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Synthesis of Rigid Analogues of Flavone by Intramolecular Heck Reaction
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A novel concise method to synthesize rigid analogues of flav-
one by an intramolecular Heck reaction with wide substrate
scope was developed. The key intermediates 3-(2-bromo-

Introduction

Flavonoids are products with diverse biological activities
such as antioxidant,[1] anti-allergic,[2] anticancer,[3] anti-in-
flammatory,[4] antimicrobial,[5] anxiolytic,[6] myorelaxant
properties,[7] and anti-osteoporosis in particular.[8] Galangin
is a natural flavonoid which is found in high concentrations
in Alpinia officinarum and Helichrysum aureonitens. Galan-
gin inhibits osteoclastogenic factors and increases osteopro-
tegerin (OPG) levels in osteoblasts.[9] Glabridin was found
to have anti-resorptive activity by the inhibition of
RANKL-induced expression of c-Fos and NFATc1.[10] Api-

Figure 1. Structures of flavone and rigid analogues.
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benzyl)-4H-chromen-4-ones were prepared easily in two
steps. Most compounds were obtained with moderate to
good yields (34–90% yield, 19 examples).

genin was reported to inhibit the differentiation of RAW
264.7 cells into tartrate resistant acid phosphatase (TRAP)
positive and multinucleated osteoclasts.[11] Another exam-
ple is ipriflavone which has been used as a therapeutic agent
in preventing and treating osteoporosis.[11a] (Figure 1).

In recent years, a large amount of effort has been devoted
to studying the chromone ring system,[12] including rigid
flavone derivatives. In 1992, a novel isoflavone wrightia-
dione, which showed cytotoxic activity, was isolated from
the bark of Wrightia tomentosa (Figure 1).[13] Williams and
co-workers prepared and studied benz[b]indeno[2,1-e]-
pyran-10,11-dione 5 and analogues for inducing endoge-

nous erythropoietin (Epo), which is a hematopoietic growth
factor stimulating the differentiation and supporting the
survival of cells of erythroid lineage. They applied 2�-
hydroxy-2-(methysulfinyl)acetophenone and a symmetrical
benzene-1,2-dicarboxaldehyde to obtain 5.[14] Valenti and
co-workers synthesized a rigid analogue of flavone-8-acetic
acid (6) displaying a remarkable indirect cytotoxity through
a condensation of 2-hydroxy-3-allylacetophenone and
phthalaldehyde followed by further manipulation.[15] In ad-
dition, the hetero-Diels–Alder reaction of the ortho-quin-
one methide (o-QM) with indene has been used to construct
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the frame of substituted 4b,10,10a,11-tetrahydroindeno-
[1,2-b]chromene (compounds 44–47).[16] However, some of
the steps in these synthetic methods mentioned above were
low-yielding and the synthesis of some substituted rigid an-
alogues of flavone through these protocols was limited by
starting materials. With the consideration of these problems
and the reported interesting biological activities, we decided
to develop a novel concise method to prepare various sub-
stituted indeno[1,2-b]chromen-10(11H)-ones for further
biological activity studies.

Results and Discussion

The Heck reaction is one of the powerful and widely
used methods for the formation of C–C bonds.[17] We
envisaged that the title scaffold could be synthesized by an
intramolecular Heck reaction from 3-(2-bromobenzyl)-
4H-chromen-4-one, which was prepared in two steps
(Scheme 1).

The synthesis of compounds 2a–2t proceeds through the
migration of the double bond[18] of compounds 1a–1t,
which were prepared by an aldol condensation[19]

(Scheme 1). As indicated in Table 1, we started our studies
by treating 3-(2-bromobenzyl)-4H-chromen-4-one (2a) with
Pd(OAc)2 (10 mol-%) in the presence of PPh3 (20 mol-%),
K2CO3 (3 equiv.) in PhMe at 110 °C. However, the desired
product was not found (entry 1). Then the reaction was
performed by taking KOAc (3 equiv.) as the base and
Pd(OAc)2 (10 mol-%) as the catalyst in DMF at 110 °C
while no ligand added. Intriguingly, the title compound 3a
was isolated in 13% yield (entry 2). A great improvement
was achieved by applying JohnPhos (20 mol-%) as the li-
gand, which was considered to stabilize the Pd intermediate
and the yield was raised to 54% (entry 3). With this pleas-
ing result in hand, we turned to optimize the reaction fur-
ther. A screen of the Pd(OAc)2 loading showed that the

Scheme 1. The synthesis of compounds 3a–3t. (a) TiCl4, pyridine, THF; (b) K2CO3, DMF.
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yield was improved as the loading of Pd(OAc)2 increased
(entries 3–5), whereas changing the catalyst from Pd(OAc)2

to PdCl2 decreased the yield of compound 3a and no reac-
tion occurred with Pd(Ph3P)4 (entries 6 and 7). No transfor-
mation of 2a into 3a was observed when the ligand was
changed to DPPF (20 mol-%) or (R)-BINAP (20 mol-%)
(entries 8 and 9) and the yield decreased when TTBP
(20 mol-%) was used (entry 10). Other solvents and bases
were also investigated and they did not show any advan-
tages compared with DMF and KOAc (entries 11–16).
Attempts to reduce the loading of KOAc revealed that the
use of 2 equiv. of KOAc was the best choice (entries 17 and
18) and a further decrease in the amount of ligand proved
ineffective (entries 19 and 20). Moreover, investigation of
the reaction temperature (entries 21 and 22) led us to estab-
lish the optimized reaction conditions as follows: Pd(OAc)2

(20 mol-%), JohnPhos (20 mol-%), KOAc (2 equiv.), and
DMF (4 mL) as the solvent at 110 °C for 40 min.

We next explored the scope and generality of this intra-
molecular Heck reaction with the optimized reaction condi-
tions in hand. As shown in Table 2, the 3-(2-bromobenzyl)-
4H-chromen-4-one 2a–2t bearing either electron-donating
or electron-withdrawing groups at different positions all
underwent the reaction to give the products in moderate to
good yields. Under the optimized conditions, a wide range
of functional groups could be tolerated. To study the posi-
tion effect of the substituent on the benzyl group of com-
pounds 2, we applied compounds 2b, 2c, 2d, 2e with an
electron-withdrawing fluorine substituent on different posi-
tions. When the 6�-fluoro-substituted substrate 2b was ap-
plied, the desired product was obtained in better yield than
the 3�-fluoro- (3e), 4�-fluoro- (3c) or 5�-fluoro- (3d) substi-
tuted compound 2. From the above results we found that
subtle change of electron density on the benzyl group of
compounds 2 had a great impact on the yields. This phe-
nomenon was also observed on 2g and 2i. The compound
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Table 1. Reaction conditions screening.[a]

Entry Solvent Base Catalyst/Ligand Temp. Yield[c]

(equiv.) (mol-%)[b] [°C] [%]

1 PhMe K2CO3(3) Pd(OAc)2(10)/L0(20) 110 n.r
2 DMF KOAc(3) Pd(OAc)2(10) 110 13
3 DMF KOAc(3) Pd(OAc)2(10)/L1(20) 110 54
4 DMF KOAc(3) Pd(OAc)2(5)/L1(20) 110 24
5 DMF KOAc(3) Pd(OAc)2(20)/L1(20) 110 68
6 DMF KOAc(3) PdCl2(20)/L1(20) 110 57
7 DMF KOAc(3) Pd(PPh3)4(20) 110 n.r
8 DMF KOAc(3) Pd(OAc)2(20)/L2(20) 110 n.r
9 DMF KOAc(3) Pd(OAc)2(20)/L3(20) 110 n.r
10 DMF KOAc(3) Pd(OAc)2(20)/L4(20) 110 60
11 DMF[d] KOAc(3) Pd(OAc)2(20)/L1(20) 110 n.r
12 PhMe KOAc(3) Pd(OAc)2(20)/L1(20) 110 n.r
13 DMSO KOAc(3) Pd(OAc)2(20)/L1(20) 110 n.r
14 DMF KF(3) Pd(OAc)2(20)/L1(20) 110 14
15 DMF K3PO4(3) Pd(OAc)2(20)/L1(20) 110 n.r
16 DMF CsOAc(3) Pd(OAc)2(20)/L1(20) 110 n.r
17 DMF KOAc(2) Pd(OAc)2(20)/L1(20) 110 76
18 DMF KOAc(1.5) Pd(OAc)2(20)/L1(20) 110 43
19 DMF KOAc(2) Pd(OAc)2(20)/L1(15) 110 70
20 DMF KOAc(2) Pd(OAc)2(20)/L1(10) 110 68
21 DMF KOAc(2) Pd(OAc)2(20)/L1(20) 90 35
22 DMF KOAc(2) Pd(OAc)2(20)/L1(20) 130 54

[a] Reagents and conditions: 2a (0.16 mmol), base, catalyst, ligand,
solvent (4 mL), 40 min. [b] L0 = PPh3, L1 = JohnPhos, L2 = DPPF,
L3 = (R)-BINAP, L4 = TTBP. [c] Isolated yield. [d] One drop of
water was added.

2g, bearing a methoxy group at the 4�-position, underwent
coupling in 84 % yield (3g) and the yield was better than
that of 2f with a 5�-methoxy substituent. Alkyl groups were
acceptable as substituents on the A ring or D ring (com-
pounds 3i, 3p, 3r, 3s, 3t) whereas the results showed that
the substrate with strong electron-withdrawing groups
might give a decreased yield (compounds 3h, 3n). When
there was a methoxy substituent at the 7-position, the yield
was lower compared with 6-methoxy substituted product
(compound 3k vs. 3j). However, the single methoxy-substi-
tuted compounds 2m and 2l lead to contradicting results
(compound 3m vs. 3l). Compared with compounds 3j and
3s, the product 3q was obtained with a 34% yield when the
group on the 6-position was isopropyl. However, the yield
was raised to 74 and 84%, respectively, when the substitu-
ents were changed as for compounds 3p and 3r in compari-
son with compound 3q. It is hard to tell how the groups
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affect the yields according to the results. What is more, the
chloro-substituted substrate 2o was also converted into the
corresponding product though the yield was only 27 %.

Table 2. Synthesis of compounds 3a–3t from compounds 2a–2t.

[a] Optimal conditions: for 2a–2t (0.4 mmol), Pd(OAc)2 (20 mol-
%), JohnPhos (20 mol-%), KOAc (2 equiv.), DMF (4 mL) as the
solvent at 110 °C for 40 min.

Conclusions

In summary, we have developed a novel concise method
to synthesize the rigid analogues of flavone by an intra-
molecular Heck reaction. This method offers several advan-
tages, such as concise procedures, easily obtained starting
materials and wide scope. The reaction could be a powerful
tool to enlarge the chromone ring system and further bio-
logical activity studies are ongoing in our lab.
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Experimental Section
The Synthesis of Substituted Indeno[1,2-b]chromen-10(11H)-one
(3a–3t): General Procedure: A 25 mL two-necked round-bottomed
flask equipped with magnetic stirrer was charged with 3-(2-bromo-
benzyl)-4H-chromen-4-one (0.4 mmol) followed by Pd(OAc)2

(20 mmol-%), JohnPhos (20 mmol-%) and KOAc (0.8 mmol). The
flask was evacuated and back-filled with N2 (3 times, balloon). Af-
terwards, anhydrous DMF (5 mL) was added by syringe. After the
reaction mixture was stirred at 110 °C for 40 min, it was cooled to
room temperature. The reaction mixture was partitioned between
EtOAc and brine. The separated organic layer was washed with
brine (50 mL �3), dried with anhydrous Na2SO4 and the solvents
evaporated to dryness. The crude product was purified by silica gel
chromatography eluted with petroleum ether/EtOAc = 5:1 to give
the product (80 mg, 85%) as a yellow solid.

Supporting Information (see footnote on the first page of this arti-
cle): NMR spectra of the obtained compounds.
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B. Therrien, J. Organomet. Chem. 2013, 741, 153; h) K. Dahlén,
E. A. A. Wallén, M. Grøtli, K. Luthman, J. Org. Chem. 2006,
71, 6863; i) K. Dahlen, M. Grotli, K. Luthman, Synlett 2006,
897.

[13] L.-J. Lin, G. Topcu, H. Lotter, N. Ruangrungsi, H. Wagner,
J. M. Pezzuto, G. A. Cordell, Phytochemistry 1992, 31, 4333.

[14] J. G. Williams, D. R. Houck, D. E. Smith, D. L. Rathbone,
D. C. Billington, B. T. Golding, E. W. Collington, J. Kitchin
and N. Rich, 1999, US5985913A.

[15] P. Valenti, A. Bisi, A. Rampa, F. Belluti, S. Gobbi, A. Zampi-
ron, M. Carrara, Bioorg. Med. Chem. 2000, 8, 239.

[16] P. Batsomboon, W. Phakhodee, S. Ruchirawat, P. Ploypradith,
J. Org. Chem. 2009, 74, 4009.

[17] a) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100,
3009; b) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103,
2945; c) W. Cabri, I. Candiani, Acc. Chem. Res. 1995, 28, 2; d)
V. Farina, Adv. Synth. Catal. 2004, 346, 1553; e) E. M. Beccalli,
E. Borsini, S. Brenna, S. Galli, M. Rigamonti, G. Broggini,
Chem. Eur. J. 2010, 16, 1670.

[18] V. P. Dhande, T. Poonam, K. G. Marathe, Tetrahedron 1988,
44, 3015.

[19] a) D. Courtheyn, R. Verhe, N. De Kimpe, L. De Buyck, N.
Schamp, J. Org. Chem. 1981, 46, 3226; b) T. Patonay, Z. Dinya,
A. Lévai, D. Molnár, Tetrahedron 2001, 57, 2895.

Received: February 7, 2015
Published Online: April 8, 2015


