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INTRODUCTION 

Symmetric diatomic molecules have been extensively researched as to structure and chemistry. 1 
While chlorine was prepared over 300 years ago, other members of this family have only been known 
since the 1800s. Mixed diatomics such as HC1 have had a long history I yet, one of the most researched 
molecules in recent years is nitric oxide (N=O); it has been shown to have a very wide variety of 
important biological effects. 2 

DIATOMIC SULFUR 

Since the initial discovery by Steliou in 19843 of the rational generation of diatomic sulfur and its 
successful transfer to dienes, a number of groups have focussed on this and related problems. Our first 

un 41) acco t in this area was published in 1988 ; since that time research has expanded to include sulfur 
monoxide (SO). 5 

The structure of diatomic sulfur has been known for many years. Details on this as well as a 
summary of published research on the generation of diatomic sulfur have been recently summarized. 6 

The purpose of this report is to summarize our current work in this area. A significant 
breakthrough for the effective generation of diatomic sulfur involves the chemistry of alkoxydisulfides 1. 
We have shown that members of this class of compound decompose near 75 ° C to permit the transfer of 
diatomic sulfur to dienes to give cyclic disulfides 2 in overall isolated yields of c a .  75% 7a (Eq. 1). 
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* "  ÷ Is -s  Eq. 1 H VO'~S heat, toluene 
R R 

I 
1 CH=Ar 2a; R = CH 3 311; R = Cl'ls 

2b; R = Cells 31); R = Cells 
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The tetrasulfide adduct 3 is also formed in these trapping reactions; recent control experiments 
have shown that only very small amounts of the disulfide adduct 2 are converted to the tetrasulfide 3 
upon heating. 8 The disulfide 2 is however, a competitive entity with regard to the diene for trapping S 2. 
Interestingly, a series of experiments performed in the presence of 1,1'-bicyclohexene 4 show n o  traces 
of the corresponding tetrasnlfide adduct (Eq. 2),3,8,9 

h--t, c~-=scl Eq. 2 

4 61% 

Alkoxydisnlfides have been known for over 100 years 10 but have been given relatively little 
attention since the work of Thompson in 1965. ua The efforts of Steude111b,c,f in this area are a notable 
exception. We have prepared a series of them in isolated yields of ca .  85% (Eq. 3, Table 1). 

_ _ ~  S=CI= 1 
X CH=OH Et,aN 

l a ; X = H  
lb; X = NO= Eq. 3 
lc; X = CI 
ld; X = OCH_~ 
le; X = CHa 

Table 1- Synthesis of Alkoxydisulfides 1 

ROSSOR 1 X yifld a(%~ mp ° C  

a H 88 50-51 
b NO 2 90 92-93 
c CI 86 45-47 
d OMe 62 b 34-36 
e Me 82 liquid 

a Isolated yields aher flash chromatography and recrystallization; 
b ld  was unstable on silica gel. 

Each of these molecules transfers a diatomic sulfur unit to a diene, however the temperatures of 
decomposition vary somewhat as do the stabilities of 1. In general, those structures with electron- 
withdrawing substitutents in the para position of the aromatic ring are the most stable, while those with 
electron-donating ones suffer decomposition at room temperature in 1-2 days; all of them survive well 
when refrigerated. 

Of special interest is the structure of the -OSSO- moiety. Steudel reported xxb,c the first detailed 
information in this area in the gas-phase as well as a low-temperature crystal structure analysis of 
dimethoxydisnlfide (5). We have completed an X-ray structure determination of lb and lc. ga Of 
interest is the short sulfur-suLfur bond in these molecules (1.93-1.97 .~) (Table 2). The normal length 
for a typical sulfur-snlfur bond ranges from 2.02-2.06 .~L 12 The shortest known S-S bond is that of the 
branch-bonded version of $2F213 with a value of 1.86 i~. 
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Table 2- Structural features of 1. 

ROSSOR S-S ,~ O-S-S-O o O-S-S o 

lb  8 1.968 85.6 107.3, 107.8 

lc  8 1.932 a 76.8 108.9 

511b 1.960 91 108.2 

511c 1.972 81.5 108.2 

a This value appears unusually short and is being reinvestigated. 

S2 

Ortep diagram of alkoxydisulfide lb. 

A fascinating feature of the 1H NMR spectrum of each of the alkoxydisulfide derivatives 1 is the 
presence of a sharp AB quartet. This signal is comtant from ca. -70 ° C to the decomposition point (e.g. 

for lb  at ca. 70 ° 12). There is no clear literature precedent for a structure such as lb  to exhibit hindered 
rotation. Further, we have no evidence that there is an equilibrium between the linear and branched 
structures. 

A b  initio calculations have been carried out 14 which suggest a significant and unprecedented 
rotational barrier is introduced when the S-S bond is shortened from ca. 2.06/~12,15 to the actual values 
for the alkoxydisulfides of ca. 1.96 ~Sa, llb,c This experiment nicely rationalizes the clean AB quartet 
for 1 at temperatures of ca. 70 ° C which requires a rotational barrier of at least 18-20 kcal/mol. 

In addition to alkoxydisulfides 1, we have been able to generate a variety of diatomic sulfur 
precursors of quite varied structure. These include thiuram disulfide 616 and adduct 717. While the 
yields of transfer are not high, the results have stimulated us to investigate an even wider variety of 
potential precursors. 

S S ~ , ~  DSSCPh3 HsC~, I I I I /CHs 
N ~ C ~ S ~ S ~ C ~ N  

HsC / XCHs . 
6 7 CI 
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Some time ago, we showed that diatomic sulfur could be transferred from metailocene 
pentasulfides g by the action of triphenylphosphine dibromide (9). 4,zs Recently, we have shown that 
diatomic sulfur can be generated from 8 by simply heating in DMSO, chlorobenzene or DMF. 19 (Eq. 

Eq. 4 
8a; M = Mo, n = 4 x = variable or 

b; g = Ti, n = 5 not reported 
c ; M = Z r ,  n = 5  

These reactions may involve a simple diatomic sulfur extrusion. Reasonable yields of trapped 
product (ca. 25-50%, Table 3) are obtained. In control experiments, when elemental sulfur is used as 
the transfer reagent, no trapping is observed unless the solvents are DMSO or DMF or the 
ten~peratures are high. 

Table 3- Yields of $2 and "S4" Transfer from 8. 

$ Solvent (2b) a (3b) a 

a DMSO 29 3 
a DMF 

a C6H5C1 27 2 
b DMSO b 9 1 

b DMF 30 6 

b C6H5C1 38 4 
c DMSO c - 

c DMF 

c C61-I5CI 49 7 

~ Most values are NMR yields with an internal standard; 
8b decomposes rapidly at 125 ° C; c k decomposes at room 

temperature after ca. 30 rain. 

Given the long history of "activated sulfur", 20a we have become interested in finding a way to 
simply use S 8 (or easily made atlotropes S 6 or $10 ) as a reagent (vide infra), with minimal or no chemical 
"activation" in order to effect a two-sulfur transfer. 

We have found that elemental sulfur 20b shows a variable level of activity towards dienes. Cyclic 
disulfides 2 form along with some polysulfides (Eq. 5). The final yield of disulfides 2 (after conversion 
of the polysulfides with triphenylphosphine) ranges from 45% to over 80% depending on the nature of 
the diene. The results are summarized in Table 4. 

Ra~:::y~ Sit , heat S 
• ~ve.t ~ + Eq. 5 

R R~ R2 

2 polysulfldes 

lOa (R1, R2 = CHs); b (R 1, R2 = Cells); c (R1 = H, R 2 = (CH~CH=(CH=)2 
solvent = DMSO, DMF, CeHeCI, CeHsCHs, (CH=OEt)2; x = 3,4 and higher 
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Table 4 

diene a solvent 21)% a 31)% a 

10b DMSO 70 15 

10b DMF 54 26 

10b C6H5C1 16 16 

10b (EtO)2CH 2 22 7 

10b Toluene < 2 < 2 

a Values are NMR yields with an internal standard. 

This method of diatomic sulfur transfer can be very effective, resulting in yields of over 80% for the 
net, two-sulfur transfer. It is unclear why the amount of trapped product (tetrasulfide 3b) varies, but it 
does not pose a problem for the preparation of cyclic disulfides. Some cyclic disulfides of a general 
structure such as 2, have biological activity. 7b,e 

When pure disulfides 2 were heated with elemental sulfur in DMSO, only a fraction of tetrasulfides 
3 were formed as was observed in the reactions with dienes under identical conditions. We also 
examined the possibility that tetrasulfides were formed first in a sulfuration reaction and were then 
equilibrated to disulfides with elemental sulfur. This postulate was not confirmed as only 8% of 3b (R 
= C6H5) was converted to 2b when heated with an excess of S 8 in DMSO solvent. These experiments 
suggest that neither insertion nor equilibration effectively determines the composition of the sulfuration 
products and that formation of both di- and polysulfides occurs in a single step. 

It is possible that the octasulfur ring is opened by solvent and the ionic intermediate could generate 
discrete sulfur units Sn with n = 2, 3, 4 or 5 reacting with dienes. The existence of $3, $4 or S 5 has been 
proposed on the basis of molecular orbital calculations. 21 A possible mechanistic hypothesis to explain 
this multiple sulfur transfer is posed in Eq. 6. This mechanism may permit an explanation of at least 
some of the many diverse reactions involving elemental sulfur, (particularly those in polar solvents) that 
abound in the literature. 

+ 

or -~, .S  Eq. 6 

lOa; R = CH3 x=3,2,1 ~ ~ S~s/  
101); R = Cells 

We have also examined other sulfur allotropes as potential diatomic sulfur precursors. Warming 
hexasulfur ($6) with diene 10b in toluene transfers diatomic sulfur, but only in modest (5-6%) yield. We 
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believed that $10 appeared to be a better candidate for S 2 transfer in that a loss of S 2 could afford the 
stable S 8 allotrope. $10 is prepared by treating titanocene pentasnlfide (81)) with sulfuryl chloride (Eq. 
7).n 

~ .T i  S ~ S ; 5  s SO2C,, =~ Sl 0 
Eq. 7 

8b 

Preliminary trapping experiments have been carried out with $10 under mild conditions (refluxing 
benzene). Using 2,3-diphenyl-l,3-butadiene (10b), disulfide adduct 2b and the corresponding 
tetrasulfide derivative 31) have been identified as the only trapped products of the reaction when 
equimolar amounts  of the diene and $10 are used. 23 The overall yield of disulfide 21) is 25% along with 
2% of the tetrasnlfide 3b (Eq. 8). Elemental sulfur is formed in this process thus showing a reasonable 
efficiency of competitive trapping by the diene since diatomic sulfur eventually oligomerizes to 
octasulfur. Initially, we found some inconsistency in the reproducibility of reactions because $10 
appears quite sensitive to traces of base. 

~.CtHs ~ ~.CtHs 

S 10 heat, CsH6 > + - -  S 

CeHs CeHs Eq. 8 

2b (25%) 3b (2%) 

Another interesting structure which could potentially deliver diatomic sulfur is the only confirmed 
thionosnlfite l l a  formed by an unusual reaction with a monosulfur transfer reagent (Eq. 9). 24 Here, the 
X-ray crystal structure shows the S-S bond length to be quite short at 1.901 A (see Table 2 for related 
structures). / S 

, .N.... II 

HO OH S"N~ " o / S ~ ' o  

11a 
It appears that the tetrachalcogenlde linkage prefers to bond as the thiono isomer (-O-(S=S)-O) 

when it is present in a 5-membered ring. The "linear" structure (-O-S-S-O-) is adopted in open-chain 
molecules, e.g. 1 and 5. To date, there are no examples of a thionosulfite that is not cyclic. ~,25 A 
number of theoretical investigations on this interesting question as to "open-chain" vs. "oranch-bonded" 
isomerization (including $2F2) and related derivatives have been published. 26 

We have investigated some of the chemistry of thionosulfite I la  to discover its capacity to also 
serve as a diatomic sulfur transfer species. When l l a  is heated above its melting point (100-101 ° C) to 
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ca. 150 ° C, an acidic gas is evolved. 24 Preliminary analysis of the products shows that elemental sulfur 
and a variety of olefinic materials are formed. In the presence of diene 10b, a small amount of trapped 
disulfide 2b is formed (1H NMR). 27 

The m~L~S spectra of l l a  suggest that the decomposition mode is as shown in Eq. 10. It appears 
that the relatively unusual sulfur oxide $20 2 is formed and disproportionates to sulfur (v/a S2) and 
sulfur dioxide. A variety of other thionosulfites (e. g. 11b,e) have been prepared in order to study the 
scope of this interesting decomposition reaction. 28 

S 
ii S 

o"S 'o  II 

S. I Eq. 10 
o,,S,o 11a 1 

1/8Se ~ 1/2S2 + S02 

11© 

Presently, there are over a dozen reagents (including elemental sulfur itself) that will deliver 
diatomic sulfur to a diene. The different structural types of molecules that perform this transformation 
suggest that there will be many more discovered in the future. 29 

In addition, previous experiments in our laboratory have suggested the possibility of the transfer of 
diatomic selenium; 3° this is presently being explored. 31 When compound 12, the selenide analog of 
titanocene pentasulfide (Sb) was warmed with 2,3-diphenyl-l,3-butadiene (10b) in o-dichlorobenzene, 
one trapped product (selenophene 13b) was isolated in 29% yield (Eq. 11). It could have resulted from 
the loss of H2Se from intermediate 13a (diselenium being trapped by diene 10b). The structure of 13b 
was determined by X-ray crystallography. 31 

~T ~ jCeH5 1 
h ~  ~=-Ch~H4 Eq. 11 

Cells 

12 13a 

°.".  

~C6Hs 
1 ~ (29*/.) 
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S ~  MONOXIDE 

Another sulfur-cont~inin~ diatomic molecule is sulfur monoxide. 32 Considerably less attention has 
been paid to this chemistry 5~3 as compared to diatomic sulfur. Sulfur monoxide was first identified in 
1929 but is thermodynamically unstable, decomposing in the gas phase. 1 The common method of 
generating S = O  has been by the pyrolysis of ethylene episulfoxide (14) at ca. 100 ° C. 34 Yields of 
trapped product (sulfoxide 15) are usually ca. 30% and frequently lower. 

Work by Lema135 was primarily directed towards elucidating the mechanistic features of this 
process although one trapping experiment with isoprene gave a synthetically sitmificant 72% isolated 
yield of the corresponding sulfoxide. A recent paper by Glass 36 examined the decomposition of an 
episulfoxide which decomposed to the olefin with the likely extrusion of S = O. 

We have found that the hindered episulfoxides, adamantylideueadamantane thiirane-l-oxide (16) 
arid analog 17, 37.38 deliver S=O to dienes in isolated yields averaging 75%. These hindered 
episulfoxides are prepared by m-CPBA oxidation of the corresponding episulfides (18, 19) in high 
isolated yield (92%). The episulfoxides (16, 17) are shelf-stable molecules; their crystal structures have 
been determined. 37~38 o 

II 

dlene > S 
o h . .  
II R 

l g  17 

Dienes such as 10a,b are added to a solution of episulfoxide in toluene (3:1 excess of episulfoxide). 
After refiuxing for 24 h under nitrogen followed by work-up, the alkene (98% recovery) is isolated along 
with the trapped sulfoxide (ca. 70-80% yield). A variety of dienes, solvents and temperatures were 
employed to optimize the yields. A selected summary of the results are shown in Table 5. 

Table 5 

(enisulfoxide~ solvent diene a sulfoxide~ a 

16 toluene 10a 70 
16 xylene 10a 27 
17 toluene 10a 73 
17 xylene 10a 38 
16 toluene 10b 80 
16 toluene 10b b N.R. e 
17 toluene 10b 82 
17 EtOAc 10b c N.R. e 
17 toluene 10b d 70 

a 3:1 ratio of episulfoxide to diene; reflmdng solvent for 8-k24 hrs except 
where noted; isolated yields after flash chromatography; " 1:1 ratio of 

O C episulfc0dde to ~ene; 80 C, 10 days; 1:1 ratio of episulfmide to diene; 
77 ° C, 7 days; o 1:3 ratio of episulfoxide to diene; reflux, 12 hrs; yield 
based on episulfm/de; e no reaction 
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The mechani.sm of S = O loss appears to be a diradical event which has been suggested by virtually 
all of the mechanistic studies already carried out, especially those by Baldwin, 39 Lema135 and Glass. 36 

SUMMARY 

This area of small molecule chemistry has grown impressively over the past 13 years from the first 
reagents to deliver diatomic sulfur. With further research it may be possible to prepare virtually any 
cyclic disulfide in good-excellent yield by the use of elemental sulfur itself. 

In a parallel fashion, an even more complex problem will be to master these heterocyclic 
manipulations with selenium. At present, the transfer of sulfur monoxide is reasonably effective, 
however yet another challenge will be the possible generation of small molecules mixing sulfur with 
oxygen, phosphorus and nitrogen which should also follow the Diels-Alder trapping chemistry outlined 
above. 

EXPERIMENTAL 

Trapping of Dlatomic Sulfur by AIkoxydisuifide 1.- Alkoxydisulfide lb (900 nag., 2.5 retool) and 
diene 4 (114 mg, 0.7 retool) were added to 7 mL of chlorobenzene. In addition, 2.5 mmol (99 nag) of 
MgO is also added to the the flask. The reaction was immersed in an oil bath held at 135-140 ° C and 
stirred for 2 hrs. Most of the solvent is evaporated under reduced pressure and the residue is triturated 
in hexanes (3 x 10 mL) and filtered each time. Evaporation of the hexanes provides a residue that was 
dissolved in CC14 and chromatographed on silica gel (10% CS2 in CC14). The major fractions were 
recombined and rechromatographed using CCI 4. The disulfide adduct (61%, combined yield) is a clear, 

13 yellow oil characterized by C NMR (CDC13): 6 26.62, 27.96, 31.95, 34.52, 44.55, 132.44 ppm. 
Sulfuratlon of Dienes with Elemental Sulfur.- A typical procedure is as follows. The reagents (1 

mmol of diene and a 4-fold excess of sulfur) are added to 4 mL of solvent. The reaction mixture is 
refluxed for 3-12 h. An excess (3 retool) ofPPh 3 is added to the still hot solution. The mixture is stirred 
at room temperature for about 30 rain. An excess of elemental sulfur (1.5 mmol) dissolved in a small 
amount of CS 2 is added and the solution stirred for an additional 10 min. After the solvent is removed, 
the residue is triturated with hexanes. Precipitated PPh 3 = S is washed 5 times with hexanes to ensure 
removal of the organic disulfide. The solvent is evaporated and the residue introduced at the top of a 
chromatographic column with a minimal amount of CS 2. Elution is carried out first with hexanes and 
then with a mixture of hexanes/ether (100:1). The product is obtained in 45-82% isolated yield. There 
was no trace of the tetrasulfide, or other polysulfide. Sometimes another impurity was observed in 
small amounts (ca. 5%) in the case of 10a. Its 1H NMR spectrum was consistent with the Diels-Alder 
dimer of the diene as reported above. When the sulfuration of 10a was carried out on a 10X scale, after 
distillation a 67% yield of 2a was obtained. 

Trapping of Diatomic Sulfur by S10.- Recrystallized $10 (31.2 mg, 0.097 mmol) was refluxed with 
diene 10b (20.0 nag, 0.097 mmol) in 2 mL of benzene-d 6 under a nitrogen atmosphere. An internal 
standard of 1,3,5-tri-t-butylbenzene was added (18.0 nag, 0.071 mmol). The yields reported are from this 
internal comparison. 

Thermolysis ofThionosulfite lla.-Pre-distilled DMF (4 mL) was added to a mixture of diene (10b) 
(0.021 g, 0.10 mmol) and thionosulfite 11a (0.025 g, 0.095 mmol) in a round-bottomed flask under a 
nitrogen atomspbere. This was immersed in an oil bath maintained at 150-160 ° C. The reaction 
progress was monitored by tic and stopped when 11a was depleted. The solvent was removed and 
analysis was carried out by 1H NMR. 
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Attempted Trapping of Diselenium.- A solution of pentaselenide 12 (0.229 g, 0.4 mmol) and diene 
10b (0.365 g, 1.77 retool) in 5 mL of o-dichlorobenzene was refluxed for 6 days. The solvent was 
removed under reduced pressure. The reaction flask was extracted with pentane and the solution 
filtered through a cotton plug in a pipette. The resulting red/orange solution was concentrated; the 
crude material was purified by column chromatography on silica using hexane as eluent. The yield of 
13b (white crystals, rap 106-108 ° C) was 33 mg (29%); 1H NMR (CDCI3) 6:7.94 (s, 2H), 7.11-7.24 (m, 
10H); 77Se NMR (MeESe) 6: 584. 

Sulfur Monoxide Trapping l~rom the Decomposition of Adamantylideneadamantane Thiirane.1. 
Oxide (16) with Diene 10a.- 2,3-Dimethyl-l,3-butadiene (10a) (0.0513 g, 0.625 mmol) was added to 16 
(0.593 g, 1.875 retool) in 30 mL of dry toluene. The solution was refluxed for 12 h under a nitrogen 
atmosphere. The reaction was followed by tic using 15% EtOAc in hexane as eluent. After evaporating 
the solvent under reduced pressure, the first fraction was isolated by column chromatography using the 
same eluent and was identified as adamantylideneadamantane (99%). Elution with methanol provided 
suLfoxide 15a (0.065 g, 80%) as an oil. 1H-NMR (CDC13) ~: 3.83 (d, 2Ha), 3.48 (d, 2Hb) and 1.77 (s, 
6H) ppm; 13C-NMR (CDC13) 6: 14.46, 64.32 and 126.07 ppm; MS (m/z, tel. int., assignment): 130, 
100%, M+'; 82, 30%, M +" -SO: 67, 61%, M +" -SOCH 3. 
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