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ABSTRACT: A nickel-catalyzed cross-coupling to construct C(sp
2
)-C(sp

3
) bond was developed from two sustainable biomass-

based feedstocks: phenol derivatives with umpolung aldehydes. This strategy features the in situ generation of moisture/air stable 

hydrazones from naturally abundant aldehydes, which act as alkyl nucleophiles under catalysis to couple with readily available 

phenol derivatives. The avoidance of using both halides as the electrophiles and organometallic or organoboron regents (also de-

rived from halides) as the nucleophiles make this method more sustainable and renewable. Water tolerance, great functional group 

(ketone, ester, free amine, amide etc) compatibility and late-stage elaboration of complex biological molecules exemplified its prac-

ticability, unique chemo-selectivity over organometallic reagents. 

Transition-metal-catalyzed cross-coupling reactions 

involving C(sp
2
)-O bond cleavage to construct C-C bond has 

attracted considerable attention in synthetic chemistry over the 

past decade,
[1]

 especially the nickel-catalyzed cross-coupling 

reactions of phenol derivatives with organometallic reagents.
[2]

 

Compared to the traditional use of aryl halides, phenols and 

their derivatives are naturally abundant, readily available and 

often renewable from biomass. Representative excellent 

examples are the nickel-catalyzed Kumada-Tamao-Corriu 

(KTC) type reactions of phenolic electrophiles with Grignard 

reagents, pioneered by Wenkert,
[3]

 and developed by 

Dankwardt,
[4]

 Shi,
[5]

 Chatani,
[6]

 Martin,
[7]

 Rueping
[8]

 as well as 

others
[9]

 (Scheme 1a). However, due to the high 

nucleophilicity and basicity, robust organometallic reagents 

are typically moisture/air sensitive and display less functional 

group compatibility, making them inferior candidates for late-

stage manipulation of complex molecules or direct use under 

biocompatible conditions. In addition, the preparation of these 

organometallic reagents requires pre-synthesized halides and 

stoichiometric quantities of metals, thus producing copious 

metal wastes. To address these challenges, air/moisture stable 

organoboron reagents emerged as attractive coupling partners 

with O-based electrophiles (Scheme 1b). Chatani,
[10]

 Garg
[11]

, 

Shi
[12]

, Snieckus
[13]

 and others
[14]

 have made great 

contributions in the nickel-catalyzed Suzuki–Miyaura 

couplings to prepare biaryls between polycyclic aromatic 

phenol derivatives with aromatic boronic acids/esters. 

However, C(sp
2
)-C(sp

3
) cross-coupling remains challenging 

when phenol derivatives are employed as C−O 

electrophiles.
.[5c,6a,8] 

Very recently, Rueping reported a practi-

cal alkylation of naphthol derivatives with B-alkyl-9-BBNs 

via nickel catalysis.
[15]

 Although organoboron reagents have 

widespread applications in various cross-couplings, most of 

them are obtained from organometallics or borylation of al-

kenes with expensive boron reagents.  

 

Scheme 1. Representative Reagents in the Cross-Coupling 

Reactions Involving C-O Bond Cleavage. 

As we know, tremendous efforts have been made by 

Barluenga,
[16]

 Wang
[17]

 and others
[18]

 employing electrophilic 

carbene from N-tosylhydrazones, however, the reversal elec-

tronic characteristic of simple hydrazones (from aldehydes) 

may offer new opportunities for chemical transformations. 

Recently, our group has disclosed novel and reliable rutheni-

um catalyzed nucleophilic additions to various π systems with 

hydrazones as carbanion equivalents.
[19]

 Earlier this year, we 

exemplified the feasibility of cross-couplings of aryl halides 

with hydrazones, albeit with very limited substrate scope, re-

quiring strictly anhydrous conditions and suffering from haz-

ardous halides.
[20]

 To overcome such limitations as well as 

towards the goal of green chemistry, herein, we wish to report 
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a sustainable and practical nickel-catalyzed C(sp
2
)-C(sp

3
) 

cross-coupling of phenol derivatives with umpolung aldehydes 

via C-O bond cleavage. Highlighted features of this strategy 

are: a) naturally abundant aldehydes as stable and environmen-

tally benign alkyl nucleophiles; b)
 
easily available O-based 

electrophiles from phenols; c) earth-abundant nickel as cata-

lyst; d) broad substrate scope and water tolerance; e) unique 

chemo-selectivity; and f) great functional-group compatibility 

and late-stage elaboration of complex biological molecules. 

Table 1. Optimization of the Reaction Conditions
a 

 

entry catalyst ligand base 4aa (%)b 

1 Ni(COD)2 - DBU N.D. 

2 Ni(COD)2 PPh3 DBU trace 

3 Ni(COD)2 PCy3 DBU trace 

4 Ni(COD)2 PMe3 DBU 80 (75) 

5 Ni(COD)2 PEt3 DBU 38 

6 Ni(COD)2 dmpe DBU 53 

7 Ni(COD)2 dppf DBU 71 

8 Ni(COD)2 dppe DBU trace 

9 Ni(COD)2 Xantphos DBU trace 

10 Ni(COD)2 bpy DBU 7 

11 Ni(PPh3)4 PMe3 DBU 52 

12 Ni(PPh3)4 - DBU N.D. 

13 NiCl2 PMe3 DBU 52 

14 Ni(acac)2 PMe3 DBU 53 

15 NiBr2•glyme PMe3 DBU 60 

16 Ni(COD)2 PMe3 
tBuOK 37 

17 Ni(COD)2 PMe3 K3PO4 trace 

18 Ni(COD)2 PMe3 Cs2CO3 trace 

19 Ni(COD)2 PMe3 - N.D. 

20c Ni(COD)2 PMe3 DBU N.D. 

21d Ni(COD)2 PMe3 DBU 65 

22e Ni(COD)2 PMe3 DBU 96 

23f Ni(COD)2 PMe3 DBU trace 

 

[a] Reaction conditions: 3a (0.1 mmol), 1a (0.3 mmol), N2H4•H2O (0.36 

mmol), [Ni] (10 mol%), ligand (40 mol% for monodentate, 20 mol% for 

bidentate), base (0.3 mmol), THF (0.5 mL), 110 oC, 12 h under N2 unless 
other noted. [b] NMR yields were determined by 1H NMR using mesity-

lene as an internal standard (isolated yield in parenthesis). [c] The reaction 

was performed at 80 oC. [d] p-Tolyl mesylate was used instead of 3a. [e] 
p-Triflate was used instead of 3a. [f] p-Tolyl pivalate was used instead of 

3a. N. D.= not detected. 

Initially, the cross-coupling reaction of p-tolyl tosylate (3a) 

and hydrazone generated in situ from benzaldehyde (1a) with 

hydrazine was chosen as the model to explore the reaction 

conditions (Table 1). Catalysts investigations revealed that 

nickel was the only metal candidate to favor this transfor-

mation (see Table S1 in Supporting Information), probably 

because nickel is more oxyphilic than palladium due to its 

smaller size and increased hardness.
[2]

 Ligand studies showed 

that less sterically hindered monodentate (PMe3, PEt3) or bi-

dentate phosphine ligands (dmpe, dppf) facilitated this trans-

formation (entries 1-10), and the best result was obtained 

when using PMe3 as the ligand and DBU as the base (4aa, 80% 

yield, entry 4). The combination of Ni(PPh3)4 with PMe3 gave 

the desired product 4aa in 52% yield (entry 11), while it was 

totally inactive in the absence of ligand PMe3 (entry 12). It is 

noteworthy that more convenient Ni(II) pre-catalysts could 

also facilitate this cross-coupling reaction, and moderate yields 

of 4aa were obtained (entries 13-15). The efficiency of this 

transformation was largely affected by the choice of base (en-

tries 16-19). In addition, decreasing the reaction temperature 

to 80 
o
C resulted in no detection 4aa with all the starting mate-

rial 3a recovered (entry 20), which implies that the insertion of 

nickel catalyst to C-O bond has a high activation energy. 

Moreover, p-tolyl mesylate and p-tolyl triflate were also appli-

cable (entries 21-22), while aryl pivalate gave only trace 

amount of cross-coupling product 4aa (entry 23). 

Table 2. Scope of Aldehyde 1
a,b 

 

[a] Reaction conditions: 3a (0.2 mmol), 1 (0.6 mmol), N2H4•H2O (0.72 
mmol), [Ni] (10 mol%), PMe3 (40 mol%), DBU (0.6 mmol), THF (1.0 

mL), 110 oC, 12 h under N2. [b] Reported yields are the isolated ones. 

With the optimized conditions identified, the substrate 

scope of aldehydes was investigated. As shown in Table 2, 

variations of electronic effects of the nucleophiles did not re-

duce the efficiency of this coupling reaction. Aldehydes bear-

ing both electron-donating and electron-withdrawing substitu-

ents all reacted smoothly with phenyl tosylate 3a to give the 

desired products 4ab-ap in good to excellent yields. Various 

functional groups, such as methyl, methoxyl, chloro, fluoro, 

trifluoromethyl and even ester, were all tolerated under the 

optimized conditions. Hetero-aromatic aldehydes, such as 

furan-2-carbaldehyde, thiophene-3-carbaldehyde, pyridine-3-
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carbaldehyde and benzothiophene-3-carbaldehyde were well 

applicable for the present transformation (4aq-at). Further-

more, the aldehydes bearing naphthyl or phenanthryl substitu-

ents afforded the corresponding products (4au-aw) in excel-

lent yields (> 90%). To our delight, the cross-coupling also 

occurred with cinnamaldehyde and phenylacetaldehyde as 

substrates, albeit with a slightly reduced reactivity (4ax, 4ay). 

Unfortunately, only trace amount of desired products were 

detected when simple aliphatic aldehydes were tested, proba-

bly due to the rapid competing formation of azines from the 

hydrazone intermediates under high temperature. 

Table 3. Scope of Aryl/vinyl Tosylates 1
a,b

 

 

[a] Reaction conditions: 3 (0.2 mmol), 1a (0.6 mmol), N2H4•H2O (0.72 
mmol), [Ni] (10 mol%), PMe3 (40 mol%), DBU (0.6 mmol), THF (1.0 

mL), 110 oC, 12 h under N2. [b] Reported yields are the isolated ones. 

Subsequently, the scope of phenyl/vinyl tosylates was 

investigated, as summarized in Table 3. In general, substrate 3 

with electron-donating (-OMe, -OPh, -Me, -iPr, -tBu, -Ph, etc.) 

on the para- and/or meta-position of phenyl ring all worked 

well to give the desired diarymethanes 4ac, 4ba-da, 4fa-ia, 

albeit with moderate yields observed when electron-

withdrawing groups (-CN, -Cl, -F, -CF3) attached (4ja, 4am, 

4ai, 4al, 4ka). Product 4ea was obtained in 51% yield due to 

the ortho-steric hindrance of methyl group. When the tosylate 

of isoeugenol perfume was tested, the desired product 4la was 

obtained in 81% yield with olefin moiety untouched (E/Z de-

rived from substrate). It is worth mentioning that other func-

tional groups such as ester, amine and amide, which are fragile 

in the presence of Grignard reagents, were well tolerated under 

our conditions (4ma-oa). In addition, the N-heterocyclic (pyr-

idine, indole and carbazole) tosylates, as important motifs in 

alkaloids, underwent efficient cross-couplings with benzalde-

hyde hydrazone (4as, 4pa, 4qa). As expected, the polycyclic 

(naphthyl or phenanthryl) tosylates were well applicable (4au-

aw, 4ra). Moreover, the vinyl tosylates were also tested as 

suitable coupling partners, thus expanding the electrophile 

scopes to the cheap and natural abundant ketones (4sa, 4ta). 

Gratifyingly, the power and utility of this cross-coupling 

reaction was further demonstrated by its application to 

complex tosylate/triflate substrates. For example, the structural 

elaboration of tyrosine 5, which is a non-essential amino acid 

used by cells to synthesize proteins in biology, was readily 

accomplished using our nickel-catalyzed cross-coupling 

reaction with aldehydes as masked alkyl nucleophile (Scheme 

2, Eq. 1). In addition, the alkylation of estrone proceeded 

smoothly and efficiently while using the corresponding 

tosylate 7 with the ketone moiety intact, impossible with 

organometallic reagents (Scheme 2, Eq. 2). Furthermore, the 

reaction of 1a with triflate of cholesterol was investigated 

under the standard reaction conditions. The expected 

alkylation product 10 was obtained in 82% yield (Scheme 2, 

Eq. 3). These results indicated that this protocol would enrich 

the tool box of chemists for the late-stage modification of 

complex molecules. 

 

Scheme 2. Alkylative Elaboration of Complex Tosyl-

ates/triflates Derived from Natural Products. 

Then the chemo-selectivity of this nickel-catalyzed cross-

coupling reaction was explored. The chemo-specific alkylation 

of C(sp
2
)-OTs with hydrazone 1a occurred with estradiol di-

tosylates 11 (Scheme 3, Eq. 1). To our delight, the chemo-

selective, sequential alkylation of substrate 13 was achieved 

by the unique tunable reactivity between aryl iodide
 
and tosyl-

ate, thus delivering the asymmetrical dibenzyl product 15 in 

excellent yield (Scheme 3, Eq. 2). 

 

Scheme 3. Chemo-Selectivity Tests. 

Moreover, the efficiency of this transformation was not af-

fected in the presence of H2O, thus showing its distinct mois-

ture tolerant character than organometallic reagents (Scheme 

4). 
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Scheme 4. Water Tolerance Tests. 

Although exact mechanism was still not clear at this stage, 

according to our previous works
[19]

 and literature reports,
[2]

 a 

plausible reaction pathway was depicted in Scheme 5. Similar 

to the Ni-catalyzed KTC type and Suzuki coupling reaction 

intensive studied by Chatani,
[21]

 Itami
[22]

 and Martin,
[23]

 the 

coordination of Ni (0) with π system and oxygen allowing the 

oxidative addition to give intermediate B, which underwent 

transmetallation with carbon-nucleophile D derived from 

deprotonation of hydrazone 2 to form intermediate E. Reduc-

tive elimination gave the diimide F
[24]

 and regenerated Ni (0) 

catalyst. Finally, the desired product 4 was formed by denitro-

genation assisted with base. 

 

Scheme 5. Proposed Mechanism. 

In summary, we have developed a sustainable nickel-

catalyzed cross-coupling of phenol-based electrophiles with 

aldehydes umpolung to construct C(sp
2
)-C(sp

3
) bonds. This 

strategy features the in situ generation of moisture/air stable 

hydrazones from naturally abundant aldehydes, which act as 

alkyl nucleophiles under catalysis to couple with easily availa-

ble phenol derivatives. The avoidance of using organometallic 

or organoboron regents derived from halides make this method 

more sustainable and renewable. Water tolerance, great func-

tional group (ketone, ester, free amine, amide etc) compatibil-

ity and late-stage elaboration of complex biological molecules 

exemplified its practicability, unique chemo- selectivity over 

organometallic reagents. Further applications of aldehydes as 

alkyl nucleophiles in chemical transformations are ongoing in 

our lab.  
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