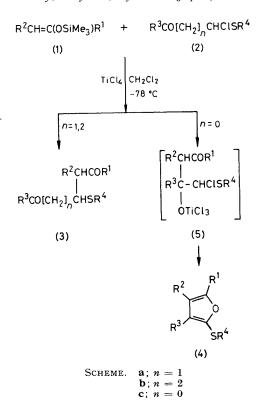
J.C.S. CHEM. COMM., 1981

By RIKUHEI TANIKAGA,* KAZUHISA MIYASHITA, HIDEKI SUGIHARA, and ARITSUNE KAJI (Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan)

Selective Reaction of Silyl Enol Ethers with α-Chloro-sulphides containing a Ketone Group

Summary Reaction of silvl enol ethers (1) with α -acyl- α -chloro-sulphides (2; n = 0) gives furans (4), whereas with β - or γ -acyl- α -chloro-sulphides (2; n = 1 or 2) diketones (3) are obtained.


In the presence of a Lewis acid α -chloro- or α -trifluoroacetoxy sulphides are known to react with aromatic compounds,^{1,2} sulphides,³ and thiols.³ The reaction of α chloro-sulphides and silyl enol ethers provides an efficient method for the regioselective monoalkylation of ketones and esters.⁴ Here we report that the reaction of silyl enol ethers (1) and α -chloro-sulphides (2) containing a ketone group takes place selectively at the α -methylene carbon atom or the carbonyl carbon atom depending upon the structure of (2).

Compounds (2) were prepared from the corresponding sulphides by treatment with N-chlorosuccinimide. A solution of 3-trimethylsilyloxypent-2-ene (1a; $R^1 = Et$, $R^2 = Me$; 1 mol. equiv.), 1-chloro-1-phenylthiobutan-3-one (2a; $R^3 = Me$, $R^4 = Ph$; 1·2 mol. equiv.), and TiCl₄ (1·1 mol. equiv.) was stirred at -78 °C for 8 h. After the usual workup chromatography on silica gel afforded the diketone (3a) in 58% yield. Similarly, (3b) was prepared from (1a) and (2b; $R^3 = Me$, $R^4 = Ph$) in 65% yield.

On the other hand, similar treatment of (1a) with 1chloro-1-phenylthiopropan-2-one $(2c; \mathbb{R}^3 = Me, \mathbb{R}^4 = Ph)$ and TiCl₄ led to the formation of the furan (4a) in 88% yield. The structure of (4a) was confirmed by its spectral data, and by direct comparison of authentic 2-ethyl-3,4-dimethylfuran with the compound obtained by reductive desulphurization of (4a) using deactivated (acetone-treated)

TABLE. Preparation of the furans (4).

Product	\mathbf{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	R4	Isolated yield/%
(4 a)	\mathbf{Et}	Me	Me	\mathbf{Ph}	88
(4b)	Et	Me	Me	Me	61
(4 c)	Et	Me	n-Hexyl	Me	54
(4d)	\mathbf{Ph}	н	Me	\mathbf{Ph}	70
(4e)	\mathbf{Ph}	н	Me	Me	61
(4f)	$-[CH_2]_4-$		Me	Me	60

W-2 Raney Ni (Scheme).⁵ The results of other experiments are summarized in the Table.

The formation of the furans is presumably due to the reactivity of the α -methylene carbon atom in the α -acyl- α -chloro-sulphides (2; n = 0) which is deactivated by the adjacent electronegative carbonyl group, and compounds (1) selectively react with the ketone function activated by TiCl_4 .⁶ Interestingly there are some differences between these findings and those for electrophilic reactions of α -acyl- α -chloro-sulphides with aromatic compounds, in which the

reaction occurs at the α -methylene carbon atom,⁷ presumably because in the former case the irreversible nucleophilic attack of the carbonyl oxygen in the intermediate (5) takes place rapidly.

- ¹ H. Gross and G. Matthey, Chem. Ber., 1964, 97, 2606.
 ² Y. Hiraki, M. Kamiya, R. Tanikaga, N. Ono, and A. Kaji, Bull. Chem. Soc. Jpn., 1977, 50, 447.
 ³ R. Tanikaga, Y. Hiraki, N. Ono, and A. Kaji, J. Chem. Soc., Chem. Commun., 1980, 41.
 ⁴ I. Paterson and I. Fleming, Tetrahedron Lett., 1979, 993, 995, 2179.
 ⁵ P. G. Gassman and D. R. Amick, Synth. Commun., 1975, 5, 325.
 ⁶ For a review see T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 1977, 16, 817.
 ⁷ Y. Tamura, H. Shindo, J. Uenishi, and H. Ishibashi, Tetrahedron Lett., 1980, 21, 2547.

We thank the Ministry of Education of Japan for a Grant-in-Aid.

(Received, 20th July 1981; Com. 867.)