resulted in the cycloisomerization
products 9, which upon hydrolysis provided exocyclic enals
109 with good levels of Z-selectivity.

We began our investigations by exploring the rhodi-
um(I)-catalyzed transformation of α,β-unsaturated imine
7a (Scheme 4). Using conditions previously determined to
be optimal for α,β-unsaturated imine C–H bond functional-
ization, which employed Rh[Cl(coe)2]2 as the precatalyst
and the commercially available electron-rich phosphine
4-Me2NPhPEt2, exocyclic enal 10a was obtained in 48%
yield, predominantly as the less stable Z-isomer. The stereo-
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chemistry of 10a was further rigorously confirmed by com-
plete isomerization to the more stable E-isomer 11a9 under
acidic conditions.

Scheme 4  Rhodium-catalyzed cycloisomerization of 7a and confirma-
tion of stereochemistry of hydrolysis product 10a by equilibration to 
11a

An intriguing aspect of this cycloisomerization reaction
is the formal trans-C–H bond addition across the alkynyl
group.10 We hypothesized that 7a might first isomerize to a
terminal allene or alkyne prior to cyclization and therefore
evaluated methyl-deuterated substrate 7b (Scheme 5).
Product 10b was isolated in the same yield and stereoiso-
meric purity as 10a with the methyl group remaining fully
deuterated without any deuterium transfer to other sites in
the structure. This result argues against the cycloisomeriza-
tion first proceeding by π-bond isomerization.

Two additional substrates were evaluated to demon-
strate that the reaction is applicable to substitution pat-
terns beyond methyl alkyne derivatives. As shown in
Scheme 6, ethyl 1,6-enyne 7c and benzyl 1,6-enyne 7d pro-
vided cyclic products 10c and 10d, respectively, in compa-
rable yields and with very high selectivity for the Z-alkene
isomer. We believe that the higher selectivity for these

more sterically hindered products is due to reduced isomer-
ization during imine hydrolysis upon filtration through alu-
mina.11

Scheme 6  C–H alkenylation–electrocyclization cascade to provide 
1,2-dihydropyridines

Cycloisomerizations of 1,6-enynes to give cyclohexene-
based products have previously been reported using ruthe-
nium and molybdenum metathesis catalysts,12 cationic gold
catalysts,13 and even rhodium(I) catalysts.14,15 However,
almost all of the previous reports, including all of the rhodi-
um(I)-catalyzed transformations, employ 1,6-enyne sub-
strates that incorporate a terminal alkyne. Transformations
of 1,6-enynes with internal alkynes to give cyclohexenyl
products are limited to ruthenium and molybdenum cata-
lysts proceeding by endo-selective enyne ring-closing me-
tathesis pathways. In fact, the previously reported rhodi-
um(I)-catalyzed cycloisomerizations of 1,6-enynes all con-
tained terminal alkynes and monosubstituted alkenes, and
for this class of 1,6-enynes, mechanistic studies support a
reaction pathway that proceeds via a rhodium–vinylidene
intermediate. It is notable that rhodium–vinylidene inter-
mediates are not accessible for the 1,6-enynes 7 reported
here that incorporate internal alkynes.

In conclusion, we have identified a novel rhodium(I)-
catalyzed cycloisomerization of 1,6-enynes incorporating
internal alkyne moieties that gives functionalized six-
membered carbocyclic systems. Further mechanistic inqui-
ry will be necessary to elucidate the reaction mechanism.
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(Z)-2-(2-Methylcyclohex-2-en-1-ylidene)acetaldehyde (10a)
In an inert atmosphere box, to the solution of 7a (86 mg, 0.63
mmol) in toluene (3 mL) was added benzylamine (68 mg, 0.63
mmol) and 3 Å MS (800 mg). The flask was removed from the
box, and the mixture was stirred at r.t. for 3 h. The 3 Å MS were
removed via filtration over Celite, which was washed with
toluene (8 mL). The filtrate was degassed and brought into an
inert atmosphere box. To the solution was added a solution of
[RhCl(coe)2]2 (23 mg, 0.031 mmol) and Me2NPhPEt2 (13 mg,

0.62 mmol) in toluene (2 mL), and the mixture was stirred at
75 °C for 1 h. After removal of the solvent, the residual oil was
purified by column chromatography on grade III Al2O3 (hex-
anes–EtOAc, 100:0 to 99:1,) to afford 10a (Z/E = 6.7:1) as color-
less oil (41 mg, 0.30 mmol, 48% yield). Rf = 0.70 (hexanes–EtOAc.
4:1). 1H NMR (400 MHz, CDCl3): δ = 10.23 (d, J = 8.4 Hz, 1 H),
6.11 (ddd, J = 5.4, 2.7, 1.3 Hz, 1 H), 5.81 (d, J = 8.4 Hz, 1 H), 2.44
(ddd, J = 6.5, 4.3, 1.2 Hz, 2 H), 2.30–2.20 (m, 2 H), 2.17 (dd,
J = 3.3, 1.8 Hz, 3 H), 1.84–1.74 (m, 2 H). 13C NMR (101 MHz,
CDCl3): δ = 192.28, 156.42, 138.87, 131.95, 127.42, 35.59, 26.55,
26.04, 22.34. IR (thin film): 2927, 2867, 2834, 1653, 1615, 1580,
1448, 1406, 1223, 1178, 1149, 1130, 1101, 1025, 948 cm–1. MS
(EI): m/z [M]+ calcd for C9H12O+: 136.09; found: 136.10.
(Z)-2-[2-(Methyl-d3)cyclohex-2-en-1-ylidene]acetaldehyde
(10b)
Compound 10b was synthesized according to the procedure
used for compound 10a. From 80 mg (0.57 mmol) of 7b was
obtained 39 mg (0.28 mmol, 49% yield) of 10b (Z/E = 6.7:1) as
colorless oil after purification by column chromatography on
grade III Al2O3 eluting with hexanes–EtOAc (100:0 to 99:1). Rf =
0.70 (hexanes–EtOAc. 4:1). 1H NMR (400 MHz, CDCl3): δ = 10.21
(d, J = 8.5 Hz, 1 H), 6.11 (td, J = 4.2, 1.3 Hz, 1 H), 5.81 (d, J = 8.5
Hz, 1 H), 2.48–2.40 (m, 2 H), 2.29–2.21 (m, 2 H), 1.83–1.74 (m, 2
H). 13C NMR (126 MHz, CDCl3): δ = 192.28, 156.44, 138.87,
131.89, 127.46, 35.60, 26.57, 22.38. IR (thin film): 3009, 2926,
1651, 1611, 1580, 1406, 1230, 1156, 1137, 1096, 1051, 974 cm–1.
MS (EI): m/z [M]+ calcd for C9H9D3O+: 139.11; found: 139.15.
(Z)-2-(2-Ethylcyclohex-2-en-1-ylidene)acetaldehyde (10c)
Compound 10c was synthesized according to the procedure
used for compound 10a. From 40 mg (0.27 mmol) of 7c was
obtained 18 mg (0.12 mmol, 45% yield) of 10c (Z/E = 20:1) as
colorless oil after purification by column chromatography on
grade III Al2O3 eluting with hexanes–EtOAc (100:0 to 99:1). Rf =
0.70 (hexanes–EtOAc. 4:1). 1H NMR (400 MHz, CDCl3): δ = 10.11
(d, J = 8.5 Hz, 1 H), 6.08 (ddd, J = 5.4, 2.8, 1.3 Hz, 1 H), 5.76 (d,
J = 8.5 Hz, 1 H), 2.53–2.44 (m, 2 H), 2.44–2.37 (m, 2 H), 2.30–
2.22 (m, 2 H), 1.84–1.75 (m, 2 H), 1.11 (t, J = 7.4 Hz, 3 H). 13C
NMR (126 MHz, CDCl3): δ = 192.40, 156.54, 138.12, 135.90,
126.41, 36.28, 30.99, 26.52, 22.88, 13.16. IR (thin film): 2966,
2928, 2876, 1660, 1617, 1583, 1453, 1409, 1222, 1174, 1150,
1127, 1107, 1081cm–1. MS (EI): m/z [M]+ calcd for C10H14O+:
150.10; found: 150.10.
(Z)-2-(2-Benzylcyclohex-2-en-1-ylidene)acetaldehyde (10d)
Compound 10d was synthesized according to the procedure
used for compound 10a. From 63 mg (0.30 mmol) of 7d was
obtained 32 mg (0.15 mmol, 51% yield) of 10d (Z/E = 15.5:1) as
colorless oil after purification by column chromatography on
grade III Al2O3 eluting with hexanes–EtOAc (100:0 to 99:1). Rf =
0.70 (hexanes–EtOAc. 4:1). 1H NMR (500 MHz, CDCl3): δ = 10.04
(d, J = 8.4 Hz, 1 H), 7.29 (t, J = 7.5 Hz, 2 H), 7.21 (t, J = 7.4 Hz, 1
H), 7.13 (d, J = 7.3 Hz, 2 H), 6.01 (td, J = 4.0, 1.0 Hz, 1 H), 5.73 (d,
J = 8.4 Hz, 1 H), 3.83 (s, 2 H), 2.50–2.43 (m, 2 H), 2.32 (ddd,
J = 6.0, 5.1, 2.0 Hz, 2 H), 1.90–1.82 (m, 2 H). 13C NMR (126 MHz,
CDCl3): δ = 192.10, 155.61, 140.14, 138.71, 135.05, 128.58,
128.55, 126.66, 126.41, 44.05, 36.22, 26.72, 22.65. IR (thin film):
3025, 2925, 2862, 1688, 1653, 1616, 1582, 1495, 1453, 1405,
1223, 1147, 1124, 978 cm–1. MS (EI): m/z [M]+ calcd for
C15H16O+: 212.12; found: 212.10.
(E)-2-(2-Methylcyclohex-2-en-1-ylidene)acetaldehyde (11a)
To a solution of 10a (40 mg, 0.29 mmol) in THF (2 mL) was
added a 1 M aqueous solution of HCl (1 mL, 1 mmol), and the
mixture was stirred at r.t. for 18 h. After being neutralized with
aq Na2CO3, the aqueous layer was extracted with EtOAc (3 × 5
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mL). The combined organic layers were washed with H2O and
brine and dried over with MgSO4. After filtration, the solvent
was removed under reduced pressure. The residual oil was puri-
fied by column chromatography on silica gel (33:1, pentane–
Et2O) to afford 11a as a colorless oil (36 mg, 0.26 mmol, 89%
yield). Rf = 0.70 (hexanes–EtOAc. 4:1). 1H NMR (400 MHz,
CDCl3): δ = 10.15 (d, J = 8.1 Hz, 1 H), 6.18 (t, J = 4.3 Hz, 1 H), 5.93
(d, J = 8.1 Hz, 1 H), 2.95–2.86 (m, 2 H), 2.26 (dtd, J = 7.8, 4.1, 1.9
Hz, 2 H), 1.85 (dd, J = 3.1, 1.7 Hz, 3 H), 1.80 (dt, J = 12.5, 6.2 Hz, 2
H). 13C NMR (126 MHz, CDCl3): δ = 191.49, 157.28, 138.03,
132.99, 122.62, 26.32, 25.82, 22.26, 19.65. IR (thin film): 2924,
2860, 1663, 1622, 1591, 1455, 1435, 1401, 1386, 1370, 1177,
1145, 1087, 1048 cm–1. MS (EI): m/z [M]+ calcd for C9H12O+:
136.09; found: 136.00.
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