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ABSTRACT: Herein we present a library of simple amide
derivatives of Cinchona alkaloids in the form of quaternary
ammonium salts. The obtained derivatives can be generated
very easily and efficiently from inexpensive and commercially
available substrates. We tested this class of alkaloids in the
alkylation of glycine derivative, carried out under phase-
transfer catalyst conditions. The presented hybrid catalysts
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offer both high reaction yields (up to 97%) and high enantioselectivities of the obtained product (up to 94% ee).

symmetric catalytic synthesis remains a dynamically

developing field of organic chemistry."” Stereoselective
methods for forming carbon—carbon and carbon—heteroatom
bonds using asymmetric catalysis have found wide applications
not only in laboratory practice but also in industry,”* giving
rise to a continual demand for useful, biologically active
synthetic compounds.” One of the most effective ways of
introducing new stereogenic centers to create useful synthetic
compounds involves organocatalysis, using molecules of
natural origin as a source of chirality. The most important
advantages of organocatalysis include simple and effective
synthetic procedures that provide for mild reaction conditions,
the possibility of easy rescaling, as well as the use of
inexpensive and environmentally neutral reagents and solvents.
Over the last two decades, phase-transfer catalysis (PTC)®’
has proven to be a methodology that offers exceptional
properties, including in the practical sense. This approach has
been widely used in recent years for many organic reactions,
such as alkylation,8 epoxidation,9 Michael addition,'® and so
on.’

The choice of chiral catalyst is conditioned by a combination
of three factors: its efficiency (its ability to provide high
stereoselectivity), its availability, and also its cost, which is
crucial for the economic viability of the project. Among the
various catalytically active motifs, chiral quaternary ammonium
salt catalysts are the most promising, and the development of
new catalysts to facilitate a variety of different reactions has
been thoroughly investigated by research groups all over the
world."" The most commonly used chiral blocks understood in
this way include Cinchona alkaloids,">"® amino acids,"*
sugars,15 tartaric acid,'® and certain synthetic chiral com-
pounds, such as derivatives of 1,1’-binaphtol (BINOL) and
trans-1,2-diaminocyclohexane (DACH)."”

PTC catalysts’ capacity for enantiodiscrimination crucially
hinges upon ionic interactions. Such interactions, consisting of
the formation of ionic pairs, do not provide for a defined
stereochemical course of these reactions. A partial solution to
this problem has arisen with the emergence of a new family of
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“hybrid” bifunctional catalysts, having both an ionic function
and a fragment acting as a hydrogen bond donor.'® Designing
efficient hybrid catalysts requires that the catalyst architecture
incorporates functions that facilitate directional interactions
with reagents. Hydrogen bonds’ directionality and range make
them an excellent choice in the process of designing modern
PTC catalysts. The hydroxyl, amide, and urea functions, in
particular, serve as effective hydrogen bond “boosters” in this
respect.

Herein we present a class of hybrid catalysts in the form of
quaternary ammonium salts, based on Cinchona alkaloids,
decorated with amide function. We expected the enantiose-
lectivity of reactions carried out with these catalysts to be
augmented due to the formation of strong, directional
hydrogen bonds, resulting in the creation of the appropriate
geometry of the resulting complex. The choice of substituent
on the aromatic ring determines the strength and possibility of
forming electrostatic interactions (including 7-stacking) as well
as the acidity of the amide proton and the strength of the
hydrogen bonds formed.

A so-designed catalyst offers the opportunity to preorganize
the substrate molecule, which, in turn, should allow for a
precisely targeted nucleophile attack on the electrophilic
object, as shown in Scheme 1: Panel a shows the model for
one of the best catalysts, and panel b shows the model for one
of the less selective catalysts. The presented models were
generated on the basis of computer calculations using the
density functional theory (DFT) method with global hybrid
functional M06-2X, combined with the 6-31G* basis set.

To obtain a library of amide-based quaternary ammonium
salts, we prepared a-bromoamides (1—21) appropriately
substituted on the aromatic ring, generated from variously
substituted anilines. A typical synthesis procedure for catalysts
22—43 is presented in Scheme 2 with their overall yields. In
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Scheme 1. Models Rationalizing the Enantioselectivity of
Cinchona-Derived PTC Catalysts
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the first step (A), appropriate aniline (10 mmol) was reacted
with bromoacetyl bromide (15 mmol) to obtain a-
bromoamide (1—21), which was then used for quaternization
of cinchonidine or cinchonine (step B). This reaction was
carried out in boiling tetrahydrofuran (THF), giving catalysts
(22—43) in high yield. The presented procedure for the
simultaneous introduction of the amide function and the
quaternary center on the nitrogen atom into the structure of
the molecule does not require tedious purification processes,
such as column chromatography, and pure crystalline catalyst
can be easily precipitated from the reaction mixture.

With the library of catalysts 22—43 in hand, we decided to
test their ability to catalyze the model reaction widely used in
PTC, that is, the asymmetric benzylation of N-
(diphenylmethylene)glycine tert-butyl ester (48). The reaction
was carried out in toluene/CH,Cl, (7:3 v/v) at room
temperature for 1—8 h using benzyl bromide and 50% aqueous
KOH solution as a base (Scheme 3).

Scheme 3. Benzylation of Imine 48 Using Catalysts 22—43“
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“For example, Compound 49 was obtained using imine 48 (1.0
mmol), benzyl bromide (5.0 mmol), and catalyst 31 (8 mol %) in
toluene/CH,Cl, (7:3 v/v) (5 mL) and 50% aqueous KOH solution
(3 mL) for 4 h at room temperature.

The screening of catalysts used in the reaction presented in
Scheme 3 is presented in Figures 1 and 2, together with the
yield and asymmetric induction values for product 49. The
catalysts were divided into groups based on two criteria: steric
hindrance on the aromatic ring and the electronic nature
(electron withdrawing group (EWG) or electron donating
group (EDG)) of the substituents. For preliminary studies
involving our catalysts in the alkylation reaction, we chose
amide derivatives having substituents in their structure that
affect the volume of steric hindrance within the aromatic ring
(Figure 1la).

The increase in steric congestion in the aryl substituent of
the catalyst has a positive effect on the asymmetric induction of
the reaction, which is related to the inhibition of substituent R
rotation. The best result, in terms of both reaction yield and
enantiomeric excess, was obtained for catalyst 24 (95% yield,
67% ee). Catalysts 42 and 43 also showed very good yields but
are ineffective in terms of asymmetric induction.

Scheme 2. Synthesis of Catalysts 22—43 and Overall Yields
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Figure 2. Catalysts with EWGs and mixed substituents.

Figure 1b shows another group of three catalysts, possessing
electron-donating substituents (OMe) attached to the
aromatic ring.

In this case, the asymmetric induction results strongly
depended on the substitution sites of the methoxyl group in
the aromatic ring of the catalyst. For the reaction involving
catalyst 26, the configuration resulting from the alkylation
reaction of the product (—11% ee; —30% ee in THF) is
reversed. This inverted configuration can be a reason for the
weakening of the hydrogen bonds formed between the catalyst
amide group and the substrate molecule as well as the adverse
electrostatic interaction.

Figure 2a shows another group of catalysts, those with an
electron-withdrawing substituent attached to the aromatic ring.
The highest yields are demonstrated by derivatives for which it
is possible to form intramolecular hydrogen bonds with the
neighboring amide group, especially 31 and 32; EWG
substituents located in ortho position are responsible for this
beneficial effect. In the Supporting Information, we present the
crystallographic structure of one of the tested catalysts with
EWG groups (37). The best results in the alkylation reaction
were obtained for catalyst 31 (ee up to 82% at —15 °C). To
check the effect of the amide group on the enantiodiscrimi-
nation of the resulting product, we also carried out an
experiment using catalyst 31, in which the amide proton was
replaced with the methyl group. It turns out that replacing the
amide proton in the catalyst with the methyl group decreases
the ee value to 68% at —15 °C. In addition, the choice of
alkaloid allows for the generation of a specific enantiomer with
the complete inversion of the resulting product configuration
(74% ee for 31; —73% ee for 32).

Finally, we tested a group of “mixed catalysts” with differing
electron substituents (Figure 2b). Asymmetric induction in the
alkylation reaction is similar for the catalysts shown (falling
within the range of 69—76% ee) while maintaining high yields
(up to 97%). In the case of nitrotoluidine regioisomers, the
best result was obtained for catalyst 35 with a nitro group in
the para position (97% yield, 73% ee).

In the next stage, we checked the properties of the best
catalyst among those tested, namely, 31, using different
solvents in the test reaction (Figure 3). In ethereal solvents
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Figure 3. Screening of reaction conditions, using various solvents.

(THF and dioxane), despite very good yields, product 49 is
obtained with low enantioselectivity (ee ~35%). The reaction
carried out in nonpolar solvents proceeds in high yield, much
better than the former one. The best results were obtained
with toluene/CH,Cl, (7:3 v/v) as a solvent (yield 96%, 74%
ee).

According to reports in the literature, the reduction of
the double bond in the alkaloid molecule may positively affect
the catalytic properties of the resulting hydroalkaloid
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derivative. Given this, we decided to synthesize four PTC
catalysts (44—47) starting from cinchonidine via its dihydro
derivative. The first step in the synthesis was to reduce the
double bond of cinchonidine using H, with Pd/C as the
catalyst; the product of this reaction was obtained in
quantitative yield. Next, using the previously described a-
bromoamides, we performed quaternization reactions under
conditions analogous to those for their unsaturated counter-
parts to obtain catalysts 44—47. The catalytic activity of
compounds 44—47 was evaluated using the reaction shown in
Scheme 3, conducted at a temperature of —15 °C for 5—8 h
and with a catalyst amount reduced to 6 mol %. The reduction
of the double bond had a positive effect on the catalytic
efficiency of alkaloid amide derivatives in the benzylation of
imine 48 (Figure 4).
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Figure 4. Hydrocinchonidine catalysts.

For catalyst 44, a >30% increase in excess is observed with
respect to its unsaturated analog 22. The best catalyst among
those obtained proved to be derivative 46, which generates
product in an excellent yield of 94% and with a very high
enantioselectivity (92% ee).

In the next stage, after full screening of the catalysts used and
optimization of the model reaction conditions at —15 °C, we
decided to use catalyst 46 in the imine 48 alkylation with
differently substituted benzyl bromides, leading to products
(49—55). For comparative purposes, analogous reactions were
carried out using unsaturated catalyst 31, an analog of catalyst
46. Reaction times ranged from 8 to 10 h.

The results in Table 1 show the effect of the substituent
attached to the aromatic ring of the benzylating agent on
asymmetric induction in the alkylation reaction. The best
results were obtained for fluorine derivatives of benzyl
bromide, especially in the ortho position (ee up to 94% for
catalyst 46). This indicates the possibility of creating additional
hydrogen bonds between the catalyst and the electrophile.

In conclusion, we have successfully designed and synthesized
a library of bifunctional chiral catalysts containing an amide
group that demonstrate very good catalytic properties in one of

the model asymmetric reactions carried out in the PTC regime.
These catalysts were applied in the asymmetric alkylation of
glycine derivatives with very high yields (up to 97%) and
moderate to excellent enantioselectivities (up to 94% ee). The
asymmetric induction strongly depends on the substituent on
the phenyl ring neighboring the amide group. The best results
were obtained for catalysts capable of creating internal
hydrogen bonds. Further work is underway to broaden the
scope of more demanding reactions.
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Table 1. Results for Various Benzyl Bromides®

catalyst 46

catalyst 31

entry R time (h) yield (%)”
1 H 9 94
2 2-F 8 95
3 3-F 10 92
4 4-F 8 90
S 2-Cl 8 94
6 4-Me 10 91
7 4-tBu 10 90

ee (%)° time (h) yield (%)” ee (%)°
81 8 94 92
20 10 97 94
73 9 92 86
81 8 94 91
83 8 92 92
81 9 95 90
72 10 97 83

“Molar ratio: RCH,Br (5 equiv), catalyst (0.06 equiv). “Isolated yields. “ee values were determined by HPLC analysis using a chiral column

Chiralcel OD-H.
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