Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water

Zhonggao Zhou, Qian Xie, Xin Zhou, Yangyang Yuan, Yan Pan, Dongliang Lu, Ziyi Du, Jun Xue

PII: S0008-6215(20)30158-0

DOI: https://doi.org/10.1016/j.carres.2020.108079

Reference: CAR 108079

To appear in: Carbohydrate Research

Received Date: 13 March 2020

Revised Date: 10 June 2020

Accepted Date: 12 June 2020

Please cite this article as: Z. Zhou, Q. Xie, X. Zhou, Y. Yuan, Y. Pan, D. Lu, Z. Du, J. Xue, Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water, *Carbohydrate Research* (2020), doi: https://doi.org/10.1016/j.carres.2020.108079.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Graphical Abstract

A series of glucoside-based imidazolium salts (Glu-IMSs) combining glucoside and imidazolium head groups with different substituents were synthesized. The catalytic activities of these Glu-IMSs were evaluated in Pd-catalyzed Heck–Mizoroki (19 examples) and Suzuki–Miyaura (15 examples) reactions in water media. Glu-IMSs with -OH and NHCs two coordination sites was found to be most efficient ligand among them. HR-TEM analysis showed that in the presence of Glu-IMSs in water, palladium nanoparticles was formed with an average size of around 4.0 nm, the generation of Pd(0) nanoparticles would act as efficient real catalytic species to accelerate the cross coupling reaction in water media.

1 Synthesis of glucoside-based imidazolium salts for Pd-catalyzed

2

4

cross-coupling reaction in water

3 Zhonggao Zhou,^{*} Qian Xie, Xin Zhou, Yangyang Yuan, Yan Pan, Dongliang Lu, Ziyi

Du, Jun Xue^{*}

5 Abstract

Sugar-based imidazolium salts (IMSs) represent an outstanding type of material 6 7 making them eye-catching for a wide variety of applications. Herein, a series of glucoside-based IMSs (Glu-IMSs) combining glucoside and imidazolium head groups 8 with different substituents were synthesized. The catalytic activities of these 9 Glu-IMSs were evaluated by Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura 10 11 reactions in water. Among them, the Glu-IMSs contain both -OH and NHCs coordination sites was found to be the most efficient ancillary ligand in comparison 12 with other Glu-IMSs with just single NHCs coordination site. The HR-TEM analysis 13 showed that the palladium nanoparticles stabilized by the Glu-IMSs with an average 14 15 size of \sim 4.0 nm was formed in the reaction system, which may be act as an efficient real catalytic species. Under the optimized reaction conditions, a series of novel 16 fluorine-cored organic small molecule functional materials were synthesized with 17 favorable yields. 18

19 Keywords

Imidazolium salts; Sugar-based; Palladium catalysts; Cross-coupling reaction;
Fluorine-cored functional materials

22 Introduction

Transition metal-catalyzed, especially, palladium-catalyzed Suzuki reaction,¹ Heck reaction,² and Negishi reaction³ dominate the most important landmarks in the field of modern organic chemistry. Industrial criteria for the technologies to be identified as a reliable green method include comply with a low value for the "E-factor", the "twelve

College of Chemistry and Chemical Engineering, Gannan Normal University, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Ganzhou 341000, P. R. China

^{*} Corresponding author. Tel: +86 797 8393669

E-mail address: <u>zhgzhou@foxmail.com</u> (Z. G. Zhou); <u>xuejun8657@foxmail.com</u> (J. Xue)

principles of green chemistry", and economically competitive production costs.⁴ Since 1 the first example of carboxylate- and sulfonate-based water-soluble N-heterocyclic 2 carbenes (NHCs) ligands,⁵ subsequently remarkable research progress has been made 3 in Pd/NHCs-catalyzed aqueous cross coupling.^{4, 6-9} Over the last decades, sugar-based 4 various materials have attracted both economic and scientific interest because of 5 increasing concerns in biocompatibility and recycled resources.¹⁰⁻¹⁷ Related reviews 6 also deal with the sugar-based ligands and complexes, including IMSs and 7 NHCs-Metal complexes.¹⁷⁻²² More recently, the catalytic activity of several examples 8 about sugar-derived IMSs and NHCs-Metal complexs has been reported,²³⁻³⁰ such as 9 NHCs-Pd,³⁰ NHCs-Ir,²⁵ and NHCs-Ru etc..^{26, 31} We also found that most Pd-catalyzed 10 cross-coupling demand extra additives to enhance the dissolve and reactivity in water, 11 including the use of biphasic organic solvent-water systems.³² However, the catalytic 12 activities of sugar-based IMSs have not been investigated extensively.^{22, 33-35} To 13 explore the influence of sugar-based IMSs on Pd catalyst, we turn our attention to 14 systematically study of Pd/sugar-based IMSs-catalyzed Suzuki reaction.³⁶⁻³⁸ 15

16 Transition metal nanoparticles (NPs) are usually functionalized with organic ligands including thiols, thioethers, amines, phosphines, and NHCs.³⁹ A series of literatures 17 reported that Pd NPs were formed during the Pd/NHCs-catalyzed chemical reaction in 18 aqueous media.³⁹⁻⁴¹ Herein, a simple strategy is the use of Glu-IMSs to establish 19 micelles with an organic interior that can entrain Pd NPs in water, and the Pd NPs act 20 as the efficient catalytic species for cross coupling. Firstly, a series of Glu-IMSs 21 combining glucoside and imidazolium head groups with different substituents were 22 synthesized with 92-95% isolated yield (Scheme 1). Secondly, the catalytic activities 23 24 of these Glu-IMSs materials were evaluated in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura reactions in water media. Tertiary, the Glu-IMSs material contained 25 both -OH and NHCs coordination sites was found to be most efficient ancillary ligand 26 among them. Additionally, under the optimized reaction conditions, a series of novel 27 structure fluorine-cored organic small molecule functional materials (OFMs) were 28 also synthesized with Suzuki-Miyaura reactions. Finally, the HR-TEM analysis 29 showed that the Pd NPs stabilized by Glu-IMSs with an average size of around 4.0 nm 30

1 was formed, which may be act as a true catalytic species.

2 **Results and Discussion**

Glucoside-based imidazolium salts (Glu-IMSs, **1-6**) combining glucoside and imidazolium head groups with various substituents were synthesized in 92-95% isolate yields from the reaction of 2-bromoethyl glucoside with different N-substituent imidazole. It's found just β anomer-glucoside can be formed herein along with the TLC result, isolate yield, and NMR spectra, this is similar to previous results.^{29, 42} The structures of these Glu-IMSs were confirmed with ¹H NMR, ¹³C NMR and 2D NMR, these data combined with elemental analysis strongly verify the structure of Glu-IMSs (see SI).

12

Scheme 1. Synthesis of Glu-IMSs 1-6.

From the ¹H NMR spectrum of Glu-IMSs **1-6** (Fig. S1), we can find a characteristic 13 peak of NCHN proton in imidazolium heterocycle is a single peak at relative low field 14 $(\delta_{\rm H}9.27, 9.35, 9.99, 10.02 \text{ and } 10.15 \text{ ppm for Glu-IMSs } 1-3, 5 \text{ and } 6, \text{ respectively}),^{37}$ 15 ⁴³ and there is no obvious pattern of changes in chemical shifts and substituents in 16 17 imidazolium heterocycle. Surprisingly, the NCHN proton of Glu-IMSs 4 corresponding $\delta_{\rm H}$ 9.00 ppm is not a single peak, in contrast is a doublet of doublets 18 peak. A correlation is apparently observed between this proton and the NCHCHN 19 protons in the COSY spectrum, this is what is expected from the coupling of the 20 NCHN proton with the two inequivalent NCHCHN protons (Fig. S6). Next, the 21 chemical shift of NCHCHN proton in imidazolium heterocycle also very different 22 (Fig. S1), there are two independent doublet peaks in $\delta_{\rm H}$ 7.36 (1.5 Hz) and 7.11 (1.5 23

Hz) ppm for Glu-IMSs **4**, but for Glu-IMSs **5**, just one single peak in $\delta_{\rm H}$ 7.46 ppm with two proton can be found. There are two independent single peaks for Glu-IMSs **1** $(\delta_{\rm H}$ 7.43 and 7.39 ppm), **2** ($\delta_{\rm H}$ 8.03 and 7.97 ppm), **3** ($\delta_{\rm H}$ 7.56 and 7.11 ppm), and **6** ($\delta_{\rm H}$ 7.92 and 7.86 ppm), these results are consistent with previously literature data.^{37, 42}

We got more information from ¹³C NMR spectrum of Glu-IMSs **1-6** (Fig. S2), the 5 chemical shift of NCHN carbon in imidazolium heterocycle at $\delta_{\rm C}$ 136.6, 135.4, 135.8, 6 136.3, 137.4, and 137.2 ppm, respectively, and the chemical shift of NCHCHN carbon 7 8 at 118-126 ppm. Because 1-poisition carbon of glucoside connected to the 9 imidazolium heterocycle with ethoxy bridge, the chemical environment has less affected on its chemical shift, $\delta_{\rm C}$ 61.1, 60.6, 61.6, 61.0, 61.3, and 61.4 ppm correspond 10 to Glu-IMSs 1-6, respectively. The σ -donor properties of Glu-IMSs ligands are crucial 11 12 in dominating their interaction with palladium, as a result, to determine the catalytic activity of Glu-IMSs ligands in Pd-catalysis.^{44, 45} The σ-donor properties of NHCs 13 ligands can be evaluated based on the NMR data of imidazolium salts,⁴⁵⁻⁴⁷ and we can 14 get the order of their σ -donor properties from the ¹H NMR of Glu-IMSs herein.⁴⁵ 15 16 Combine with the one-bond CH J-coupling constants of NCHN carbon for Glu-IMSs 1-6 (221.6, 221.5, 220.8, 224.8, 224.0, and 214.8 Hz), the one-bond CH J-coupling 17 constants suggest the order of their σ -donor properties as following Glu-IMSs 6 > 18 Glu-IMSs 3 > Glu-IMSs $2 \approx$ Glu-IMSs 1 > Glu-IMSs 4 > Glu-IMSs 5. 19

20 Next, with these Glu-IMSs in hand, we investigate the catalytic activity of them in Pd-catalyzed C-C cross coupling, including Heck and Suzuki reactions in water. For 21 22 this purpose, firstly, we choose Pd-catalyzed Heck-Mizoroki reaction as initial 23 research, the coupling of 4-bromotoluene and styrene was used as standard substrates 24 (Table 1), $PdCl_2$ was used as catalyst, Glu-IMSs 4 was used as ancillary ligand. In the presence of 1.0 mol% of PdCl₂/Glu-IMSs 4 (mol:mol = 1:2), 85% of the target 25 product was obtained after 6 h (Table 1, entry 4). By increasing the loading amount of 26 the PdCl₂ to 1.5 mol%, the yield was improved to 96% (Table 1, entry 6), and 1.5 27 mol% of PdCl₂ was the optimum loading of catalyst (Table 1, entries 4-6 and 8). By 28 contrast, only 15% yield of product was obtained in the absence of Glu-IMSs (Table 1, 29 entry 7). Other Glu-IMSs 1-3, 5 and 6 were also tested (Table 1, entries 1-3 and 9-10), 30

4 / 16

and among all of them, Glu-IMSs 4 was recognized as the best ancillary ligand (Table 1 2 1, entry 6). These above experiments revealed that the type of coordination atom in 3 the Glu-IMSs chain play important role in the stabilizing and improving catalytic 4 activity of Pd active catalytic species formed during the reaction. The Glu-IMSs 4 5 with -OH groups can be regarded as having two coordination units simoultanously, and shows better catalytic activity in comparing with the other Glu-IMSs with single 6 7 NHCs ones, which could maybe due to the week ligation property of the hydroxyl group.48 8

Entry	Pd (mol%)	Ligand (wt.%)	Time (h)	Yield (%) ^b
1	1.0	1 (2)	6	32
2	1.0	2 (2)	6	40
3	1.0	3 (2)	6	55
4	1.0	4 (2)	6	85
5	1.2	4 (3)	12	76
6	1.5	4 (3)	6	96
7	1.5	No ligand	6	15
8	2.0	4 (4)	6	93
9	1.5	5 (3)	6	70
10	1.5	6 (3)	6	88

9 **Table 1.** The Heck reaction between 4-bromotoluene and styrene in the presence of Glu-surfactants^a

^aReaction conditions: 4-bromotoluene (1.0 mmol), styrene (1.25 mmol), K₂CO₃ (2.0 mmol), H₂O (3.0 mL), 90
 ^oC oil bath under N₂ atmosphere. ^bDetermined by GC-MS with nitrobenzene as internal standard, average of two
 runs.

We also checked other parameters such as different type of base and temperature on the Heck reaction (Table 2). Among the studied base, commonly used strong organic base NaOBu^{*t*}, and KOBu^{*t*} were found not to be the most efficient for the Heck reaction (Table 2, entries 3 and 4). The widely used weak base K₂CO₃ was chosen as the most suitable base since 97% yield was obtained in the model reaction (Table 2, entry 9). We found that using other base including NaOH, KOH, NaOAc, K₃PO₄ and

1 Cs_2CO_3 can't get ideal yield (Table 2, entries 1, 2 and 5-7). Under the base-free 2 conditions, also 23% of the target product was detected, demonstrating that the 3 Glu-IMSs 4 can be ionized into anions and cations, performing certain weak base 4 property in this study. Varies oil bath temperatures were also investigated and 90 °C 5 was selected as the suitable temperature in following experiments (Table 2, entries 6 9-12).

Entry	Base	T (°C)	Time (h)	Yield (%) ^b
1	NaOH	90	6	72
2	КОН	90	6	76
3	NaOBu ^t	90	6	82
4	KOBu ^t	90	6	85
5	K_3PO_4	90	6	89
6	NaOAc	90	6	60
7	Cs ₂ CO ₃	90	6	91
8	No base	90	6	15
9	K ₂ CO ₃	100	6	97
10	K ₂ CO ₃	80	12	93
11	K ₂ CO ₃	60	12	78
12	K ₂ CO ₃	rt	24	23

7 **Table 2.** The effect of different type of base and temperature on the Heck reaction^a

^aReaction conditions: 4-bromotoluene (1.0 mmol), styrene (1.25 mmol), base (2.0 mmol), H₂O (3.0 mL), oil
bath under N₂ atmosphere. ^bDetermined by GC-MS with nitrobenzene as internal standard, average of two runs.

10 The optimized reaction conditions of Heck reaction obtained from above reactions are 11 shown as following, 2.0 equivalent mol K₂CO₃ as base, H₂O as solvent, 12 PdCl₂/Glu-IMSs 4 (1:2) as catalyst with 1.5 mol% loading, and all of the substrates were maintained in 90 °C oil bath with stirred for 6.0 or 12 h. The results mentioned 13 14 above promoted us to investigate the scope and limitations of the Heck-Mizoroki 15 reaction. Α range of aryl halides with both electron-donating and electron-withdrawing groups coupled with olefin, and the results were summarized in 16

Fig. 3. Iodobenzene, 4-methoxy-iodobenzene, 4-methyl-iodobenzene could react 1 2 smoothly with styrene derivatives to afford corresponding products above 96% yield 3 (Fig. 1. 8a, 9a, 10a, and 11a). Aryl bromides was the most common substrate of the 4 Pd-catalyzed cross coupling reaction, herein, we found that a range of aryl bromides with varying electronic and steric properties selected herein could couple smoothly 5 with styrene derivatives and gave the desired products in yields between 90% and 6 7 98% (Fig. 1. 8-11b and 12-19a). With a non-activating and steric hindrance group such as a 2-methyl group, the desired product was obtained in good yield (Fig. 1. 15a, 8 9 90%). On the other hand, in the case of cheaper aryl chlorides, the reaction of styrene 10 with less efficient, electron-rich 4-methoxychlorobenzene affording the products in 11 relatively low yields even consumed a longer reaction time (Fig. 1. 8c, 46%). 12 Fortunately, the activated aryl chlorides coupled very well with styrene and afford 13 quite well yields (Fig. 1. 12b, 86% and 13b, 90%). So, our catalytic system more suitable for the coupling between activated aryl chlorides and styrene. 14

15 16

Figure 1. Heck reaction of different aryl halides and styrene under the optimized conditions.

17

- 2 Figure 2. The fluorine-cored OFMs prepared by Suzuki reaction (15 examples). (Reaction condition, 2.0
- 3 equivalent mol K_2CO_3 as base, H_2O as solvent, $PdCl_2/Glu$ -IMSs 4 (mol/mol = 1:2) as catalyst with 1.5 mol%
- 4 loading, and all of the substrates were maintained in 90 °C oil bath with stirred for 0.5 h.)

1

In another part of this study we investigated the catalytic activity of PdCl₂/Glu-IMSs 5 6 **4** in Suzuki reaction. Conjugate materials containing fluorine unit, fluorine element, 7 triphenylamine, and carbazole groups have obviously attracted attention as popular OFMs including OPV, OLED, and PVSCs devices.⁴⁹⁻⁵³ Based on our previously 8 results about Glu-Ims for Pd-catalyzed Suzuki coupling.³⁸ The substrate range of 9 Suzuki coupling is still limited, but conceptionally, our catalytic system represents an 10 11 interesting synthetic alternative expanding Glu-IMSs applications in Pd-catalyzed reaction. Herein, we used PdCl₂/Glu-IMSs 4 catalytic system synthesized a series 12 13 fluorine-cored OFMs (15 examples) with optimized reaction conditions mentioned above by the Suzuki reaction between 2-bromofluorene, 2,7-dibromofluorene, 14 2,7-dibromo-9,9-dibutyl-9H-fluorene, 2,7-dibromo-9,9-dihexyl-9H-fluorene and aryl 15 boronic acids containing trifluoromethyl group, fluorine, and triphenylamine moieties 16 (Fig. 2). Studies on different aryl boronic acids with electron-deficient and 17

electron-rich substituents were carried out. As shown in Fig. 2, the electron-rich aryl
boronic acids were very suitable in this protocol with excellent yield (above 95%).
The electron-deficient aryl boronic acids were also suitable in this catalytic system
and obtained the desirable product in good yield (20a, 95%; 20b, 91%, and 21-23a,
93%, 96%, and 94% respectively).

The electron-rich superb NHCs are an emerging class of stabled anchor for Pd NPs 6 due to its strong σ -donation.⁵⁴⁻⁶¹ Herein, the catalytic activity of Pd/Glu-IMSs increase 7 with the lengths of alkyl chain and steric hindrance, because this is the main 8 9 difference between these ligands, and may cause best dispersed Pd NPs with the NHCs ligand.⁶² Herein, the presence of the Glu-IMSs dominated the interactions of 10 the transition metal Pd-Pd, leading to form small size IMSs functionalized Pd NPs and 11 12 enlarge the surface areas of Pd catalyst species, the carbohydrate, on the other hand, increased water solubility of Pd catalyst species, slightly reduced the surface tension 13 of IMSs solutions and stabilized molecular assemblies considerably. 14

15 16

Figure 3. The HR-TEM images taken from $PdCl_2/Glu$ -IMSs/H₂O.

In order to better understanding of real catalytic species, PdCl₂/Glu-IMSs in water was warm to refluxed, then examined by high-resolution transmission electron microscopy (HR-TEM), the results are shown in Fig. 3, standard deviations given in

brackets. According to the HR-TEM, IMSs functionalized Pd NPs have a revealed 1 monodisperse and well-distributed nanoparticles with a relatively small size 2 distribution of 4.2 (0.3), 4.1 (0.4), 3.9 (0.2), 3.7 (0.3), 4.0 (0.4), and 3.8 (0.3) nm with 3 Glu-IMSs 2-7, respectively (Fig. 3). Unfortunately, Pd NPs functionalized with 4 Glu-IMSs 1 have not suitable for testing samples, because PdCl₂/Glu-IMSs 1 formed 5 unstable Pd NPs, maybe due to least hindered methyl in imidazolinium heterocycle.⁴⁰ 6 We believed that the IMSs functionalized Pd NPs act as an efficient real catalytic 7 species in the Pd-catalyzed cross coupling reaction in water media.^{41, 63-65} From the ¹H 8 NMR spectrum of Glu-IMSs 4 functionalized Pd NPs (Fig. S4), the lack of 9 observation of the NCHN proton in the imidazole ring maybe means the formation of 10 Pd-NHCs bond, moreover can also be due to the widening of the resonance due to the 11 12 interaction with the Pd NP surface, and we also found four acetyl groups still retained. We also characterized Glu-IMSs 4 with DEPT135, DEPT90 (Fig. S5), and COSY (Fig. 13 S6), HSQC (Fig. S7), HMBC (Fig. S8) NMR spectroscopy, most of the ¹H NMR and 14 ¹³C NMR chemical shift were assigned with the help of 2D NMR and the results were 15 16 listed in Table S1.

17 Conclusion

In summary, a series of Glu-IMSs combining glucoside and imidazolium head groups 18 with different substituents were synthesized with 92-95% isolate yield. The method 19 20 for the synthetic Glu-IMSs is simple and they can be obtained from cheap and commercial starting materials. $PdCl_2$ combined directly with Glu-IMSs (mol:mol = 21 1:2) represents an efficient catalyst for Heck-Mizoroki reactions of aryl iodides, 22 bromides and activated aryl chlorides (19 examples). At the same time, the best 23 24 PdCl₂/Glu-IMSs 4 catalytic system was used for Suzuki reactions. A series fluorine-cored OFMs (15 examples) were synthesized with the Suzuki coupling 25 between 2-bromofluorene, 2,7-dibromofluorene, 2,7-dibromo-9,9-dibutyl-9H-fluorene, 26 2,7-dibromo-9,9-dihexyl-9H-fluorene and aryl boronic acids. We found Glu-IMSs 4 27 having the coordinating oxygen functional group was found to be most efficient 28 29 among them. HR-TEM analysis showed that IMSs functionalized Pd NPs was formed with an average size of around 4.0 nm and act as an efficient catalyst to accelerate the 30 10 / 16

1	cross coupling in water media. The Glu-IMSs 4 contain -OH and NHCs two
2	coordination sites show best catalytic activity. Further studies of the developed
3	catalyst system to asymmetric catalysis were currently carried on in our laboratory.
4	Synthesis of Glu-IMSs 1-6
5	Glu-IMSs 1-6 was obtained according to previous method, ^{29, 42} the product was
6	purification by chromatography (DCM/methanol, 20/1 to 3/1). A solution of
7	2-bromoethyl glucoside (1.0 mmol), and the N-substituent imidazole (2.0 mmol) and
8	10.0 mL of dry acetonitrile were sequentially added, refluxed and stirred for 24 h. The
9	product Glu-IMSs 1-6 was purification by chromatography (DCM/methanol, 10/1 to
10	3/1) in around 95% yield.
11	1-(2-β-D-Glucopyranosyloxyethyl)-3-methyl-imidazolium bromide (1)
12	Viscous liquid, 97%, ¹ H NMR (400 MHz, CDCl ₃): 1.78 (s), 1.80 (s), 1.81 (s), 1.87 (s),
13	3.15 (s), 3.67 (m), 3.85 (s), 4.46 (m), 3.89 (m), 3.96 (m), 4.05 (m), 4.41 (m), 4.46 (m),
14	4.52 (d, $J = 8.0$ Hz), 4.71 (d, $J = 8.0$ Hz), 4.82 (t, $J = 10.0$ Hz), 4.99 (t, $J = 8.0$ Hz),
15	7.39 (s), 7.43 (s), 9.27 (s); 13 C NMR (100 MHz, CDCl ₃): δ 19.9, 20.0, 20.2, 20.3, 36.1,
16	49.2, 53.2, 61.1, 67.3, 67.6, 70.6, 67.6, 70.6, 71.2, 71.8, 99.7, 122.6, 122.8, 136.6,
17	168.9, 169.2, 169.4, 170.2; Elemental analysis calcd (%) for C ₂₀ H ₂₉ BrN ₂ O ₁₀ : C, 44.70;
18	H, 5.44; found C, 44.72, H, 5.43.
19	1-(2-β-D-Glucopyranosyloxyethyl)-3-butyl-imidazolium bromide (2)
20	Viscous liquid, 96%, ¹ H NMR (400 MHz, CDCl ₃): 1.34 (t, $J = 8.0$ Hz), 1.741 (m),
21	2.25 (m), 2.31 (s), 2.34 (s), 2.35 (s), 2.40 (s), 4.27 (m), 4.37 (m), 4.51 (m), 4.62 (m),
22	4.84 (s), 5.12 (d, <i>J</i> = 8.0 Hz), 5.21 (t, <i>J</i> = 8.0 Hz), 5.33 (t, <i>J</i> = 9.6 Hz), 5.59 (t, <i>J</i> = 9.6
23	Hz), 7.97 (s), 8.02 (s), 9.35 (s); 13 C NMR (100 MHz, CDCl ₃): δ 11.7, 18.2, 18.5, 18.6,
24	18.8, 30.8, 48.5, 60.6, 66.2, 67.3, 70.2, 70.6, 71.5, 99.1, 121.2, 122.0, 135.4, 168.9,
25	168.9, 169.2, 169.9; Elemental analysis calcd (%) for C ₂₃ H ₃₅ BrN ₂ O ₁₀ : C, 47.68; H,
26	6.09; found C, 47.69, H, 6.07.
27	1-(2-β-D-Glucopyranosyloxyethyl)-3-isopropyl -imidazolium bromide (3)
28	Viscous liquid, 96%, ¹ H NMR (400 MHz, CDCl ₃): 1.59 (d, <i>J</i> = 8.0 Hz), 1.95 (s), 1.97
29	(s), 1.98 (s), 2.04 (s), 3.78 (m), 4.07 (m), 4.11 (d, $J = 2.0$ Hz), 4.20 (d, $J = 6.0$ Hz),
30	4.23 (d, <i>J</i> = 8.0 Hz), 4.62 (d, <i>J</i> = 8.0 Hz), 4.67 (m), 4.73 (m), 4.90 (dd, <i>J</i> = 9.6 Hz, <i>J</i> =

1	8.0 Hz), 4.99 (t, $J = 9.6$ Hz), 5.16 (t, $J = 9.6$ Hz), 7.33 (s), 7.55 (s), 9.99 (s); ¹³ C NMR
2	(100 MHz, CDCl ₃): δ 20.3, 20.4, 20.67, 20.7; 22.9, 49.8, 53.2, 61.6, 67.9, 68.1, 71.1,
3	71.8, 72.2, 100.4, 118.9, 123.7, 135.8, 169.4, 169.6, 169.8, 170.5; Elemental analysis
4	calcd (%) for C ₂₂ H ₃₃ BrN ₂ O ₁₀ : C, 46.73; H, 5.88; found C, 46.75, H, 5.86.
5	1-(2-β-D-Glucopyranosyloxyethyl)-3-(2-(2,4-dichlorophenyl)-2-hydroxyethyl)-imi
6	dazolium bromide (4)
7	White solid, 96%, ¹ H NMR (400 MHz, CDCl ₃): 1.74 (s), 1.76 (s), 1.79 (s), 1.82 (s),
8	3.62 (m), 3.83 (m), 3.96 (m), 4.12 (m), 4.35 (t, <i>J</i> = 10.8 Hz), 4.48 (t, <i>J</i> = 6.4 Hz), 4.69
9	(d, J = 16.0 Hz), 4.81 (m), 5.13 (d, J = 8.0 Hz), 5.16 (m), 7.05 (m), 7.11 (m), 7.26 (m), 7.26
10	7.35 (d, $J = 8.4$ Hz), 9.00 (q, $J = 8.0$ Hz); ¹³ C NMR (100 MHz, CDCl ₃): δ 19.8, 19.9,
11	20.1, 20.2, 49.2, 53.2, 54.0, 61.0, 66.9, 67.1, 67.2, 67.3, 67.5, 70.4, 71.1, 71.6, 99.5,
12	99.7, 121.9, 122.0, 122.3, 127.0, 128.4, 131.2, 133.6, 135.2, 135.3, 136.3, 168.8,
13	169.1, 169.3, 170.0; Elemental analysis calcd (%) for C ₂₇ H ₃₃ BrCl ₂ N ₂ O ₁₁ : C, 45.52; H,
14	4.67; found C, 45.53, H, 4.66.
15	1-(2-β-D-Glucopyranosyloxyethyl)-3-(2,6-dimethylphenyl)-imidazolium bromide
16	(5)
17	White solid, 96%, ¹ H NMR (400 MHz, CDCl ₃): 2.23 (s), 2.24 (s), 2.26 (s), 2.27 (s),
18	2.37 (s), 2.39 (s), 4.13 (m), 4.46 (m), 4.51 (m), 4.61 (m), 5.02 (d, <i>J</i> = 8.0 Hz), 5.16 (dd,
19	J = 9.6 Hz, $J = 8.0$ Hz), 5.26 (t, $J = 9.6$ Hz), 5.28 (m), 5.46 (t, $J = 9.6$ Hz), 7.47 (m),
20	7.47 (m), 7.48 (s), 7.62 (m), 8.39 (t, $J = 4.0$ Hz), 10.02 (s); ¹³ C NMR (100 MHz,
21	CDCl ₃): δ 17.4, 22.3, 22.3, 22.4, 22.6, 50.2, 61.4, 67.9, 68.3, 71.0, 71.8, 72.2, 100.5,
22	122.1, 124.4, 129.0, 130.8, 132.8, 134.4, 137.4, 169.3, 169.4, 169.6, 170.3; Elemental
23	analysis calcd (%) for C ₂₇ H ₃₅ BrN ₂ O ₁₀ : C, 51.68; H, 5.62; found C, 51.69, H, 5.58.
24	1-(2-β-D-Glucopyranosyloxyethyl)-3-(4-ethyl benzoaty)-imidazolium bromide (6)
25	White solid, 92%, ¹ H NMR (400 MHz, CDCl ₃): 1.27 (t, $J = 8.0$ Hz), 1.85 (s), 1.86 (s),
26	1.88 (s), 1.91 (s), 3.74 (m), 4.01 (m), 4.12 (m), 4.26 (m), 4.52 (d, <i>J</i> = 8.0 Hz), 4.73 (s),
27	4.81 (t, $J = 8.0$ Hz), 4.90 (t, $J = 8.0$ Hz), 5.10 (t, $J = 12.0$ Hz), 7.82 (d, $J = 8.0$ Hz),
28	7.86 (s), 7.92 (s), 8.10 (d, $J = 8.0$ Hz), 10.15 (s); ¹³ C NMR (100 MHz, CDCl ₃): δ 13.8,
29	20.1, 20.2, 20.3, 20.5, 22.3, 50.0, 61.3, 67.2, 67.7, 70.8, 71.5, 71.9, 100.0, 120.0,
30	121.4, 124.5, 131.4, 131.6, 135.5, 137.2, 164.5, 169.1, 169.5, 169.6, 170.3, 173.1;

12 / 16

1 Elemental analysis calcd (%) for C₂₈H₃₅BrN₂O₁₂: C, 50.08; H, 5.25; found C, 50.09,

2 H, 5.23.

3 Conflicts of interest

4 There are no conflicts of interest to declare.

5 Acknowledgments

- 6 This work was financially supported by the National Natural Science Foundation of
- 7 China (No. 21562002), the Funding Project for Academic and Technical Leaders of
- 8 Jiangxi Province (No. 20172BCB22021), Jiangxi Provincial Department of Education
- 9 (GJJ170834) and Undergraduate Training Program for Innovation and
- 10 Entrepreneurship (No. CX190009).
- 11 **ORCID**
- 12 Zhonggao Zhou ¹² https://orcid.org/0000-0002-0003-2374

13 **References**

- 14 1. Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, (30), 6722-6737.
- 15 2. Heck, R. F. JACS 1968, 90, (20), 5518-5526.
- 16 3. Negishi, E.-i. Angew. Chem. Int. Ed. 2011, 50, (30), 6738-6764.
- 17 4. Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Chem. Rev. 2015, 115, (11), 4607-4692.
- 18 5. Moore, L. R.; Cooks, S. M.; Anderson, M. S.; Schanz, H.-J.; Griffin, S. T.; Rogers, R. D.; Kirk, M.
- 19 C.; Shaughnessy, K. H. Organometallics 2006, 25, (21), 5151-5158.
- 20 6. Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Science 2015, 349, (6252), 1087-1091.
- 21 7. Uozumi, Y.; Matsuura, Y.; Arakawa, T.; Yamada, Y. M. Angew. Chem. Int. Ed. 2009, 48, (15),
- 22 2708-10.
- 8. Guitet, M.; Marcelo, F.; de Beaumais, S. A.; Zhang, Y.; Jiménez-Barbero, J.; Tilloy, S.; Monflier,
- 24 E.; Ménand, M.; Sollogoub, M. Eur. J. Org. Chem. 2013, 2013, (18), 3691-3699.
- 25 9. Liu, N.; Liu, C.; Jin, Z. L. Green Chem. 2012, 14, 592-597.
- 26 10. Mika, L. T.; Cséfalvay, E.; Németh, Á. Chem. Rev. 2018, 118, (2), 505-613.
- 27 11. Delbianco, M.; Bharate, P.; Varelaaramburu, S.; Seeberger, P. H. Chem. Rev. 2016, 116, (4),
- 28 1693-1752.
- 29 12. Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Science 2005, 308, 1446.

- 1 13. Bromfield, S. M.; Wilde, E.; Smith, D. K. Chem. Soc. Rev. 2013, 42, (23), 9184-9195.
- 2 14. Hassler, C. S.; Schoemann, V.; Nichols, C. M.; Butler, E. C.; Boyd, P. W. Proc. Natl. Acad. Sci.
- *USA* **2011**, 108, (3), 1076-1081.
- 4 15. Zhang, X.; Lin, L.; Huang, H.; Linhardt, R. J. Acc. Chem. Res. 2020.
- 5 16. Brzeczek-Szafran, A.; Erfurt, K.; Blacha-Grzechnik, A.; Krzywiecki, M.; Boncel, S.; Chrobok, A.
- 6 ACS Sustainable Chemistry & Engineering **2019**, 7, (24), 19880-19888.
- 7 17. Zhao, W.; Ferro, V.; Baker, M. V. Coord. Chem. Rev. 2017, 339, 1-16.
- 8 18. Woodward, S.; Diéguez, M.; Pàmies, O. Coord. Chem. Rev. 2010, 254, (17-18), 2007-2030.
- 9 19. Dieguez, M.; Claver, C.; Pamies, O. Eur. J. Org. Chem. 2007, (28), 4621-4634.
- 10 20. Dieguez, M.; Pamies, O.; Ruiz, A.; Diaz, Y.; Castillon, S.; Claver, C. Coord. Chem. Rev. 2004,
- 11 248, (21-24), 2165-2192.
- 12 21. Dieguez, M.; Pamies, O.; Claver, C. Chem. Rev. 2004, 104, (6), 3189-3216.
- 13 22. Kaur, N.; Singh, A.; Chopra, H. K. Mini-Rev. Org. Chem. 2018, 15, (3), 208-219.
- Shi, J.-C.; Lei, N.; Tong, Q.; Peng, Y.; Wei, J.; Jia, L. Eur. J. Inorg. Chem. 2007, 2007, (15),
 2221-2224.
- 16 24. Tewes, F.; Schlecker, A.; Harms, K.; Glorius, F. J. Organomet. Chem. 2007, 692, (21), 4593-4602.
- 17 25. Nishioka, T.; Shibata, T.; Kinoshita, I. Organometallics 2007, 26, (5), 1126-1128.
- 18 26. Keitz, B. K.; Grubbs, R. H. Organometallics 2010, 29, (2), 403-408.
- 19 27. Shibata, T.; Hashimoto, H.; Kinoshita, I.; Yano, S.; Nishioka, T. *Dalton Trans.* 2011, 40, (18),
 20 4826-4829.
- 21 28. Shibata, T.; Ito, S.; Doe, M.; Tanaka, R.; Hashimoto, H.; Kinoshita, I.; Yano, S.; Nishioka, T.
- 22 Dalton Trans. 2011, 40, (25), 6778-6784.
- 23 29. Zhou, Z.; Qiu, J.; Xie, L.; Du, F.; Xu, G.; Xie, Y.; Ling, Q. Catal. Lett. 2014, 144, (11), 1911-1918.
- 24 30. Yang, C. C.; Lin, P. S.; Liu, F. C.; Lin, I. J. B.; Lee, G. H.; Peng, S. M. Organometallics 2010, 29,
- 25 (22), 5959-5971.
- 26 31. Byrne, J. P.; Musembi, P.; Albrecht, M. Dalton Trans **2019**, 48, (31), 11838-11847.
- 27 32. Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, (10), 6302-6337.
- 28 33. N. Kaur; Chopra, H. K. J. Mol. Liq. 2020, 298, (15), 111994.
- 29 34. Xin Ge; Shihui Zhang; Xinzhi Chen; Xuemin Liu; Qian, C. Green Chem. 2019, 21, 2771-2776.
- 30 35. Nemcsok, T.; Rapi, Z.; Bagi, P.; Bakó, P. Synth. Commun. 2019, 49, (18), 2388-2400.

- 1 36. Zhou, Z.; Zhao, Y.; Zhen, H.; Lin, Z.; Ling, Q. Appl. Organomet. Chem. 2016, 30, (11), 924-931.
- 2 37. Zhou, Z. G.; Li, M.; Liu, G. S.; Xu, G. H.; Xue, J. Appl. Organomet. Chem. 2019, 33, (7), e4942.
- 3 38. Zhou, Z.; Yuan, Y.; Xie, Y.; Li, M. Catal. Lett. 2018, 148, (9), 2696-2702.
- 4 39. An, Y. Y.; Yu, J. G.; Han, Y. F. Chin. J. Chem. 2019, 37, (1), 76-87.
- 5 40. Ferry, A.; Schaepe, K.; Tegeder, P.; Richter, C.; Chepiga, K. M.; Ravoo, B. J.; Glorius, F. ACS
- 6 *Catalysis* **2015**, *5*, (9), 5414-5420.
- 7 41. Asensio, J. M.; Tricard, S.; Coppel, Y.; Andres, R.; Chaudret, B.; de Jesus, E. Chem. Eur. J. 2017,
- 8 23, (54), 13435-13444.
- 9 42. Salman, A. A.; Tabandeh, M.; Heidelberg, T.; Hussen, R. S. D.; Ali, H. M. *Carbohydr. Res.* 2015,
 10 412, 28-33.
- 11 43. Janssen-Muller, D.; Schlepphorst, C.; Glorius, F. Chem. Soc. Rev. 2017, 46, (16), 4845-4854.
- 12 44. Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C. M.
- 13 Chem. Rev. 2019, 119, (8), 4986-5056.
- 14 45. Meng, G.; Kakalis, L.; P.Nolan, S.; MichalSzostak. *Tetrahedron Lett.* **2019**, 60, (4), 378-381.
- 15 46. Verlinden, K.; Buhl, H.; Frank, W.; Ganter, C. Eur. J. Inorg. Chem. 2015, 2015, (14), 2416-2425.
- 16 47. Huynh, H. V. Chem. Rev. 2018, 118, (19), 9457-9492.
- 17 48. Rendon-Nava, D.; Alvarez-Hernandez, A.; Rheingold, A. L.; Suarez-Castillo, O. R.;
- 18 Mendoza-Espinosa, D. Dalton Trans. 2019, 48, (10), 3214-3222.
- 19 49. Teh, C. H.; Daik, R.; Lim, E. L.; Yap, C. C.; Ibrahim, M. A.; Ludin, N. A.; Sopian, K.; Mat Teridi,
- 20 M. A. J. Mater. Chem. A 2016, 4, (41), 15788-15822.
- 21 50. Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.;
- 22 Hagfeldt, A.; Sun, L. Adv. Mater. 2014, 26, (38), 6629-6634.
- 23 51. Zhou, Z.-G.; Zhao, Y.; Zhang, C.; Zhou, D.; Chen, Y.; Lin, Z.; Zhen, H.; Ling, Q. J. Mater. Chem.
- A **2017**, 5, 6613-6621.
- 25 52. Harindu Hemasiri, N.; Kazim, S.; Calio, L.; Paek, S.; Salado, M.; Pozzi, G.; Lezama, L.;
- 26 Nazeeruddin, M. K.; Ahmad, S. ACS Appl Mater Interfaces 2020, 12, (8), 9395-9403.
- 27 53. Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J. T.;
- 28 Huettner, S.; Buecheler, S.; Fahlman, M.; Gao, F.; Snaith, H. J. *Nature* **2019**, 571, (7764), 245-250.
- 29 54. Salorinne, K.; Man, R. W. Y.; Li, C. H.; Taki, M.; Nambo, M.; Crudden, C. M. Angew. Chem. Int.
- 30 *Ed.* **2017**, 56, (22), 6198-6202.

- 1 55. Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; De Jesús, E. Angew. Chem. Int.
- 2 *Ed.* **2016,** 129, (3), 883-887.
- 56. Baquero, E. A.; Tricard, S.; Flores, J. C.; de Jesús, E.; Chaudret, B. Angew. Chem., Int. Ed. 2014,
 53, (48), 13220.
- 5 57. Ranganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49,
- 6 7786.
- 7 58. MacLeod, M. J.; Johnson, J. A. J. Am. Chem. Soc. 2015, 137, (25), 7974-7977.
- 8 59. Man, R. W. Y.; Li, C. H.; MacLean, M. W. A.; Zenkina, O. V.; Zamora, M. T.; Saunders, L. N.;
- 9 Rousina-Webb, A.; Nambo, M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, (5), 1576-1579.
- 10 60. Engel, S.; Fritz, E. C.; Ravoo, B. J. Chem. Soc. Rev. 2017, 46, (8), 2057-2075.
- 11 61. Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Chem. Rev. 2015, 115, (20), 11503-11532.
- 12 62. Çakır, S.; Türkmen, G.; Türkmen, H. Appl. Organomet. Chem. 2018, 32, (1), e3969.
- 13 63. Nasser, I.; Sajjad, R.; Farhad, P. *RSC Adv.* **2016**, 6, (4), 3084-3090.
- 14 64. Rühling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B. J.; Glorius, F. Angew.
- 15 Chem. Int. Ed. 2016, 55, (19), 5856-5860.
- 16 65. Chen, C.; Zheng, Q.; Ni, S.; Wang, H. New J. Chem. 2018, 42, (6), 4624-4630.
- 17

Highlights

•Preparation of Glu-IMSs from commercial N-substituent imidazole.

·The catalytic activities of Pd/Glu-IMSs were evaluated with Heck-Mizoroki and Suzuki-Miyaura reactions in water.

- ·Glu-IMSs with -OH and NHCs two coordination sites was the most efficient ligand.
- •The Glu-IMSs stabilized Pd NPs with an average size of \sim 4.0 nm.

·A series novel fluorine-cored OFMs were synthesized.

L. JURNA