Tetrahedron 65 (2009) 1846-1855

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Gold-catalyzed efficient preparation of linear α -haloenones from propargylic acetates

Meng Yu, Guozhu Zhang, Liming Zhang*

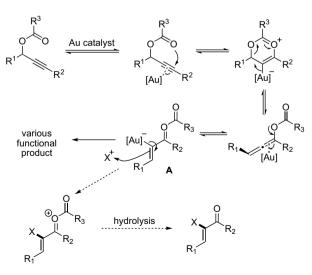
Department of Chemistry/MS 216, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA

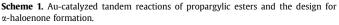
A R T I C L E I N F O

Article history: Received 10 June 2008 Received in revised form 23 November 2008 Accepted 24 November 2008 Available online 24 December 2008

ABSTRACT

Versatile linear α -iodo- and α -bromoenones are prepared efficiently from readily accessible propargylic acetates using 2 mol% of Au(PPh₃)NTf₂. This reaction is easy to execute and has broad substrate scope. Good to excellent *Z*-selectivities are observed in the cases of propargylic acetates derived from aliphatic aldehydes.


© 2008 Published by Elsevier Ltd.


1. Introduction

 α -Haloenones, especially α -iodoenones, are important synthetic intermediates and can undergo transition metal-catalyzed crosscoupling reactions following Negishi's protocols,¹ readily installing various substituents including alkyl, alkenyl, alkynyl, and aryl groups at the enone α -position.

A range of methods for the synthesis of α -haloenones have been developed. For α -bromoenones, brominations of enones using commercially available or in situ generated bromine are the most studied and straightforward approach² although the strong reactivity of Br₂ prevents the inclusion of delicate functional groups. α-Iodoenones are much better substrates for transition metal-catalyzed cross-coupling reactions,¹ and their synthesis can be achieved from enones using a combination of I₂ and a nucleophilic base (e.g., pyridine,³ DMAP,⁴ and quinuclidine⁴). However, this Michael addition-based method is limited with linear enone substrates.⁵ Although iodination of C-Si⁶ bonds with ICl or C-Sn⁷ bonds with I_2 can afford linear α -iodoenones, the need of more functionalized starting materials can be undesirable. McNelis reported that propargylic alcohols could be converted directly into linear α -iodoenones using NIS (*N*-iodosuccinimide) and a catalytic amount of hydroxy(tosyloxy)iodobenzene;⁸ unfortunately, this potentially versatile method for α -iodoenone synthesis is limited to secondary alkynols; moreover, its scope was not well defined as only a few special examples of this chemistry were reported. We concluded that an efficient and general preparative method for linear α -haloenones is still much needed. Herein, we give a full account of our effort in addressing this need using Au catalysis.

Propargylic acetates are readily available starting materials and can be easily prepared from aldehydes/ketones, terminal alkynes, and acetic anhydride. They are versatile substrates for Au catalysis⁹ and can undergo either 1,2-acetoxyl migration¹⁰ or 3,3-rearrangment.^{11,12} We originated and have since continued studies on Au-catalyzed tandem reactions of propargylic esters involving 3,3-rearrangement. In our design, the in situ generated carboxyallenes could be further activated by the very same Au catalyst to form Au-containing oxocarbenium **A** (Scheme 1). Intermediate **A** contains various functionalities including oxocarbenium, C–C double bond, activated acyl group, and potentially nucleophilic Au–C(sp²) bond; moreover, due to the ease of substrate preparation, various functional groups can be easily incorporated into oxocarbenium

^{*} Corresponding author. Tel.: +1 775 784 6688; fax: +1 775 784 6804. *E-mail address:* lzhang@unr.edu (L. Zhang).

A (i.e., in R¹, R², and R³). As a result, **A** is expected to have rich chemistry. Indeed, based on this design, we have developed several useful methods for efficient synthesis of highly functionalized 2,3-indoline-fused cyclobutanes,¹¹ cyclopentenones,^{13a} α -alkylidene- β -diketones,^{13b} alkenyl enol esters/carbonates,^{13c} and enones.^{13d,14} Several other research groups have also developed efficient synthetic methods sharing the design.¹⁵ A notable observation in some of these studies is that the Au-C(sp²) bond in **A** can react with intramolecular electrophiles^{16,17} including iminiums¹¹ and activated acyl groups.^{13b} We surmise that this Au-C(sp²) bond could react with electrophilic halogens intermolecularly, leading to efficient formation of α -haloenones upon hydrolysis (Scheme 1).¹⁸ In fact, iodinations of Au-C(sp²) bonds with NIS had been realized in isolated examples.¹⁹

2. Results and discussion

We chose oct-3-yn-2-yl acetate (**1**) as substrate and NIS¹⁸ as the 'I⁺' source to study the reaction (Table 1). Stable Au(PPh₃)NTf₂ was first used for its ease of preparation and handling.²⁰ To our delight, the desired reaction did happen with 2 mol % of the catalyst, and α -iodoenone **2** was formed in anhydrous acetone in 95% yield albeit without much *Z*/*E* selectivity (entry 1).

To improve the stereoselectivity, we examined different solvents (entries 2 and 3). However, the improvement was moderate and, moreover, at the expense of the reaction yield. After some experimentation, we found that a small amount of water in acetone dramatically enhanced the Z/E selectivity, and only Z-**2** was observed when acetone/H₂O (40:1) was used as solvent (entry 4). To our delight, the low yield could be overcome by decreasing the amount of H₂O. Hence, 61% and 80% yields of **2** were obtained when the ratios of acetone/H₂O were 200:1 (entry 5) and 400:1 (entry 6), respectively; importantly, the excellent Z/E selectivity (>99:1) remained unchanged. Finally, when the ratio of H₂O and acetone is 1:800 (about 1.4 equiv of H₂O to **1**, entry 7), the yield of

Table 1

Gold-catalyzed reactions of propargylic acetate $\boldsymbol{1}$ with NIS to form $\alpha\text{-iodoenone}\;\boldsymbol{2}$

OAc catalyst, NIS (1.2 eq) Me .Me solvent 0 °C 2 h 2 1 Catalyst Yield^b [%] Z/E^{c} Entrv Solvent 2 mol % Au(PPh₂)NTf₂ Anhyd acetone 95 3.2

1	2 1101/0 /10(1113)1112	minya. accione	55	5.2
2	2 mol % Au(PPh ₃)NTf ₂	Wet CH ₂ Cl ₂	85	6:1
3	2 mol % Au(PPh ₃)NTf ₂	MeNO ₂ ^d	78	3:1
4	2 mol % Au(PPh ₃)NTf ₂	Acetone/H ₂ O (40:1)	35 ^e	>99:1
5	2 mol % Au(PPh ₃)NTf ₂	Acetone/H ₂ O (200:1)	61	>99:1
6	2 mol % Au(PPh ₃)NTf ₂	Acetone/H ₂ O (400:1)	80	>99:1
7	2 mol % Au(PPh ₃)NTf ₂	Acetone/H ₂ O (800:1)	95 ^f	45:1
8	2 mol % Au(III) ^g	CICH ₂ CH ₂ CI ^h	95	6:1
9	2 mol % Au(I) ⁱ	Acetone/20 (800:1)	40 ^j	>99:1
10	2 mol % [(PhP ₃ Au) ₃ O] ⁺ NTf ₂ ⁻	Acetone/H ₂ O (800:1)	6 ^k	—
11	2 mol % PtCl ₂	Toluene ^l	12.5	>99:1
12	No catalyst	Acetone/H ₂ O (800:1)	0 ^m	_

^a Reaction concentration is 0.05 M.

^b Estimated by ¹H NMR using diethyl phthalate as internal reference.

^c The geometries of enone **2** were determined by NOESY1D experiments.

^d Regular, without drying,

^e Acetate **1** (17%) was left unreacted.

^f Isolated yield (89%).

^g Dichloro(2-pyridinecarboxylato)gold(III).

^h Heating at 80 °C for 0.5 h.

i (2-Biphenyl)Cy2PAuNTf2.

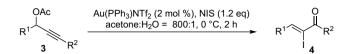
^j Starting material (47%) left after 2 h.

^k Mostly starting material left after 4.5 h.

¹ Heating at 80 °C for 2 h.

^m No reaction.

 α -iodoenone **2** was improved to 95%, and the stereoselectivity (*Z*/ *E*=45:1) remained high. Although previous studies^{6,7} showed that the double bond of α -iodoenones could isomerize under acidic conditions, ¹H NMR experiments showed that under the optimized reaction conditions (i.e., entry 7) the *Z*/*E* ratio of **2** was constant throughout the reaction and did not noticeably change at 0 °C after extended time. Other Au catalysts (e.g., entries 8–10) and PtCl₂ (entry 11) gave less desirable results, and no reaction was observed with NIS alone (entry 12).


With the optimized reaction conditions in hand, we first studied propargylic acetates derived from various aldehydes, and the results are summarized in Table 2. For all the substrates studied, good to excellent yields of α -iodoenones with β -monosubstitution were obtained. When R¹ and R² were both alkyl groups, excellent stereoselectivities favoring the Z-isomer were observed (entries 1–3, 8, and 9). In the case of **3c**, the sterically demanding cyclohexyl group at the propargylic position slowed the reaction, and the addition of 10 mol % of AgNTf₂ helped to complete the reaction in 3 h (entry 3). The role of AgNTf₂ was likely to scavenge I^- and thus prevent Au(PPh₃)NTf₂ from being deactivated by the halide.²¹ Notably, in the cases of aryl-containing substrates 3d-g, the Z/E selectivities were marginal (entries 4–7), and in entry 5 E-4e was the major isomer. Aryl groups of different electronic natures underwent this reaction smoothly, affording 4f and 4g in 84% and 96% yields, respectively. Particularly noteworthy is that no iodination of the anisole ring in **4f** was observed. To our surprise, ester **3h** with a 2acetoxyethyl at the propargylic position underwent concurrent HOAc elimination, vielding Z- α -iododienone **4h** in 80% vield (entry 8). In contrast, ester **3i** with a longer carbon tether expectedly yielded α -iodoenone **4i** in an excellent yield. Interestingly, when the acetyl groups of **4h** and **4i** were replaced with TBS groups, the corresponding substrates reacted to give complicated mixtures. ¹H NMRs indicated that desilylation happened during reaction. Although the reaction conditions are normally considered mild, Au(PPh₃)NTf₂ is acidic enough to promote facile desilylation and HOAc elimination (entry 8).

The scope of this α -iodoenone formation can be readily extended to propargylic acetates derived from ketones. As shown in Table 3, under the same reaction conditions, acetates prepared from linear ketones such as acetone (i.e., 5a) and 3-methylbutan-2one (i.e., 5e) underwent smooth Au-catalyzed reactions, affording β , β -disubstituted α -iodoenones in excellent yields (entries 1 and 5). In the latter case, the diastereoselectivity was expectedly low.² Similarly, substrates derived from cyclic ketones including cyclopentanone (entry 2), cyclohexanone (entries 3, 6, and 7), and cycloheptanone (entry 4) reacted efficiently, and the corresponding α -iodoenones were all isolated in excellent yields. In addition, the alkyne terminus allowed various substituents including primary (entries 1–5) and secondary (entry 6) alkyl groups as well as phenyl group (entry 7). Remarkably, under this reaction conditions, no envnes^{13d} formed via elimination of HOAc were observed, suggesting that Au(PPh₃)NTf₂ activates the C-C triple bond selectively.

Although α -bromoenones are less desirable than α -iodoenones for cross-coupling reactions,¹ they are useful in various synthetic transformations, including exchanging the Br with a CF₃ group,²³ Stille coupling,²⁴ and synthesizing allenes via 2-bromoallylic alcohols.²⁵ To our delight, the protocol for α -iodoenone formation can be readily applied for α -bromoenone synthesis. In this case, NBS was used as the 'Br⁺' source. As shown in Table 4, propargylic acetates derived from acetaldehyde (e.g., entry 1) and benzaldehyde (e.g., entry 5) served as excellent substrates, affording α -bromoenones **8a** and **8e**, respectively, in excellent yields. Moreover, the *E*/*Z* selectivities paralleled to those observed with α -iodoenones. Hence, *Z*-**8a** with alkyl substituents was almost exclusively formed, while α -bromoenone **8e** with a β -phenyl group was isolated as a mixture with the *E*-isomer slightly favored. Propargylic acetates

Table 2

Formation of β -monosubstituted α -iodoenones

Entry ^a	Propargylic acetate 3		α-Iodoenone 4		Z/E	Yield ^b [%]
1	OAc Me	3a	Me	4a	12:1	82
2	OAc Me H ₃ Me	3b	Me H3 He	4b	10:1	94
3	OAc () () () () () () () () () () () () ()	3c	O Me	4c	19:1	91 ^c
4	OAc Me	3d	Merry	4d	1.2:1	75 ^d
5	OAc	Зе		4e	1:2	97 ^e
6	MeO Me	3f	Meo Meo	4f	1:1	84
7	F ₃ C OAc	3g	F ₃ C	4g	5:1	96 ^f
8	AcO	3h	O U U Me	4h	Z only	80 ^g
9	AcO	3i	Aco	4i	>50:1	83

^a Substrate concentration is 0.05 M.

^b Isolated yield.

 c AgNTf2 (10 mol %) was added, and the reaction time was 3 h.

^d The reaction took 3 h.

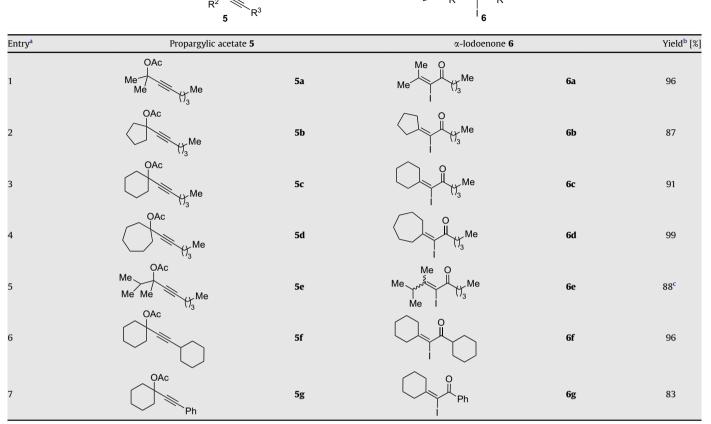
^e The reaction finished in 0.5 h.

 $^{\rm f}~{\rm AgNTf}_2$ (10 mol %) was added.

^g Elimination of acetic acid happened during the reaction.

derived from ketones reacted smoothly as well, yielding α -bromoenones **8b–8d** all in close to quantitative yields.

Further extension of this chemistry to α -fluoroenones using various electrophilic fluorine reagents such as Selectfluor[®] and *N*-fluorobenzenesulfonimide was not successful under the established reaction conditions.


Scheme 2 shows the proposed reaction mechanism using propargylic acetates derived from aldehydes as substrate. An initial Au-catalyzed 3,3-rearrangement of the substrate is well documented and highly likely;^{13,14} moreover, this acetoxy migration is necessary for regioselective installation of the carbonyl

group in the final product. The resulting intermediate, carboxyallene **7**, can proceed to α -haloenones via two different paths: (a) react directly with NXS (X=I or Br); (b) be further activated by the same Au¹ catalyst to generate Au-containing cation **A** (Scheme 1). Path a will lead to oxocarbenium **B** with the halo group trans to R¹ (i.e., *E*-isomer) selectively as NXS should approach the more electron-rich enolic C–C double bond from the less hindered face (i.e., synperiplanar to H), while path b would afford product **4** with the halo group cis to R¹ (i.e., *Z*-isomer) as our previous studies¹³ suggested repeatedly a cis relationship between Au(PPh₃) and R¹ in intermediates **A** and **C**²⁶ and iodination of Au–C(sp²) Au(PPh₃)NTf₂ (2 mol %), NIS (1.2 eq) acetone:H₂O = 800:1, 0 °C, 2 h

Table 3

Formation of β , β -disubstituted α -iodoenones

OAc

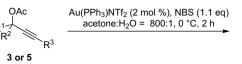
^a Substrate concentration is 0.05 M.

^b Isolated yield.

^c Z/E=1:2.2.

bonds¹⁸ is stereospecific or highly stereoselective. These two paths yield the same product but with opposite stereoselectivities. To shed more light on the mechanism, reactions were run in NMR tube and the Z/E ratios were monitored by ¹H NMR. When propargylic ester **3c** with all alkyl substituents was treated with NIS and Ph₃PAuNTf₂ (2 mol %), a constant Z/E ratio of 19:1 was observed during the reaction while the intermediate carboxyallene was not detected. Quite on the opposite, when ester 3e with a phenyl group at the propargylic position was studied, an opposite stereoselectivity (Z/E=1:2) with the E- α -iodoenone slightly favored was detected invariably throughout the reaction. Interestingly, in this case, 90% of substrate 3e was converted into carboxyallene 7 in 5 min while the completion of the reaction took much longer (30 min). The accumulation of 7 in this case allows path a to participate, which can explain the low and opposite stereoselectivity. Moreover, when a 1:1 mixture of **3e** and its corresponding carboxyallene²⁷ was mixed with NIS without the Au^I catalyst, the carboxyallene reacted to yield E-4e predominantly (Z/E=1:6 throughout the reaction) while **3e** remained unchanged. These studies suggest that substrates with all alkyl substituents proceed predominantly along path b, where carboxyallene 7 is a transient intermediate and is converted into A and eventually **C** rapidly in the presence of the Au^l catalyst and H₂O; on the contrary, aryl-containing esters such as 3d, 3e, 3f, and 3g reacted via both paths a and b due to facile 3,3-rearrangement and substantial accumulation of 7, thus leading to diminished or even opposite stereoselectivities.

 H_2O played a key role in controlling the stereoselectivity of the reaction studied during reaction condition optimization. Our proposed mechanism offers ready explanation: under anhydrous conditions where only small amount of adventitious H_2O was present, hydrolysis of **A** is very slow and, therefore, **A** can equilibrate back to **7**. As discussed previously, accumulation of **7** would make path a significant, leading to increased amount of the *E*-isomer and decreased selectivity (Table 1, entry 1). When sufficient amount of H_2O is present, hydrolysis of **A** into **C** is fast, therefore affording *Z*-**2** highly selective.


The potential influence of H_2O on the Au(I) complex is worth discussing. Cationic Ph₃PAu(I) complexes are known to react with H₂O under basic conditions to form [(Ph₃PAu)₃O]⁺X^{-.28} In our reaction, it is unlikely that Ph₃PAuNTf₂ is converted into $[(Ph_3PAu)_3O]^+NTf_2^-$ in the presence of H₂O as the trisgold(I)oxonium complex should not be formed in a significant amount under acidic conditions. Moreover, this trigold(I)oxonium complex was not catalytically active enough as only 6% of 2 was formed in 4.5 h (Table 1, entry 10). Nolan and co-workers proposed I^rBuAuOH as the catalyst for their enone formation reaction from propargylic acetates involving gold–allenolate intermediates in THF/H₂O.¹⁴ Although Ph₃PAuOH might be formed along with HNTf₂ in equilibrium with Ph₃PAuNTf₂ and H₂O, the formation of a similar Ph₃PAu-allenolate intermediate (i.e., D, Scheme 3) is less likely in our system: firstly, it cannot explain the observed high Z-stereoselectivities with aliphatic substrates as iodination of **D** should favor the formation of E- α -haloenones due to sterics; secondly, this approach cannot explain the observed formation of acetoxyallenes during the reaction (e.g., in the case of **3e**).

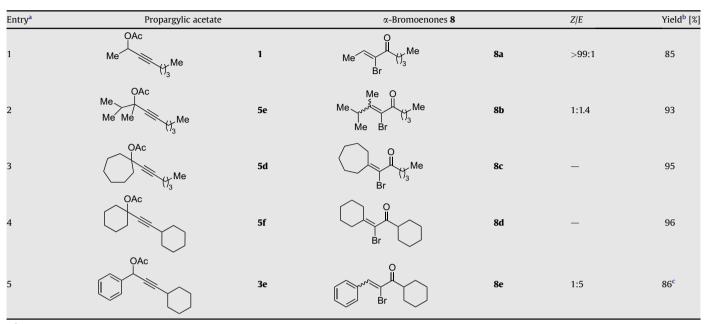
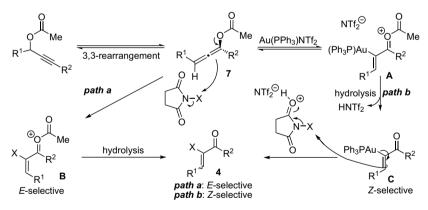
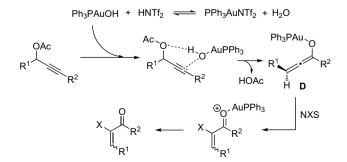

8

Table 4

Reaction scope for the formation of α -bromoenones

 R^1




^a Substrate concentration is 0.05 M.

^b Isolated yield.

^c AgNTf₂ (10 mol %) was added.

Scheme 2. Proposed reaction mechanism.

Scheme 3. Further mechanistic considerations.

In summary, we have developed an efficient synthesis of linear α -haloenones from readily accessible propargylic acetates. This reaction not only has broad substrate scopes but also offers good to excellent *Z*-selectivities in the case of aliphatic propargylic acetates derived from aldehydes. The low catalyst loading (2 mol %), mostly excellent yields (75–99%), and mild reaction conditions (0 °C and 2 h) are additional features that promise this reaction as a highly useful method for practical α -haloenone preparation.

3. Experimental

3.1. General information

Anhydrous acetone was purchased from Acros Organics and used without further purification. Anhydrous tetrahydrofuran in Pure-Pac[™] from Aldrich was used directly without further purification. Flash column chromatography was performed over silicycle silica gel (230–400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Varian 500 MHz Unity plus spectrometer and a Varian 400 MHz spectrometer using residue solvent peaks as internal standards. Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Waters micromass ZQ detector using electron spray method.

3.2. General procedure A: preparation of propargylic acetates

To a solution of a terminal alkyne (11 mmol) in anhydrous THF (42 mL) at -78 °C under N₂ was added *n*-BuLi (2.5 M solution in hexanes, 4.2 mL, 10.5 mmol). The reaction mixture was stirred at the same temperature for 15 min before the addition of a ketone/ aldehyde (10 mmol). The resulting mixture was allowed to warm to 0 °C gradually and stirred for an additional hour. Upon the addition of acetic anhydride (2.4 mL, 25 mmol), the reaction mixture was warmed to room temperature and stirred for 2 h before quenched with aqueous NaHCO₃. The mixture was extracted with Et₂O (3×30 mL), and the combined organic phases were washed with water and brine, dried with anhydrous MgSO₄, and filtered. The filtrate was concentrated, and the residue was purified through silica gel flash column chromatography (hexanes/ethyl acetate=20:1) to yield the desired acetate.

3.2.1. 1-Methylhept-2-ynyl acetate (1)

Yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ 5.44 (qt, 1H, *J*=6.8, 2.0 Hz), 2.20 (td, 2H, *J*=7.0, 2.0 Hz), 2.06 (s, 3H), 1.53–1.34 (m, 7H), 0.91 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 85.6, 78.6, 60.9, 30.6, 21.9, 21.8, 21.2, 18.4, 13.6; IR (neat): 2989, 2960, 2937, 2874, 2249, 1744, 1467, 1453, 1371; MS (ES⁺) calculated for [C₁₀H₁₆NaO₂]⁺: 191.1; found: 191.0.

3.2.2. 3-Cyclohexyl-1-methylprop-2-ynyl acetate (3a)

Yield: 83%. ¹H NMR (500 MHz, CDCl₃) δ 5.47 (qt, 1H, *J*=6.5, 2.0 Hz), 2.40–2.36 (m, 1H), 2.07 (s, 3H), 1.79–1.67 (m, 4H), 1.50–1.39 (m, 7H), 1.32–1.27 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 89.5, 78.5, 60.9, 32.4, 28.9, 25.8, 24.8, 21.9, 21.2; IR (neat): 2988, 2933, 2856, 2244, 1741, 1592, 1450, 1317, 1340, 1309, 1224, 1170, 1592, 1450; MS (ES⁺) calculated for [C₁₂H₁₈NaO₂]⁺: 217.3; found: 217.2.

3.2.3. 1-Butylhept-2-ynyl acetate (3b)

Yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ 5.35 (t, 1H, *J*=6.5 Hz), 2.21 (td, 2H, *J*=7.0, 1.7 Hz), 2.07 (s, 3H), 1.77–1.69 (m, 2H), 1.49 (quintet, 2H, *J*=7.2 Hz), 1.43–1.31 (m, 6H), 0.93–0.89 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 86.1, 77.6, 64.6, 34.8, 30.6, 27.2, 22.2, 21.9, 21.2, 18.4, 13.9, 13.6; IR (neat): 2959, 2935, 2871, 2864, 2242, 1743, 1468, 1433, 1371, 1351, 1234, 1161, 1108, 1019, 959; MS (ES⁺) calculated for [C₁₃H₂₂NaO₂]⁺: 233.3; found: 233.3.

3.2.4. 1-Cyclohexylhept-2-ynyl acetate (3c)

Yield: 84%. ¹H NMR (500 MHz, CDCl₃) δ 5.20 (d, 1H, *J*=6.0 Hz), 2.21 (t, 2H, *J*=7.0 Hz), 2.07 (s, 3H), 1.84–1.58 (m, 5H), 1.49 (quintet, 2H, *J*=7.2 Hz), 1.39 (sextet, 2H, *J*=7.2 Hz), 1.27–1.03 (m, 6H), 0.90 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 86.8, 76.4, 68.8, 42.0, 30.6, 28.6, 28.0, 26.2, 25.8, 25.7, 21.9, 21.1, 18.4, 13.6; IR (neat): 2960, 2931, 2856, 2239, 1742, 1593, 1452, 1432, 1370, 1231, 1119, 1018, 977; MS (ES⁺) calculated for [C₁₅H₂₄NaO₂]⁺: 259.4; found: 259.2.

3.2.5. 1-Methyl-3-phenylprop-2-ynyl acetate (3d)

Yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 2H), 7.33–7.27 (m, 3H), 5.67 (q, 1H, *J*=6.6 Hz), 2.11 (s, 3H), 1.58 (d, 3H, *J*=6.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 131.8, 128.6, 128.2, 122.2, 87.4, 84.5, 60.8, 21.5, 21.1; IR (neat): 3058, 2990, 2939, 2247,

1743, 1599, 1491, 1444, 1372; MS (ES⁺) calculated for $[C_{12}H_{12}NaO_2]^+$: 211.1; found: 210.9.

3.2.6. 3-Cyclohexyl-1-phenylprop-2-ynyl acetate (3e)

Yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.51 (m, 2H), 7.39–7.31 (m, 3H), 6.49 (d, 1H, *J*=2.0 Hz), 2.49–2.44 (m, 1H), 2.09 (s, 3H), 1.82–1.79 (m, 2H), 1.73–1.66 (m, 2H), 1.54–1.43 (m, 3H), 1.36–1.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 137.8, 128.7, 128.5, 127.7, 92.3, 76.6, 66.0, 32.37, 32.35, 29.1, 25.8, 24.8, 21.2; IR (neat): 3090, 3066, 3035, 2932, 2855, 2236, 1742, 1604, 1588, 1495, 1450, 1369; MS (ES⁺) calculated for [C₁₇H₂₀NaO₂]⁺: 279.1; found: 279.1.

3.2.7. 1-(4-Methoxyphenyl)hept-2-ynyl acetate (3f)

Yield: 87%. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, 2H, *J*=8.5 Hz), 6.89 (d, 2H, *J*=8.5 Hz), 6.42 (s, 1H), 3.81 (s, 3H), 2.27 (t, 2H, *J*=7.0 Hz), 2.07 (s, 3H), 1.52 (quintet, 2H, *J*=7.2 Hz), 1.41 (sextet, 2H, *J*=7.2 Hz), 0.91 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 159.9, 129.9, 129.3, 113.8, 88.1, 76.8, 65.8, 55.3, 30.5, 21.9, 21.2, 18.5, 13.6; IR (neat): 3072, 3037, 3003, 2959, 2935, 2873, 2838, 2292, 2234, 1741, 1611, 1587, 1514, 1465, 1443, 1428, 1369, 1343, 1305, 1279, 1251, 1229, 1175, 1144, 1110, 1034, 1015, 952, 909, 832; MS (ES⁺) calculated for [C₁₆H₂₀NaO₃]⁺: 283.3; found: 283.2.

3.2.8. 1-(4-Trifluoromethylphenyl)hept-2-ynyl acetate (3g)

Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 6.48 (t, 1H, *J*=2.0 Hz), 2.27 (td, 2H, *J*=7.2, 2.4 Hz), 2.11 (s, 3H), 1.52 (quintet, 2H, *J*=7.2 Hz), 1.40 (sextet, 2H, *J*=7.2 Hz), 0.91 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 141.5, 130.8 (q, *J*_{C-F}=32 Hz), 127.9, 125.6 (q, *J*_{C-F}=3.7 Hz), 123.9 (q, *J*_{C-F}=270.0 Hz), 89.2, 76.0, 65.3, 30.4, 21.9, 21.0, 18.5, 13.5; IR (neat): 3067, 2962, 2935, 2876, 2295, 2236, 1928, 1746, 1622, 1590, 1468, 1422, 1371, 1327, 1227, 1168, 1129, 1109, 1068, 1018, 959, 922, 850, 836; MS (ES⁺) calculated for [C₁₆H₁₇NaO₂]⁺: 321.3; found: 321.2.

3.2.9. 1,1-Dimethylhept-2-ynyl acetate (5a)

Yield: 74%. ¹H NMR (500 MHz, CDCl₃) δ 2.20 (t, 2H, *J*=7.0 Hz), 2.01 (s, 3H), 1.64 (s, 6H), 1.48 (p, 2H, *J*=7.6 Hz), 1.39 (sextet, 2H, *J*=7.6 Hz), 0.90 (t, 3H, *J*=7.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 84.6, 81.3, 72.6, 30.6, 29.3, 22.1, 21.9, 18.4, 13.6; IR (neat): 2987, 2960, 2936, 2875, 2245, 1747, 1586, 1468, 1434, 1368, 1329, 1266, 1245, 1196, 1016, 953, 822; MS (ES⁺) calculated for [C₁₁H₁₈NaO₂]⁺: 205.1; found: 205.1.

3.2.10. 1-Hex-1-ynylcyclopentyl acetate (5b)

Yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 2.22–2.15 (m, 4H), 2.12– 2.04 (m, 2H), 2.02 (s, 3H), 1.74–1.70 (m, 4H), 1.50–1.44 (m, 2H), 1.43– 1.35 (m, 2H), 0.90 (t, 3H, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 85.3, 81.0, 80.5, 40.5, 30.7, 23.2, 21.9, 18.5, 13.6; IR (neat): 2960, 2933, 2875, 2246, 1746, 1593, 1453, 1435, 1367, 1334, 1241, 1124, 1016, 970; MS (ES⁺) calculated for [C₁₃H₂₀NaO₂]⁺: 231.1; found: 231.1.

3.2.11. 1-Hex-1-ynylcyclohexyl acetate (5c)

Yield: 84%. ¹H NMR (400 MHz, CDCl₃) δ 2.254 (t, 2H, *J*=7.2 Hz), 2.11–2.06 (m, 2H), 2.03 (s, 3H), 1.84–1.77 (m, 2H), 1.63–1.29 (m, 10H), 0.91 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 86.8, 80.0, 76.1, 37.4, 30.8, 25.3, 22.7, 22.1, 21.9, 18.5, 13.6; IR (neat): 2936, 2861, 2244, 1746, 1600, 1447, 1431, 1367, 1301, 1264, 1230, 1184, 1131, 1034, 1020, 965; MS (ES⁺) calculated for [C₁₄H₂₂NaO₂]⁺: 245.2; found: 245.1.

3.2.12. 1-Hex-1-ynylcycloheptyl acetate (5d)

Yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 2.24–2.17 (m, 4H), 2.06–2.04 (m, 2H), 2.01 (s, 3H), 1.57–1.37 (m, 12H), 0.90 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 86.0, 81, 2, 79.5, 40.5, 30.7, 28.2, 22.2, 21.9, 18.5, 13.6; IR (neat): 2936, 2861, 2244, 1746, 1600, 1447, 1431, 1367, 1301, 1264, 1230, 1184, 1131, 1034, 1020, 965; MS (ES⁺) calculated for [C₁₅H₂₄NaO₂]⁺: 257.2; found: 259.2.

3.2.13. 1-Isopropyl-1-methylhept-2-ynyl acetate (5e)

Yield: 80%. ¹H NMR (400 MHz, CDCl₃) δ 2.23 (t, 2H, *J*=7.2 Hz), 2.16 (heptet, 1H, *J*=6.6 Hz), 2.01 (s, 3H), 1.61 (s, 3H), 1.53–1.43 (m, 2H), 1.42–1.37 (m, 2H), 1.01 (d, 3H, *J*=6.6 Hz), 0.97 (d, 3H, *J*=6.6 Hz), 0.90 (t, 3H, *J*=7.2 Hz); ¹³C NMR δ (100 MHz, CDCl₃) δ 169.4, 86.2, 79.6, 79.2, 37.4, 30.8, 23.5, 22.1, 21.9, 18.4, 17.5, 17.2, 13.6; IR (neat): 2965, 2936, 2876, 2244, 1746, 1559, 1458, 1436, 1371, 1336, 1243, 1129, 1060, 1014, 942; MS (ES⁺) calculated for [C₁₃H₂₂NaO₂]⁺: 233.2; found: 233.2.

3.2.14. 1-Cyclohexylethynylcyclohexyl acetate (5f)

Yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ 2.47–2.43 (m, 1H), 2.13–2.08 (m, 2H), 2.02 (s, 3H), 1.82–1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 91.0, 80.2, 76.2, 37.5, 32.6, 28.9, 26.0, 25.3, 24.6, 22.9, 22.2; IR (neat): 2933, 2857, 2663, 2237, 1746, 1615, 1447, 1367, 1229, 1184, 1022; MS (ES⁺) calculated for [C₁₆H₂₄NaO₂]⁺: 271.2; found: 271.1.

3.2.15. 1-Phenylethynylcyclohexyl acetate (5g)

Yield: 88%. ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.44 (m, 2H), 7.29– 7.28 (m, 3H), 2.24–2.19 (m, 2H), 2.07 (s, 3H), 1.93–1.88 (m, 2H), 1.70– 1.65 (m, 4H), 1.59–1.53 (m, 1H), 1.39–1.33 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 131.8, 128.2, 128.1, 122.8, 89.1, 86.2, 75.9, 37.1, 25.2, 22.7, 22.0; IR (neat): 3082, 3057, 3035, 3023, 2937, 2861, 2667, 2229, 2203, 1743, 1675, 1599, 1573, 1491, 1444, 1367, 1346, 1312, 1264, 1229, 1163, 1138, 1071, 1041, 1022, 959; MS (ES⁺) calculated for [C₁₆H₁₈NaO₂]⁺: 265.3; found: 265.2.

3.3. General procedure for propargylic acetates 3h and 3i

A solution of 1-hexyne (1.30 g, 15.8 mmol) in THF (50 ml) was cooled to -78 °C in a dry ice-acetone bath under nitrogen, and *n*-BuLi (1.6 M in hexanes, 9.17 mL, 14.64 mmol) was added dropwise in 15 min. After addition, a solution of 4-(*tert*-butyldimethylsilyloxy)propionaldehyde (for **3h**, 2.3 g, 12.2 mmol) or 4-(*tert*-butyldimethylsilyloxy)butyraldehyde (for **3i**, 2.5 g, 12.2 mmol) in THF (10 mL) was added dropwise, the resulting reaction mixture was allowed to warm to room temperature gradually. The reaction was quenched by the addition of saturated NH₄Cl (30 mL). The aqueous layer was extracted with Et₂O (3×50 mL). The combined organic layer was washed with brine (100 mL), dried with anhydrous MgSO₄, filtered, and concentrated to give an oil. The desired alcohol was obtained as a clear liquid via bulb-to-bulb distillation (~50% yield in two steps).

To a solution of the above alcohol (1 mmol) in THF (5 mL) was added TBAF (1 M in THF, 1 mL). The resulting mixture was stirred at room temperature for 2 h. The reaction mixture was cooled down in an ice-water bath, and Et₃N (0.3 mL, 3 mmol) and DMAP (cat.) were added followed by dropwise addition of CH₃COCl (0.18 mL, 2.5 mmol). The resulting mixture was allowed to rise to room temperature and stirred for 4 h. The reaction was quenched by the addition of water (20 mL). The organic layer was extracted with Et₂O (3×15 mL). The combined organic layer was washed with brine (50 mL), dried with MgSO₄, filtered, and concentrated to give an oily residue, which was purified by flash column chromatography to give diacetate **3h** or **3i**.

3.3.1. 3-Acetoxynon-4-ynyl acetate (**3h**)

Yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 5.47 (tt, 1H, *J*=6.8, 2.0 Hz), 4.25–4.15 (m, 2H), 2.20 (td, 2H, *J*=6.8, 2.0 Hz), 2.13–2.03 (m, 8H), 1.51–1.45 (m, 2H), 1.41–1.36 (m, 2H), 0.90 (t, 3H, *J*=6.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.0, 87.0, 76.5, 61.5, 60.4, 34.1, 30.4, 21.9, 21.0, 20.9, 18.3, 13.5; IR (neat): 2960, 2936, 2874, 2247, 1744, 1592, 1459, 1432, 1370, 1232, 1159, 1045, 960; MS (ES⁺) calculated for [C₁₃H₂₀NaO₄]⁺: 263.1; found: 263.2.

3.3.2. 4-Acetoxydec-5-ynyl acetate (3i)

Yield: 80%. ¹H NMR (400 MHz, CDCl₃) δ 5.40–5.38 (m, 1H), 4.10 (t, 2H, *J*=4.8 Hz), 2.21 (t, 2H, *J*=6.8 Hz), 2.08 (s, 3H), 2.06 (s, 3H), 1.83–1.74 (m, 4H), 1.48 (sextet, 2H, *J*=8 Hz), 1.39 (sextet, 2H, *J*=8 Hz), 0.91 (t, 3H, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.0, 86.7, 64.0, 63.9, 31.7, 30.5, 24.3, 21.9, 21.1, 21.0, 18.4, 13.6; IR (neat): 3308, 2960, 2935, 2337, 1741, 1592, 1430, 1370, 1232, 1023; MS (ES⁺) calculated for [C₁₄H₂₂NaO₄]⁺: 277.1; found: 277.2.

3.4. Au(I)-catalyzed formation of α-haloenones

To a solution of propargylic acetate **3** or **5** (0.2 mmol) in anhydrous acetone (4 mL) cooled in ice-water bath were added H₂O (0.005 ml, 1.39 equiv) and Au(PPh₃)NTf₂ (0.05 M in acetone, 0.08 mL). The solution was treated with NIS (0.24 mmol, 1.2 equiv) or NBS (0.22 mmol, 1.1 equiv). The reaction mixture was stirred for 2 h before quenched with NEt₃ (one drop) and aqueous Na₂S₂O₃ (5 mL). The mixture was extracted with Et₂O (3×8 mL). The combined organic phases were washed with H₂O (10 mL) and brine (10 mL), dried with anhydrous MgSO₄, and filtered. The filtrate was concentrated, and the residue was purified through silica gel flash column chromatography (hexanes/ethyl acetate=50:1) to yield the desired α -haloenone.

3.4.1. 3-Iodooct-2-en-4-one (2)

Yield: 89%. Z/E=45:1. ¹H NMR (400 MHz, CDCl₃) (major isomer) δ 7.11 (q, 1H, J=6.8 Hz), 2.81 (t, 2H, J=7.6 Hz), 2.07 (d, 3H, J=6.8 Hz), 1.63 (quintet, 2H, J=7.6 Hz), 1.34 (sextet, 2H, J=7.6 Hz), 0.92 (t, 3H, J=7.6 Hz); ¹³C NMR (125 MHz, CDCl₃) (major isomer) δ 194.9, 146.8, 114.3, 37.5, 30.3, 27.1, 23.9, 22.3, 13.8; IR (neat): 2958, 2932, 2871, 1702, 1683, 1611, 1464, 1413, 1373, 1288, 1262, 1238, 1288, 1262, 1238, 1171, 1113, 1072; MS (ES⁺) calculated for [C₈H₁₃NaIO]⁺: 275.0; found: 275.0.

3.4.2. 1-Cyclohexyl-2-iodobut-2-en-1-one (4a)

Yield: 82%. *Z*/*E*=12:1. ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.08 (q, 1H, *J*=7.0 Hz), 3.14 (q, 1H, *J*=7.0 Hz), 2.08 (d, 3H, *J*=7.0 Hz), 1.80–1.78 (m, 4H), 1.48–1.22 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) (major isomer) δ 198.2, 146.1, 113.9, 45.4, 29.9, 25.8, 25.7, 24.0; IR (neat): 3019, 2932, 2855, 2664, 1678, 1611, 1463, 1450, 1372, 1287, 1264, 1241, 1188, 1163, 1131, 1109, 1081, 1071, 1030, 974, 895, 884, 824; MS (ES⁺) calculated for [C₁₀H₁₅NalO]⁺: 301.0; found: 300.9.

3.4.3. 6-Iodoundec-6-en-5-one (**4b**)

Yield: 94%. *Z*/*E*=10:1. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (t, 1H, *J*=6.8 Hz), 2.82 (t, 2H, *J*=7.2 Hz), 2.42 (q, 2H, *J*=7.6 Hz), 1.67–1.50 (m, 4H), 1.45–1.30 (m, 4H), 0.97–0.89 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 195.0, 151.2, 112.4, 37.7, 37.6, 29.7, 27.1, 22.4, 22.3, 13.8, 13.8; IR (neat): 3351, 2958, 2930, 2872, 2735, 1683, 1604, 1465, 1413, 1379, 1291, 1236, 1167, 1123, 1088, 934; MS (ES⁺) calculated for [C₁₁H₁₉INaO]⁺: 317.0; found: 317.0.

3.4.4. 1-Cyclohexyl-2-iodohept-1-en-3-one (4c)

Yield: 91%. *Z*/*E*=19:1. AgNTf₂ (10 mol %) was added together with Au(PPh₃)NTf₂ and a column basified with Et₃N was used for purification. ¹H NMR (500 MHz, CDCl₃) δ 6.74 (d, 1H, *J*=9 Hz), 2.80 (t, 2H, *J*=15 Hz), 2.60–2.52 (m, 1H), 1.82–1.68 (m, 5H), 1.60 (quintet, 2H, *J*=7.5 Hz), 1.41–1.31 (m, 4H), 1.27–1.20 (m, 3H), 1.92 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 155.7, 109.9, 46.8, 37.6, 30.7, 27.2, 25.7, 25.2, 22.3, 13.8; IR (neat): 3351, 2928, 2852, 2662, 2351, 1683, 1601, 1448, 1278, 1224, 1169, 1128, 1089, 968; MS (ES⁺) calculated for [C₁₃H₂₁INaO]⁺: 343.1; found: 343.0.

3.4.5. 2-Iodo-1-phenylbut-2-en-1-one (**4d**)

Yield: 75%. Z/E=1.2:1. Compound Z-4d: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, 2H, J=8 Hz), 7.55 (t, 2H, J=8 Hz), 7.44 (t, 2H,

J=8 Hz), 6.73 (q, 1H, *J*=8 Hz), 2.09 (d, 3H, *J*=8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 191.9, 149.7, 135.8, 132.4, 129.6, 128.4, 110.5, 23.6; IR (neat): 3297, 3059, 2924, 2851, 2356, 1993, 1658, 1606, 1577, 1446, 1371, 1314, 1260, 1179, 1120, 1060, 1025, 965; MS (ES⁺) calculated for [C₁₀H₉INaO]⁺: 295.0; found: 295.0. Compound *E*-**4d**: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, 2H, *J*=8 Hz), 7.61 (t, 2H, *J*=8 Hz), 7.49 (t, 2H, *J*=8 Hz), 6.67 (q, 1H, *J*=8 Hz), 1.67 (d, 3H, *J*=8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 192.7, 140.8, 134.0, 133.6, 129.9, 128.9, 90.4, 18.7; IR (neat): 3053, 2916, 2850, 2347, 1666, 1596, 1448, 1329, 1227, 1174, 1115, 1012; MS (ES⁺) calculated for [C₁₀H₉INaO]⁺: 295.0; found: 295.0.

3.4.6. 1-Cyclohexyl-2-iodo-3-phenylpropenone (4e)

Yield: 97%. Z/E=1:2. Compound Z-4e: ¹H NMR (500 MHz, CDCl₃) § 7.96 (s, 1H), 7.75–7.70 (m, 2H), 7.46–7.43 (m, 3H), 3.33 (tt, 1H, J=11.5, 3 Hz), 1.92-1.83 (m, 4H), 1.74-1.72 (m, 1H), 1.54-1.46 (m, 2H), 1.42–1.23 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.5, 145.6, 135.9, 130.0, 129.5, 128.3, 107.2, 45.6, 30.0, 25.8; IR (neat): 3334, 3057, 3023, 2930, 2853, 2662, 1674, 1591, 1491, 1445, 1366, 1262, 1186, 1150, 1112, 1013, 925; MS (ES⁺) calculated for [C₁₅H₁₇INaO]⁺: 363.0; found: 362.9. Compound *E*-4e: ¹H NMR (500 MHz, CDCl₃) & 7.46 (s, 1H), 7.32-7.31 (m, 3H), 7.19-7.17 (m, 2H), 2.47 (tt, 1H, J=11, 3.5 Hz), 1.82 (d, 2H, J=11.5 Hz), 1.68-1.54 (m, 2H), 1.58–1.54 (m, 1H), 1.39–1.32 (m, 2H), 1.16–1.02 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 206.3, 143.0, 136.7, 129.0, 129.6, 128.1, 96.3, 49.5, 29.5, 25.6, 25.6; IR (neat): 3352, 3057, 3024, 2930, 2853, 2662, 1687, 1598, 1572, 1494, 1448, 1366, 1312, 1289, 1236, 1141, 1071, 1007, 926, 814; MS (ES⁺) calculated for [C₁₅H₁₇INaO]⁺: 363.0; found: 362.9.

3.4.7. 2-Iodo-1-(4-methoxyphenyl)hept-1-en-3-one (4f)

Yield: 84%. Z/E=1.05:1. Compound Z-4f: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.90 (d, 2H, J=8.8 Hz), 6.98 (d, 2H, J=8.8 Hz), 3.87 (s, 3H), 2.97 (t, 2H, J=8 Hz), 1.70 (quintet, 2H, J=7.2 Hz), 1.39 (sextet, 2H, J=7.6 Hz), 0.95 (t, 3H, J=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) § 195.9, 161.4, 146.1, 132.0, 127.6, 113.8, 104.6, 55.4, 37.8, 27.4, 22.4, 13.9; IR (neat): 3003, 2957, 2932, 2871, 2838, 1674, 1604, 1587, 1568, 1509, 1463, 1255, 1148, 1029, 826; MS (ES⁺) calculated for [C₁₄H₁₇INaO₂]⁺: 367.0; found: 366.9. Compound E-**4f**: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.13 (d, 2H, J=8.8 Hz), 6.84 (d, 2H, J=8.8 Hz), 3.81 (s, 3H), 2.54 (t, 2H, J=7.6 Hz), 1.56 (quintet, 2H, J=7.2 Hz), 1.24 (sextet, 2H, J=7.6 Hz), 0.83 (t, 3H, J=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 203.9, 160.2, 142.6, 129.7, 129.2, 114.0, 94.7, 55.3, 40.2, 26.4, 22.1, 13.7; IR (neat): 3271, 2957, 2930, 2870, 1685, 1604, 1509, 1456, 1293, 1255, 1178, 1122, 1032; MS (ES⁺) calculated for [C₁₄H₁₇INaO₂]⁺: 267.0; found: 267.0.

3.4.8. 2-Iodo-1-(4-trifluoromethylphenyl)hept-1-en-3-one (4g)

Yield: 96%. Z/E=5:1. Compound Z-4g: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.81 (d, 2H, *J*=8.4 Hz), 7.70 (d, 2H, *J*=8.4 Hz), 2.99 (t, 2H, J=7.2 Hz), 1.71 (quintet, 2H, J=7.2 Hz), 1.40 (sextet, 2H, J=7.2 Hz), 0.96 (t, 3H, J=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 196.2, 144.8, 139.8, 131.6 (q, J_{C-F}=32.4 Hz), 129.8, 125.6 (q, J_{C-F}=3.72 Hz), 124.0 (q, J_{C-F}=270.8 Hz), 110.2, 38.4, 27.3, 22.5, 14.1; IR (neat): 3070, 2960, 2934, 2874, 1681, 1598, 1466, 1412, 1324, 1168, 1128, 1068, 1017, 885, 827; MS (ES⁺) calculated for [C₁₄H₁₄NaF₃IO]⁺: 405.0; found: 404.9. Compound E-4g: ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, 2H, J=8.4 Hz), 7.38 (s, 1H), 7.31 (d, 2H, J=8.4 Hz), 2.55 (t, 2H, J=7.2 Hz), 1.56 (quintet, 2H, J=7.2 Hz), 1.24 (sextet, 2H, J=7.2 Hz), 0.83 (t, 3H, J=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 203.0, 140.7, 139.5, 130.7 (q, J_{C-F}=32.4 Hz), 128.2, 125.7 (q, J_{C-F}=3.75 Hz), 123.8 (q, J_{C-F}=270.6 Hz), 99.68, 40.0, 26.0, 22.0, 13.7; IR (neat): 3070, 2960, 2923, 2870, 1699, 1597, 1459, 1421, 1324, 1168, 1126, 1068, 1017, 874, 830; MS (ES⁺) calculated for [C₁₄H₁₄NaF₃IO]⁺: 405.0; found: 404.9.

3.4.9. 4-Iodonona-1,3-dien-5-one (4h)

Yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, 1H, *J*=10 Hz), 6.78 (td, 1H, *J*=16.5, 10 Hz), 5.88 (d, 1H, *J*=17 Hz), 5.76 (d, 1H, *J*=10 Hz), 2.87 (t, 2H, *J*=7.5 Hz), 1.65 (quintet, 2H, *J*=7.5 Hz), 1.36 (sextet, 2H, *J*=7.5 Hz), 0.93 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 146.2, 139.3, 128.9, 110.6, 37.7, 27.1 22.3, 13.9; IR (neat): 3274, 2958, 2331, 1682, 1597, 1456, 1597, 1457, 1261, 1123, 1042. MS (ES⁺) calculated for [C₉H₁₃INaO]⁺: 286.9; found: 286.6.

3.4.10. 4-Iodo-5-oxonon-3-enyl acetate (4i)

Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (t, 1H, *J*=6.8 Hz), 4.13 (t, 2H, *J*=6.4 Hz), 2.82 (t, 2H, *J*=7.2 Hz), 2.50 (q, 2H, *J*=7.2 Hz), 2.07 (s, 3H), 1.90 (quintet, 2H, *J*=7.2 Hz), 1.63 (quintet, 2H, *J*=7.6 Hz), 1.35 (sextet, 2H, *J*=7.6 Hz), 0.93 (t, 3H, *J*=6.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 194.9, 171.0, 149.8, 113.0, 63.5, 37.7, 34.6, 27.1, 26.7, 22.3, 21.0, 13.8; IR (neat): 3271, 2958, 2872, 1738, 1683, 1604, 1456, 1366, 1241, 1159, 1118, 1044; MS (ES⁺) calculated for [C₁₂H₁₉INaO₃]⁺: 361.0; found: 360.9.

3.4.11. 3-Iodo-2-methyloct-2-en-4-one (6a)

Yield: 96%. ¹H NMR (400 MHz, CDCl₃) δ 2.81 (t, 2H, *J*=7.2 Hz), 2.03 (s, 3H), 1.96 (s, 3H), 1.61 (quintet, 2H, *J*=7.2 Hz), 1.35 (sextet, 2H, *J*=7.2 Hz), 0.93 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 202.3, 144.3, 95.5, 40.5, 30.3, 26.4, 22.3, 21.9, 13.8; IR (neat): 2958, 2932, 2873, 1688, 1601, 1464, 1441, 1406, 1380, 1368, 1258, 1238, 1155, 1105, 1044, 910, 842; MS (ES⁺) calculated for [C₉H₁₅NaIO]⁺: 289.0; found: 289.0.

3.4.12. 1-Cyclopentylidene-1-iodohexan-2-one (6b)

Yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 2.85 (t, 2H, *J*=7.2 Hz), 2.70 (tt, 2H, *J*=7.2, 1.2 Hz), 2.47 (tt, 2H, *J*=7.2, 1.2 Hz), 1.89 (quintet, 2H, *J*=7.2 Hz), 1.72 (quintet, 2H, *J*=7.2 Hz), 1.58 (quintet, 2H, *J*=7.2 Hz), 1.34 (sextet, 2H, *J*=7.2 Hz), 0.92 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 198.9, 166.4, 92.3, 44.4, 41.8, 36.1, 28.7, 26.9, 24.9, 22.3, 13.9; IR (neat): 2959, 2936, 2872, 1674, 1573, 1466, 1452, 1413, 1379, 1306, 1289, 1264, 1172, 1158, 1137, 1088, 911; MS (ES⁺) calculated for [C₁₁H₁₇NaIO]⁺: 315.0; found: 315.0.

3.4.13. 1-Cyclohexylidene-1-iodohexan-2-one (6c)

Yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ 2.79 (t, 2H, *J*=7.2 Hz), 2.41 (t, 2H, *J*=5.6 Hz), 2.33 (t, 2H, *J*=5.6 Hz), 1.66–1.50 (m, 8H), 1.35 (sextet, 2H, *J*=7.2 Hz), 0.93 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 202.5, 149.2, 92.4, 40.3, 39.6, 32.9, 28.0, 27.4, 26.3, 25.9, 22.3, 13.8; IR (neat): 2957, 2932, 2857, 1694, 1606, 1464, 1448, 1404, 1350, 1260, 1221, 1145, 1077, 1069, 984, 854; MS (ES⁺) calculated for [C₁₂H₁₉NaIO]⁺: 329.0; found: 329.0.

3.4.14. 1-Cycloheptylidene-1-iodohexan-2-one (6d)

Yield: 99%. ¹H NMR (400 MHz, CDCl₃) δ 2.80 (t, 2H, *J*=7.2 Hz), 2.47–2.42 (m, 4H), 1.69–1.49 (m, 10H), 1.35 (sextet, 2H, *J*=7.2 Hz), 0.93 (t, 3H, *J*=7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 202.4, 151.4, 96.1, 41.5, 40.4, 33.5, 29.2, 28.5, 28.0, 26.4, 26.1, 22.3, 13.8; IR (neat): 2956, 2927, 2857, 1688, 1599, 1464, 1457, 1404, 1351, 1266, 1160, 1132, 1081, 957, 909; MS (ES⁺) calculated for [C₁₃H₂₁NalO]⁺: 343.0; found: 343.0.

3.4.15. 4-Iodo-2,3-dimethylnon-3-en-5-one (6e)

Yield: 88%. *Z*/*E*=1:2.31. ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 2.83 (quintet, 1H, *J*=7.0 Hz), 2.79 (t, 2H, *J*=7.5 Hz), 1.88 (s, 3H), 1.61 (quintet, 2H, *J*=7.5 Hz), 1.35 (quintet, 2H, *J*=7.5 Hz), 1.02 (d, 6H, *J*=7.0 Hz), 0.93 (t, 3H, *J*=7.5 Hz); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 2.94 (quintet, 1H, *J*=7.0 Hz), 2.78 (t, 2H, *J*=7.5 Hz), 1.77 (s, 3H), 1.61 (quintet, 2H, *J*=7.5 Hz), 1.35 (quintet, 2H, *J*=7.5 Hz), 1.02 (d, 6H, *J*=7.0 Hz), 0.93 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) (major isomer) δ 202.5, 150.6, 95.9, 40.3, 39.8, 33.5, 26.3, 22.3, 21.0, 19.7, 13.8; ¹³C NMR (125 MHz, CDCl₃) (minor isomer)

 δ 202.7, 149.5, 93.9, 40.3, 39.8, 33.5, 26.3, 22.3, 21.6, 14.6, 13.8; IR (neat): 2962, 2932, 2872, 1695, 1620, 1615, 1464, 1404, 1385, 1363, 1342, 1225, 1151, 1101, 1062, 983, 900; MS (ES⁺) calculated for [C₁₁H₁₉NaIO]⁺: 317.1; found: 317.0.

3.4.16. 1-Cyclohexyl-2-cyclohexylidene-2-iodoethanone (6f)

Yield: 96%. ¹H NMR (500 MHz, CDCl₃) δ 3.03 (tt, 1H, *J*=11, 3.0 Hz), 2.42 (t, 2H, *J*=7.5 Hz), 2.30 (t, 2H, *J*=6 Hz), 1.92 (d, 2H, *J*=12.5 Hz), 1.80–1.77 (m, 2H), 1.69–1.50 (m, 7H), 1.41–1.10 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 204.9, 149.4, 91.8, 47.5, 39.6, 33.4, 28.8, 28.0, 27.4, 25.9, 25.8, 25.7; IR (neat): 3351, 2930, 2853, 2609, 1684, 1616, 1448, 1350, 1309, 1219, 1149, 1084, 982; MS (ES⁺) calculated for [C₁₄H₂₁INaO]⁺: 355.0; found: 355.0.

3.4.17. 2-Cyclohexylidene-2-iodo-1-phenylethanone (6g)

Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, 2H, *J*=8 Hz), 7.50 (t, 1H, *J*=7.6 Hz), 7.48 (t, 2H, *J*=7.6 Hz), 2.55 (t, 2H, *J*=6 Hz), 2.22 (t, 2H, *J*=6 Hz), 1.75–1.69 (m, 2H), 1.60–1.54 (m, 2H), 1.47–1.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.1, 149.6, 134.0, 133.7, 130.0, 128.7, 87.7, 38.9, 33.2, 27.5, 27.4, 25.8; IR (neat): 3308, 3061, 2932, 2854, 2668, 2201, 1966, 1908, 1817, 1777, 1664, 1632, 1596, 1579, 1448, 1311, 1221, 1173, 1022, 982, 824; MS (ES⁺) calculated for [C₁₄H₁₅INaO]⁺: 349.0; found: 349.0.

3.4.18. 3-Bromooct-2-en-4-one (8a)

Yield: 85%. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (q, 1H, *J*=7.0 Hz), 2.77 (t, 2H, *J*=7.5 Hz), 2.01 (d, 3H, *J*=7.0 Hz), 1.62 (quintet, 2H, *J*=7.5 Hz), 1.35 (sextet, 2H, *J*=7.5 Hz), 0.92 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 139.5, 128.9, 38.4, 26.7, 22.3, 18.2, 13.8; IR (neat): 3042, 2960, 2933, 2873, 1689, 1622, 1466, 1415, 1378, 1288, 1268, 1177, 1154, 1114, 1096, 1075, 972; MS (ES⁺) calculated for [C₈H₁₃NaBrO]⁺: 227.1; found: 227.0.

3.4.19. 4-Bromo-2,3-dimethylnon-3-en-5-one (8b)

Yield: 93%. *E*/*Z*=1.4:1. ¹H NMR (500 MHz, CDCl₃) (major isomer): δ 2.99 (septet, 1H, *J*=6.5 Hz), 2.75 (t, 2H, *J*=7.5 Hz), 1.84 (s, 3H), 1.60 (quintet, 2H, *J*=7.5 Hz), 1.35 (sextet, 2H, *J*=7.5 Hz), 1.03 (d, 6H, *J*=6.5 Hz), 0.92 (t, 3H, *J*=7.5 Hz); ¹H NMR (minor isomer): δ 3.16 (septet, 1H, *J*=7.0 Hz), 2.77 (t, 2H, *J*=7.5 Hz), 1.81 (s, 3H), 1.60 (quintet, 2H, *J*=7.5 Hz), 1.35 (sextet, 2H, *J*=7.5 Hz), 1.03 (d, 6H, *J*=7.0 Hz), 0.92 (t, 3H, *J*=7.5 Hz); ¹³C NMR (mixture of two isomers) (125 MHz, CDCl₃) δ 200.6, 200.5, 148.6, 116.8, 115.3, 41.2, 41.1, 35.1, 32.7, 26.4, 26.3, 22.3, 20.8, 19.5, 17.2, 15.1, 13.9, 13.8; IR (neat): 2962, 2933, 2873, 1690, 1594, 1464, 1407, 1363, 1256, 1232, 1159, 1102, 1061, 987; MS (ES⁺) calculated for [C₁₁H₁₉NaBrO]⁺: 269.1; found: 269.0.

3.4.20. 1-Bromo-1-cycloheptylidenehexan-2-one (8c)

Yield: 95%. ¹H NMR (500 MHz, CDCl₃) δ 2.77 (t, 2H, *J*=7.5 Hz), 2.49 (q, 4H, *J*=6.5 Hz), 1.70–1.65 (m, 4H), 1.60 (quintet, 2H, *J*=7.5 Hz), 1.56–1.51 (m, 4H), 1.35 (sextet, 2H, *J*=7.5 Hz), 0.92 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 200.1, 150.6, 117.4, 41.2, 37.4, 33.6, 29.1, 28.6, 27.8, 26.4, 25.7, 22.3, 13.9; IR (neat): 2928, 2953, 2858, 2678, 1703, 1688, 1683, 1584, 1464, 1455, 1405, 1379, 1350, 1267, 1244, 1163, 1134, 1084, 1049, 980, 958, 920; MS (ES⁺) calculated for [C₁₃H₂₁NaBrO]⁺: 295.1; found: 295.0.

3.4.21. 2-Bromo-1-cyclohexyl-2-cyclohexylideneethanone (8d)

Yield: 96%. ¹H NMR (500 MHz, CDCl₃) δ 3.00 (tt, 1H, *J*=11.0, 3.5 Hz), 2.43 (t, 2H, *J*=6.0 Hz), 2.28 (t, 2H, *J*=5.5 Hz), 1.91–1.88 (m, 2H), 1.79–1.77 (m, 2H), 1.68–1.56 (m, 6H), 1.38–1.18 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 145.9, 112.7, 47.5, 34.4, 32.7, 28.5, 27.9, 27.2, 26.0, 25.8, 25.7; IR (neat): 2931, 2854, 2667, 1689, 1608, 1449, 1365, 1310, 1269, 1242, 1225, 1151, 1120, 1087, 1070, 1045, 1016, 983; MS (ES⁺) calculated for [C₁₄H₂₁NaBrO]⁺: 307.1; found: 307.2.

3.4.22. 2-Bromo-1-cyclohexyl-3-phenylpropenone (8e)

Yield: 93%. *Z*/*E*=1:6. Compound *E*-**8e**: ¹H NMR (500 MHz, CDCl₃) δ 7.26–7.25 (m, 3H), 7.19 (s, 1H), 7.14–7.13 (m, 2H), 2.45 (tt, 1H, *J*=11.5, 3.5 Hz), 1.77–1.75 (m, 2H), 1.64–1.61 (m, 2H), 1.31–1.22 (m, 4H), 1.08–0.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 138.8, 135.9, 130.4, 128.7, 128.2, 119.7, 49.4, 28.7, 25.7, 25.5; IR (neat): 3059, 3026, 2931, 2854, 1695, 1602, 1575, 1447, 1144, 928, 754, 697; MS (ES⁺) calculated for [C₁₅H₁₇NaBrO]⁺: 315.1; found: 315.0.

3.5. Preparation of [(Ph₃PAu)₃O]⁺NTf₂⁻

To a solution of Ph₃PAuNTf₂ (74 mg, 0.1 mmol) in methanol (10 mL) at room temperature under nitrogen was added KOH (10 mg, 0.178 mol) and NaNTf₂ (137 mg, 0.455 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was concentrated and the residue was extracted with chloroform (3 mL×2). After filtration, hexane (20 mL) was added to the filtrate. The precipitation was collected by filtration, washed with hexanes (10 mL), and dried under vacuum to afford the desired Au complex (46 mg, yield 88%). ¹H NMR (500 MHz, CDCl₃) δ 7.55–7.51 (m, 9H), 7.48–7.44 (m, 18H), 7.37–7.34 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 133.9 (d, ³*J* (¹³C-³¹P)=13.4 Hz), 132.3 (d, ⁴*J* (¹³C-³¹P)=2.9 Hz), 129.4 (d, ²*J* (¹³C-³¹P)=11.6 Hz), 128.3 (d, ¹*J* $({}^{13}C-{}^{31}P)=63.5$ Hz), 120.3(q, J (${}^{13}C-{}^{19}F)=319.8$ Hz); IR (neat): 3055, 2306, (ES^+) 2988 1422, 1265; calculated for $[(Ph_3PAu)_3O]^+[C_{54}H_{45}Au_3OP_3]^+: 1393.2, found: 1392, 1409; {}^{31}P NMR (161.9 MHz, CDCl_3) \delta 24.5; {}^{19}F NMR (376.2 MHz, CDCl_3) \delta 81.4.$

Acknowledgements

This work is supported in part by NSF CAREER award (CHE-0748484), ACS PRF (43905-G1), ORAU and Merck. The acquisition of an NMR spectrometer and upgrade of an existing NMR spectrometer are funded by NSF CHE-0521191.

References and notes

- 1. For review, see: Negishi, E. J. Organomet. Chem. 1999, 576, 179-194.
- 2. Kim, K.-M.; Park, I.-H. Synthesis 2004, 2641-2644 and reference therein.
- (a) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M. R. *Tetrahedron Lett.* **1992**, *33*, 917–918; (b) Sha, C. K.; Huang, S. J. *Tetrahedron Lett.* **1995**, *36*, 6927–6928; (c) Djuardi, E.; Bovonsombat, P.; Nelis, E. M. Synth. Commun. **1997**, *27*, 2497–2503.
- 4. Krafft, M. E.; Cran, J. W. Synlett 2005, 1263-1266.
- 5. Ref. 4 examined cases of linear enones using a combination of I_2 and DMAP. However, only methyl group at the β -position was shown to lead to good results. Indeed, in our hands oct-6-en-5-one reacted very sluggishly with only 30% conversion in 2 days.
- 6. Alimardanov, A.; Negishi, E. Tetrahedron Lett. 1999, 40, 3839–3842.
- Bellina, F.; Carpita, A.; Ciucci, D.; Desantis, M.; Rossi, R. Tetrahedron 1993, 49, 4677–4698.
- (a) Bovonsombat, P.; McNelis, E. Tetrahedron Lett. **1993**, 34, 8205–8208; (b) Angara, G. J.; McNelis, E. Tetrahedron Lett. **1991**, 32, 2099–2100.
- For selected reviews on Au/Pt catalysis, see: (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211; (b) Fürstner, A.; Davis, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–3449; (c) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403; (d) Patil, N. T.; Yamamoto, Y. Arkivoc 2007, v. 6–19; (e) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750–2752; (f) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333–346; (g) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271–2296; (h) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200–203; (i) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555–4563; (j) Li, Z. G.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265; (k) Arcadi, A. Chem. Rev. 2008, 108, 3266–3325.
- For selected examples, see: (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505–8513; (b) Mamane, V.; Gress, T.; Krause, H.; Füstner, A. J. Am. Chem. Soc. 2004, 126, 8654–8655; (c) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802–5803; (d) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002–18003.
- 11. For the original study, see: Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804-16805.
- For a computation study on Au catalyzed-transformations of propargylic esters, see: Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew. Chem., Int. Ed. 2008, 47, 718–721.
- (a) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442–1443; (b) Wang, S. Z.; Zhang, L. M. J. Am. Chem. Soc. 2006, 128, 8414–8415; (c) Wang, S. Z.; Zhang, L. M. Org. Lett. 2006, 8, 4585–4587; (d) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth.

Catal. 2007, 349, 871–875; For a related study using PtCl₂ as catalyst, see: (e) Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358-11359.

- 14 Nolan proposed a different mechanism in their study of enone formation from propargylic acetates. For reference, see: Marion, N.; Carlqvist, P.; Gealageas, R.; de Fremont, P.; Maseras, F.; Nolan, S. P. Chem.-Eur. J. 2007, 13, 6437-6451.
- 15. For selected later studies from other groups involving Au-catalyzed 3,3-rearrangement and/or further activation of the carboxyallene intermediates, see: (a) Zhao, I.: Hughes, C. O.: Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436-7437; (b) Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647-3650; (c) Buzas, A.; Gagosz, F. J. Am. *Chem. Soc.* **2006**, 128, 12614–12615; (d) Buzas, A.; Istrate, F. M.; Gagosz, F. Org. Lett. 2006, 8, 1957–1959; (e) Oh, C. H.; Kim, A.; Park, W.; Park, D. I.; Kim, N. Synlett 2006, 2781–2784; (f) Oh, C. H.; Kim, A. New J. Chem. 2007, 31, 1719– 1721; (g) Yeom, H. S.; Yoon, S. J.; Shin, S. Tetrahedron Lett. **2007**, 48, 4817–4820; (h) Luo, T.; Schreiber, S. L. Angew. Chem., Int. Ed. **2007**, 46, 8250-8253; (i) Sakaguchi, K.; Okada, T.; Shinada, T.; Ohfune, Y. Tetrahedron Lett. 2008, 49, 25-28.
- 16. For selected examples of Au–C bond nucleophilicity, see: (a) Wei, L.: Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584-9585; (b) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. **2000**, 122, 11553–11554; (c) Shi, Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964–5965; (d) Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062-12063; (e) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 14274-14275; (f) Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515-518; (g) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814–1815; (h) Zhang, G. Z.; Zhang, L. M. J. Am. Chem. Soc. 2008, 130, 12598-12599.
- 17. Alternative to the Au–C(sp²) bond attacking electrophiles directly, electrophilic reaction with the C-C double bond followed by facile elimination of Au is possible. For examples with such proposed mechanism, see: (a) Nakamura, I.;

Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473-4475. (b) Jimenez-Nunez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 5452-5455.

- A part of this work was previously communicated. For reference, see: Yu, M.; Zhang, G.; Zhang, L. Org. Lett. **2007**, 9, 2147–2150. Iodination of Au–C(sp²) bond generated via other methods by NIS is known
- although only a few examples have been reported. For selected references, see: (a) Buzas, A.; Gagosz, F. Synlett **2006**, 2727–2730; (b) Kirsch, S. F.; Binder, J. T.; Crone, B.: Duschek, A.: Haug, T. T.: Litbert, C.: Menz, H. Angew, Chem., Int. Ed. **2007**, 46, 2310–2313; (c) Crone, B.; Kirsch, S. F. J. Org. Chem. **2007**, 72, 5435–5438. 20
- Mezailles, N.: Ricard, L.: Gagosz, F. Org. Lett. 2005, 7, 4133-4136. Indeed, precipitates, presumably AgI, were observed during the reaction. Without the addition of AgNTf₂, no precipitate forms.
- 22 The stereoisomers of **6e** are inseparable, and the assignment of ¹H NMR signals to the stereoisomers is based on the observation that the Z-isomers in other cases consistently have chemical shifts at lower fields and further supported by the NOESY1D of its bromo analog 8b.
- 23. Nowak, I.; Robins, M. J. J. Org. Chem. 2007, 72, 2678-2681.
- 24
- Greshock, T. J.; Funk, R. L. J. Am. Chem. 2007, 12, 80706, 128, 4946–4947. Ohno, H.; Miyamura, K.; Tanaka, T.; Oishi, S.; Toda, A.; Takemoto, Y.; Fujii, N.; 25. Ibuka, T. J. Org. Chem. **2002**, 67, 1359–1367. Comparing to the average $C(sp^3)$ – $C(sp^2)$ bond length (1.50 Å), the Au^l– $C(sp^2)$
- 26 bond is much longer (2.04 Å by averaging eight hits from Cambridge Structural Database), which may be the reason for the preference for the cis relationship between Au(PPh₃) and R¹
- Prepared by heating acetate 3e with 10 mol % of AgClO₄ in refluxing 2-butanone 27 for 2 h
- 28. Nesmeyanov, A. N.; Perevalova, E. G.; Struchkov, Y. T.; Antipin, M. Y.; Grandberg, K. I.; Dyadchenko, V. P. J. Organomet. Chem. 1980, 201, 343-349.