
Tetrahedron
Tetrahedron Letters 45 (2004) 4233–4235

Letters
Synthesis of (+)-agelasine D from (+)-manool
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Abstract—(+)-Agelasine D, originally isolated from the marine sponge Agelas nakamurai, is synthesized for the first time. The
terpenoid side chain was readily available from the diterpene alcohol (+)-manool.
� 2004 Elsevier Ltd. All rights reserved.
Agelasines are 7,9-dialkylpurinium salts isolated from
marine sponges. At the present a total of 11 9-methyl-
adeninium salts, agelasine A-I, epiagelasine C, and agelin
B, has been isolated fromAgelas species.1 All compounds
carry a diterpenoid side chain in the adenine 7-position.
Until now, only ())-agelasine A,2 ())-agelasine B,3 and
(±)-agelasine F,4 have been synthesized. The agelasines
are associated with bioactivities such as antimicrobial
and cytotoxic effects as well as contractive responses of
smooth muscles and inhibition of Na, K-ATPase.1;5 We
herein report the first synthesis of (+)-agelasine D.1a;d

The starting material for the terpenoid side chain is the
readily available (+)-manool, and, at least formally, also
the less expensive ())-sclareol6 (Scheme 1).

Synthesis of agelasines requires regioselective alkylation
of an adenine derivative to give a 7,9-dialkylated puri-
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nium salt. However, alkylation on 9-substituted adenine
gives mainly 1,9-dialkyl derivatives, and when 7-alkyl-
adenines are reacted with alkyl halides, the second N-
substituent is preferably introduced on N-3.7 Treatment
of N-alkoxy-9-methyl-9H-purin-6-amines8;9 with alkyl-
ating agents results, on the other hand, in the desired
alkylating pattern.7

The alkyl halide necessary for the introduction of the N-
7 terpenoid substituent in agelasine D was generated by
bromination of (+)-manool employing phosphorus
tribromide (Scheme 2).10 The best E/Z-selectivity
obtained was 85:15 and the crude bromide 1 was used
directly for alkylation of the purine derivative 2.
Attempts to generate the pure E allylic bromide 1 by
treatment of manoyl acetate with TMS–bromide and
zinc iodide11 gave less satisfactory results.
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As in the previously reported syntheses of agelasines,2–4

alkylation of the methoxyadenine 2 gave a mixture of
the desired product 3 as well as the N6 alkylated isomer
412 (Scheme 2). After separation of the products by flash
chromatography employing an eluent mixture contain-
ing ammonia, the major product was isolated as an E/Z
mixture of the betaine 3. The pure E-3 was obtained
after crystallization from EtOAc. Finally the N-methoxy
group was removed reductively to give the target com-
pound, (+)-agelasine D.13

Agelasine D is currently under testing for antimyco-
bacterial activity. Both agelasine F5d as well as sclareol14

(structure, see Scheme 1) are previously reported to be
active against Mycobacterium tuberculosis.
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