Tetrahedron 68 (2012) 10272-10279

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of tetrahydro-3-benzazepines

Meng-Yang Chang^{a,*}, Chieh-Kai Chan^a, Shin-Ying Lin^a, Ru-Ting Hsu^b

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan ^b Department of Medical Imaging and Radiology, ShuZen College of Medicine and Management, Luju, Kaohsiung 821, Taiwan

ARTICLE INFO

Article history: Received 16 September 2012 Received in revised form 2 October 2012 Accepted 4 October 2012 Available online 12 October 2012

Keywords: Tetrahydro-3-benzazepines Claisen rearrangement Henry reaction One-pot combination Oxidative cleavage annulation

ABSTRACT

A synthetic route toward tetrahdro-3-benzazepines **1a**–**f** starting with **2a** and **2b** in modest total yield is described. The facile route was carried by Henry reaction of aldehydes **3a**–**e** with nitroalkanes and NH₄OAc at reflux, reduction of the resulting nitroalkenes **4a**–**h** with LAH at rt followed by protection with K₂CO₃ and PhSO₂Cl at rt, one-pot oxidative cleavage annulation of olefins **5a**–**h** with the one-pot combination of OsO₄/NalO₄ at reflux, and hydrogenation of the corresponding enamines **6a**–**f**. Aldehydes **3a**–**e** was prepared from **2a** and **2b** in moderate yield of three-step.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

An interesting functionalized tetrahydro-3-benzazepine ring system has become a versatile class of compounds that have found use in drug discovery.^{1,2} The unique framework of 3-benzazepine has also been found to be widespread among benzindenoazepine and rhoeadine alkaloids and a considerable number of attempts have been developed to the skeleton.³ The adopted synthetic routes are described in Fig. 1. Basically, the key transformations include condensation of ketoacid with a nitrogen atom or amino-acid,⁴ intramolecular ring expansion or rearrangement reaction,⁵ electrophilic aromatic substitution reaction,⁶ Heck cross-coupling reaction,^{1a,b,7} and Pummerer cyclization.⁸

2. Results and discussion

With our experience in using the one-pot combination of $OsO_4/NalO_4$ for the synthesis of substituted isoquinolines^{9a} and benzo[g] indazoles,^{9b} we believed that it may be possible to develop this methodology for preparing the skeleton of tetrahydro-3-benzazepine **1** (see Fig. 2). As shown in Scheme 1, a facile synthetic route was employed to create the skeleton **1**, starting with isovanillin (**2a**) and 3-hydroxybenzaldehyde (**2b**) via (1) a Claisen rearrangement of 3-O-allyl compound, (2) a Henry (nitroaldol) reaction of 2-allylbenzaldehydes **3**, followed by LAH-mediated

Four 2-allylbenzaldehydes **3a–b** and **3d–e** were easily provided from commercially available compound **2a** in moderate overall three-step yields, according to reported procedures, with a reaction sequence of O-allylation and a Claisen rearrangement followed by O-methylation.¹⁰ **3c** was prepared from one-pot *ortho*-metalative PhBCl₂-mediated double alkylation of compound **2b** with LDA,

Fig. 1. Synthetic strategies toward tetrahydro-3-benzazepine.

^{*} Corresponding author. Tel.: +886 7 3121101x2220; e-mail addresses: mychang@kmu.edu.tw, mychang624@yahoo.com.tw (M.-Y. Chang).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.10.017

Fig. 2. Synthetic route of isoquinolines and benzo[g]indazoles.

Scheme 1. Synthetic route of tetrahydro-3-benzazepines 1.

followed by O-methylation in a moderate yield.¹¹ Next, a NH₄OAcmediated Henry (nitroaldol) reaction of skeleton 3 was employed to create the skeleton of (*E*)-nitroalkenes **4a**–**h** with nitromethane or nitroethane.¹² Compounds **4a**–**d** with (*E*)-form and compounds **4e-h** with (*E*,*E*)-form were synthesized in 80–92% yields by the NH₄OAc-mediated Henry condensation of compounds 3a-e (R/R₁/ $R_2=H$ or OMe: X/Y=H. Me or Ph) with nitromethane and nitroethane. We found that compounds **4c**. **4f**. and **4h** (Y=Me) also provided similar vields (86%, 80%, and 82%) to the others at reflux for 2 h. However, a NH₄OAc-mediated Henry reaction of compound 3a with nitromethylbenzene failed to isolate the desired nitroalkene product and compound 3a was recovered as the major product under the above reaction conditions. Furthermore, compounds **5a**–**h** were obtained as a single isomer with the 60–80% vields via the reduction of compounds 4a-h with LAH in THF placed in an ice bath for 2 h, followed by treatment of the corresponding primary amine with PhSO₂Cl and K₂CO₃ at rt for 4 h, as shown in Scheme 2. With the previous synthetic experience,⁹ we attempted to construct the bicyclic skeleton of 3-benzazepines 1 by the combination of OsO₄/NaIO₄/HOAc via the facile one-pot oxidative cleavage of compounds 5a-h and subsequent hydrogenation of the corresponding compounds **6a**–**f**.

condition was treated at rt, compound **6a** provided a 75% yield within a period of 4 h. After adjusting the reaction temperature from rt to 60 °C and overall reaction time from 4 h to 2 h, the desired compound **6a**, with a similar yield (73%), was observed. Under the abovementioned one-pot combination $OsO_4/NaIO_4/HOAc$ condition, compounds **6b**–**f** provided 58–75% yields, as shown in Table 1.

The possible mechanism for the formation of compound **6a** is described in Scheme 3. The initial event may be considered as the formation of intermediate **I** with the proton/oxocarbenium ions from HOAc-mediated annulation. Intermediate **II**, with a sevenmembered ring, is yielded via the nitrogen lone pair promoted intramolecular ring-closure on intermediate **I**. After a proton exchange of intermediate **II** and sequential dehydration of intermediate **III**, the bicyclic tetrahydro-3-benzazepine **6a** was produced. Finally, compounds **1a**–**f** were accomplished with 80–94% yields by the hydrogenation of compounds **6a**–**f** with hydrogen in the presence of a catalytic amount of 10% palladium on activated carbon (Table 1).

Next, boron trifluoride etherate promoted the efficient addition of compound **6a** with trimethylsilyl cyanide and *N*-bromosuccinimide (1.2 equiv) resulting in compound **7** (82%) via a bromination reaction of enamine, as shown in Scheme 4. A lonepair of nitrogen atoms promoted the ring-opening of the brominium ion. Then, the cyanide ion can trap the formed iminium ion and eliminate bromide by α -proton abstraction. The α -amino nitrile and related derivatives with an important bioactive component are key ingredients in therapeutic agents for pharmaceutical research.^{14,15}

3. Conclusion

In summary, we have successfully presented a synthetic route for the synthesis of tetrahydro-3-benzazepines 1a-f via Henry nitroaldol condensation, reduction, sulfonation, and oxidative cleavage annulation with the one-pot combination of OsO₄/NaIO₄/ HOAc. This synthesis begins from simple starting materials and reagents, and provides a new synthetic route toward the skeleton of 3-benzazepines.

4. Experimental section

4.1. General

All other reagents and solvents were obtained from commercial sources and used without further purification. Reactions were

Reports in the literature have described the improved procedure for the oxidative cleavage of olefins by the OsO₄–NaIO₄ system.¹³ In order to initiate the work, one-pot oxidative cleavage of the olefinic group of compound **5a** was first examined. When the reaction routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous $MgSO_4$ before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR

Table 1

Entry

1

2

3

4

5

6

7

8

Synthesis of tetrahdro-3-benzazepines **1a**-**f**^{a-c}

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

5h

5g

5f

5e

'n

Ph

Me

'n

P٢

Ċ -Ph

Me

-Ph

0

н

N H

Me O

N H ő

Me O

N 'n

Ĥ

-Ph

Ph

č

ő

-Ph

Me

Me

MeO

MeO

MeO

MeO

6e/72

MeO

MeO

6f/62

MeO

MeO

6f/70

6e/66

Ph

-Ph

č

Me

^a For the optimal reaction conditions: (i) compounds **5a-h** (1.0 mmol), OsO₄ (2.5% in THF, 1 mL), NMO (50% in H₂O, 2.2 mmol), THF/H₂O (v/v=1/1, 20 mL), rt, 2 h, (ii) NalO₄ (1.2 mmol), rt, 1 h, (iii) HOAc (1 mL), rt, 1 h.

^b Compounds **6a**-**f** (0.5 mmol), 10% Pd on charcoal (15 mg), EtOAc (10 mL), rt, 4 h.

 $^{\rm c}\,$ The isolated products were >95% pure as determined by $^1{\rm H}$ NMR analysis.

Scheme 4. Synthesis of compound 7.

spectra were recorded on a Varian INOVA-400 spectrometer operating at 200/400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD). Elemental analyses were carried out with Heraeus Vario III-NCSH, Heraeus CHN-OS-Rapid Analyzer or Elementar Vario EL III.

4.2. A representative procedure of skeleton 4 is as follows

Ammonium acetate (NH₄OAc, 390 mg, 5.0 mmol) was added to a solution of skeleton **3** (5.0 mmol) in nitromethane or nitroethane (MeNO₂ or EtNO₂, 10 mL) at rt. The reaction mixture was stirred at reflux for 6 h. The reaction mixture was cooled to rt. Saturated NaHCO_{3(aq)} (5 mL) was added to the reaction mixture and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product. Purification on silica gel (hexanes/EtOAc=10/1–6/1) afforded skeleton **4**.

4.2.1. 2-Allyl-3,4-dimethoxy-1-(2-nitrovinyl)benzene (**4a**). Yield=88% (1.09 g); yellowish oil; HRMS (ESI, M⁺+1) calcd for C₁₃H₁₆NO₄ 250.1079, found 250.1080; ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J*=13.2 Hz, 1H, CH=CHNO₂), 7.45 (d, *J*=13.2 Hz, 1H, CH=CHNO₂), 7.35 (d, *J*=8.8 Hz, 1H, aromatic CH), 6.86 (d, *J*=8.8 Hz, 1H, aromatic CH), 6.01–5.91 (m, 1H, CH=CH₂), 5.07 (dq, *J*=1.6, 10.4 Hz, 1H, *cis*-CH=CH₂), 4.90 (dq, *J*=1.6, 17.2 Hz, 1H, *trans*-CH=CH₂), 3.92 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.61 (dt, *J*=1.6, 5.2 Hz, 2H, CH₂CH=CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 155.75 (Cq), 147.68 (Cq), 136.92 (CH), 136.16 (2×, CH), 135.09 (Cq), 123.97 (CH), 122.34 (Cq), 116.27 (CH₂), 110.76 (CH), 60.99 (CH₃), 55.79 (CH₃), 30.12 (CH₂); Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.81; H, 6.32; N, 5.90.

4.2.2. 1,2-Dimethoxy-3-(1-methylallyl)-4-(2-nitrovinyl)benzene (**4b**). Yield=92% (1.21 g); yellowish oil; HRMS (ESI, M⁺+1) calcd for C₁₄H₁₈NO₄ 264.1236, found 264.1240; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J*=13.6 Hz, 1H, CH=CHNO₂), 7.35 (d, *J*=13.6 Hz, 1H, CH=CHNO₂), 7.28 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.84 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.14 (ddd, *J*=4.4, 10.4, 17.2 Hz, 1H, CH=CH₂), 5.17 (ddd, *J*=1.2, 2.4, 10.4 Hz, 1H, cis-CH=CH₂), 5.10 (ddd, *J*=1.2, 2.4, 17.2 Hz, 1H, trans-CH=CH₂), 4.30-4.26 (m, 1H, CH₂CH=CH₂), 3.92 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 1.43 (d, *J*=7.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 155.70 (Cq), 147.56 (Cq), 141.86 (CH), 140.42 (Cq), 138.23 (CH), 135.70 (CH), 124.57 (CH), 122.09 (Cq), 114.27 (CH₂), 110.62 (CH), 61.07 (CH₃), 55.81 (CH₃), 34.66 (CH), 19.59 (CH₃).

4.2.3. 2-Allyl-3,4-dimethoxy-1-(2-nitropropenyl)benzene (**4c**). Yield=86% (1.13 g); yellowish oil; HRMS (ESI, M⁺+1) calcd for C₁₄H₁₈NO₄ 264.1236, found 264.1238; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H, CH=C(CH₃)NO₂), 7.02 (d, J=8.4 Hz, 1H, aromatic CH), 6.86 (d, J=8.8 Hz, 1H, aromatic CH), 5.93–5.84 (m, 1H, CH=CH₂), 5.02 (dq, J=1.6, 10.0 Hz, 1H, cis-CH=CH₂), 4.90 (dq, J=1.6, 17.2 Hz, 1H, trans-CH=CH₂), 3.91 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.47 (dt, J=1.6, 6.0 Hz, 2H, CH₂CH=CH₂), 2.32 (d, J=0.8 Hz, 3H, CH=C(CH₃)NO₂); ¹³C NMR (100 MHz, CDCl₃): δ 153.86 (Cq), 147.47 (Cq), 135.77 (2×, Cq), 133.88 (Cq), 132.48 (CH), 125.29 (CH), 125.01 (CH), 115.76 (CH₂), 110.13 (CH), 60.95 (CH₃), 55.71 (CH₃), 31.09 (CH₂), 13.91 (CH₃).

4.2.4. 2-Allyl-1-methoxy-3-(2-nitrovinyl)benzene (**4d**). Yield=80% (880 mg); colorless solid; mp=55–57 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₂H₁₄NO₃ 220.0974, found 220.0977; ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, *J*=13.6 Hz, 1H, CH=CHNO₂), 7.48 (d, *J*=13.6 Hz, 1H, CH=CHNO₂), 7.26 (t, *J*=7.6 Hz, 1H, aromatic CH), 7.13 (d, *J*=7.6 Hz, 1H, aromatic CH), 5.98–5.88 (m, 1H, CH=CH₂), 5.03 (dq, *J*=1.6, 2.8, 10.0 Hz, 1H, cis-CH=CH₂), 4.91 (dq, *J*=1.6, 2.8,

16.8 Hz, 1H, *trans*-CH=CH₂), 3.85 (s, 3H, OCH₃), 3.58 (dt, *J*=1.6, 5.6 Hz, 2H, CH₂CH=CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 157.91 (Cq), 138.26 (Cq), 136.95 (CH), 135.75 (Cq), 130.33 (Cq), 129.41 (Cq), 127.80 (CH), 119.27 (CH), 115.66 (CH₂), 113.47 (CH), 55.84 (CH₃), 29.83 (CH₂); Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.98; H, 6.16; N, 6.50.

4.2.5. 2-*Cinnamyl*-3,4-*dimethoxy*-1-(2-*nitrovinyl*)*benzene* (*4e*). Yield=89% (1.45 g); colorless solid; mp=129–130 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₉H₂₀NO₄ 326.1392, found 326.1398; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J*=13.6 Hz, 1H, *CH*=CHNO₂), 7.49 (d, *J*=13.6 Hz, 1H, *CH*=CHNO₂), 7.34–7.19 (m, 5H, aromatic *CH*), 7.00 (s, 1H, aromatic *CH*), 6.81 (s, 1H, aromatic *CH*), 6.39–6.25 (m, 2H, *CH*=CHPh), 3.93 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.67 (d, *J*=5.6 Hz, 2H, *CH*₂CH=CHPh); ¹³C NMR (100 MHz, CDCl₃): δ 152.73 (Cq), 148.07 (Cq), 136.87 (Cq), 136.28 (Cq), 136.02 (CH), 135.74 (CH), 121.81 (CH), 128.52 (2×, CH), 128.04 (CH), 127.43 (CH), 126.15 (2×, CH), 120.72 (Cq), 113.24 (CH₂), 109.15 (CH), 56.06 (CH₃), 56.03 (CH₃), 36.36 (CH₂); Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.37; H, 6.22; N, 4.47.

4.2.6. 1-*Cinnamyl*-4,5-*dimethoxy*-2-((*E*)-2-*nitroprop*-1-*enyl*)*benzene* (**4f**). Yield=80% (1.36 g); colorless gum; HRMS (ESI, M⁺+1) calcd for C₂₀H₂₂NO₄ 340.1549, found 340.1550; ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1H, CH=C(CH₃)NO₂), 7.33–7.24 (m, 5H, aromatic CH), 6.83 (s, 1H, aromatic CH), 6.78 (s, 1H, aromatic CH), 6.36 (d, *J*=15.6 Hz, 1H CH=CHPh), 6.23 (dt, *J*=6.4, 15.6 Hz, 1H, CH=CHPh), 3.92 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.55 (dd, *J*=1.2, 6.4 Hz, 2H, CH₂CH=CHPh), 2.36 (d, *J*=0.8 Hz, 3H, CH=C(CH₃)NO₂); ¹³C NMR (100 MHz, CDCl₃): δ 150.39 (Cq), 147.35 (Cq), 137.04 (Cq), 133.52 (Cq), 132.52 (CH), 131.59 (CH), 128.52 (2×, CH), 127.72 (CH), 127.33 (CH), 126.14 (2×, CH), 126.10 (CH), 123.38 (Cq), 112.99 (CH₂), 112.18 (CH), 56.15 (CH₃), 55.98 (CH₃), 36.86 (CH₂), 14.04 (CH₃).

4.2.7. 1-But-2-enyl-4,5-dimethoxy-2-(2-nitrovinyl)benzene (**4g**). Yield=90% (1.18 g); colorless solid; mp=110–111 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₄H₁₈NO₄ 264.1236, found 264.1244; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, *J*=13.2 Hz, 1H, CH=CHNO₂), 7.47 (d, *J*=13.2 Hz, 1H, CH=CHNO₂), 6.96 (s, 1H, aromatic CH), 6.73 (s, 1H, aromatic CH), 5.56–5.40 (m, 2H, CH=CHCH₃), 3.93 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.44 (dt, *J*=1.2, 5.6 Hz, 2H, CH₂CH=CHCH₃), 1.67 (ddd, *J*=1.6, 3.2, 6.4 Hz, 3H, CH₂CH=CHCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 152.68 (Cq), 147.88 (Cq), 137.02 (Cq), 136.57 (CH), 135.53 (CH), 129.09 (CH), 127.43 (CH), 120.53 (Cq), 113.16 (CH₂), 109.09 (CH), 56.06 (CH₃), 55.99 (CH₃), 3.616 (CH₂), 17.87 (CH₃); Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 64.01; H, 6.34; N, 5.58.

4.2.8. 1-But-2-enyl-4,5-dimethoxy-2-(2-nitropropenyl)benzene (**4h**). Yield=82% (1.14 g); colorless gum; HRMS (ESI, M⁺+1) calcd for C₁₅H₂₀NO₄ 278.1392, found 278.1389; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H, CH=C(CH₃)NO₂), 6.76 (s, 1H, aromatic CH), 6.75 (s, 1H, aromatic CH), 5.50–5.40 (m, 2H, CH=CHCH₃), 3.91 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.28 (dd, J=1.6, 5.6 Hz, 2H, CH₂CH=CHCH₃), 2.35 (d, J=0.8 Hz, 3H, CH₂CH=CHCH₃), 1.65 (d, J=5.6 Hz, 3H, CH=C(CH₃)NO₂); ¹³C NMR (100 MHz, CDCl₃): δ 150.30 (Cq), 147.07 (2×, Cq), 134.52 (Cq), 132.73 (CH), 128.63 (CH), 127.05 (CH), 123.10 (Cq), 112.83 (CH₂), 112.10 (CH), 56.10 (CH₃), 55.89 (CH₃), 36.55 (CH₂), 17.83 (CH₃), 13.99 (CH₃).

4.3. A representative procedure of skeleton 5 is as follows

Lithium aluminum hydride (LiAlH₄, 300 mg, 8.0 mmol) was added to a solution of skeleton **4** (2.0 mmol) in THF (20 mL) at rt. The reaction mixture was stirred at rt for 4 h. Saturated $NH_4Cl_{(aq)}$ (5 mL) was added to the reaction mixture and the solvent was

concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product. Without further purification, potassium carbonate (K₂CO₃, 420 mg, 3.0 mmol) was added to the resulting product in CH₂Cl₂ (20 mL) at rt. Then, phenylsulfonyl chloride (PhSO₂Cl, 430 mg, 2.4 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at rt for 4 h. Water (5 mL) was added to the reaction mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product. Purification on silica gel (hexanes/EtOAc=8/1-4/1) afforded skeleton **5**.

4.3.1. *N*-[2-(2-Allyl-3,4-dimethoxyphenyl)ethyl]benzenesulfonamide (*5a*). Yield=70% (505 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₄NO₄S 362.1426, found 362.1434; ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.80 (m, 2H, aromatic CH), 7.59–7.55 (m, 1H, aromatic CH), 7.51–7.47 (m, 2H, aromatic CH), 6.77 (d, J=8.4 Hz, 1H, aromatic CH), 6.72 (d, J=8.4 Hz, 1H, aromatic CH), 5.90–5.80 (m, 1H, CH₂CH=CH₂), 4.90 (dq, J=2.0, 10.4 Hz, 1H, *cis*-CH=CH₂), 4.78 (dq, J=2.0, 17.6 Hz, 1H, *trans*-CH=CH₂), 4.52 (t, J=6.4 Hz, 1H, NH), 3.83 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.33 (dt, J=2.0, 6.0 Hz, 2H, CH₂CH=CH₂), 3.14 (q, J=7.2 Hz, 2H, CH₂CH₂NH), 2.71 (t, J=7.2 Hz, 2H, CH₂CH₂NH); ¹³C NMR (100 MHz, CDCl₃): δ 151.58 (Cq), 147.58 (Cq), 139.91 (Cq), 136.99 (Cq), 132.58 (CH), 132.03 (Cq), 129.06 (2×, CH), 128.92 (CH), 127.00 (2×, CH), 124.89 (CH), 115.03 (CH₂), 30.34 (CH₂).

4.3.2. $N-\{2-[3,4-Dimethoxy-2-(1-methylallyl)phenyl]ethyl\}$ benzenesulfonamide (**5b**). Yield=68% (510 mg); colorless oil; HRMS (ESI, M^++1) calcd for $C_{20}H_{26}NO_4S$ 376.1583, found 376.1580; ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.81 (m, 2H, aromatic CH), 7.59–7.55 (m, 1H, aromatic CH), 7.52–7.47 (m, 2H, aromatic CH), 6.74 (d, J=8.4 Hz, 1H, aromatic CH), 6.70 (d, J=8.4 Hz, 1H, aromatic CH), 6.08 (ddd, J=1.6, 10.4, 17.2 Hz, 1H, CH(CH₃)CH=CH₂), 4.91 (dt, J=1.6, 10.8 Hz, 1H, cis-CH=CH₂), 4.88 (dt, J=1.6, 17.2 Hz, 1H, trans-CH=CH₂), 4.49 (br t, J=6.4 Hz, 1H, NH), 3.86–3.80 (m, 2H, CH₂CH₂NH), 3.82 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.15–3.09 (m, 1H, CH(CH₃)CH=CH₂), 2.77 (t, J=7.2 Hz, 2H, CH₂CH₂NH), 1.31 (d, J=7.2 Hz, 3H, CH(CH₃)CH=CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 152.04 (Cq), 148.06 (Cq), 142.90 (Cq), 139.80 (Cq), 137.69 (Cq), 132.61 (CH), 129.08 (2×, CH), 127.98 (CH), 127.03 (2×, CH), 125.51 (CH), 112.86 (CH), 110.45 (CH), 60.57 (CH₃), 55.59 (CH₃), 44.14 (CH₂), 36.80 (CH₂), 33.28 (CH), 19.29 (CH₃).

4.3.3. N-[2-(2-Allyl-3,4-dimethoxyphenyl)-1-methylethyl]benzenesulfonamide (5c). Yield=60% (450 mg); colorless oil; HRMS (ESI, M^++1) calcd for C₂₀H₂₆NO₄S 376.1583, found 376.1586; ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.67 (m, 2H, aromatic CH), 7.53–7.49 (m, 1H, aromatic CH), 7.42–7.38 (m, 2H, aromatic CH), 6.69 (d, J=8.4 Hz, 1H, aromatic CH), 6.64 (d, J=8.4 Hz, 1H, aromatic CH), 5.86–5.76 (m, 1H, CH₂CH=CH₂), 4.94 (dq, J=1.6, 10.0 Hz, 1H, cis-CH=CH₂), 4.79 (dq, J=1.6, 17.2 Hz, 1H, trans-CH=CH₂), 4.59 (br d, J=6.8 Hz, 1H, NH), 3.83 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.45-3.41 (m, 1H, CH₂CH(CH₃)N), 3.29–3.24 (m, 2H, CH₂CH=CH₂), 2.67 (dd, J=7.2, 14.0 Hz, 1H, CH₂CH(CH₃)N), 2.56 (dd, J=7.2, 14.0 Hz, 1H, CH₂CH(CH₃) N), 1.13 (d, J=6.4 Hz, 3H, CH₂CH(CH₃)N); ¹³C NMR (100 MHz, CDCl₃): δ 151.47 (2×, Cq), 147.44 (Cq), 140.42 (Cq), 137.11 (Cq), 132.28 (CH), 132.08 (CH), 128.83 (2×, CH), 126.87 (2×, CH), 125.55 (CH), 115.05 (CH₂), 110.22 (CH), 60.67 (CH₃), 55.56 (CH₃), 50.71 (CH), 40.15 (CH₂), 30.35 (CH₂), 21.78 (CH₃); Anal. Calcd for C₂₀H₂₅NO₄S: C, 63.97; H, 6.71; N, 3.73. Found: C, 64.12; H, 6.92; N, 3.55.

4.3.4. N-[2-(2-Allyl-3-methoxyphenyl)ethyl]benzenesulfonamide (**5d**). Yield=73% (480 mg); colorless oil; HRMS (ESI, M⁺+1) calcd

for C₁₈H₂₂NO₃S 332.1320, found 332.1323; ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.79 (m, 2H, aromatic CH), 7.59–7.54 (m, 1H, aromatic CH), 7.51–7.46 (m, 2H, aromatic CH), 7.11 (t, *J*=7.6 Hz, 1H, aromatic CH), 6.76 (dd, *J*=0.8, 7.6 Hz, 1H, aromatic CH), 6.67 (dd, *J*=0.8, 7.6 Hz, 1H, aromatic CH), 5.89 (m, 1H, CH₂CH=CH₂), 4.87 (dq, *J*=1.6, 10.0 Hz, 1H, *cis*-CH=CH₂), 4.79 (dq, *J*=1.6, 17.2 Hz, 1H, *trans*-CH=CH₂), 4.60 (br t, *J*=5.6 Hz, 1H, NH), 3.79 (s, 3H, OCH₃), 3.33 (dt, *J*=1.6, 5.6 Hz, 2H, CH₂CH=CH₂), 3.18 (dt, *J*=7.6, 13.6 Hz, 2H, CH₂CH₂N), 2.78 (t, *J*=7.6 Hz, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 157.81 (Cq), 139.89 (Cq), 137.22 (Cq), 136.67 (Cq), 132.55 (CH), 129.05 (2×, CH), 127.21 (CH), 127.00 (2×, CH), 126.59 (CH), 121.88 (CH), 114.50 (CH₂), 109.12 (CH), 55.58 (CH₃), 43.68 (CH₂), 32.85 (CH₂), 29.86 (CH₂).

4.3.5. *N*-[2-(2-Cinnamyl-3,4-dimethoxyphenyl)-1-methylethyl]benzenesulfonamide (**5e**). Yield=78% (680 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₂₅H₂₈NO₄S 438.1739, found 438.1743; ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.74 (m, 2H, aromatic CH), 7.49–7.46 (m, 1H, aromatic CH), 7.39–7.35 (m, 2H, aromatic CH), 7.31–7.16 (m, 5H, aromatic CH), 6.66 (s, 1H, aromatic CH), 6.59 (s, 1H, aromatic CH), 6.29–6.18 (m, 2H, CH₂CH=CHPh), 5.05 (t, J=6.0 Hz, 1H, NH), 3.80 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.39 (d, J=4.8 Hz, 2H, CH₂CH=CHPh), 3.13 (dd, J=7.2, 14.4 Hz, 2H, CH₂CH₂NH), 2.77 (t, J=7.2 Hz, 2H, CH₂CH₂NH); ¹³C NMR (100 MHz, CDCl₃): δ 147.64 (Cq), 147.37 (Cq), 139.76 (Cq), 137.13 (Cq), 132.39 (CH), 130.57 (CH), 130.07 (Cq), 126.77 (2×, CH), 125.96 (2×, CH), 113.21 (CH₂), 112.88 (CH), 55.84 (CH₃), 55.80 (CH₃), 43.91 (CH₂), 35.69 (CH₂), 32.66 (CH₂).

4.3.6. (*E*)-*N*-(2-(*But*-2-*enyl*)-4,5-*dimethoxyphenethyl*)*benzenesulfonamide* (*5f*). Yield=63% (472 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₂₀H₂₆NO₄S 376.1583, found 376.1588; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J*=8.0 Hz, 2H, aromatic CH), 7.59–7.47 (m, 3H, aromatic CH), 6.62 (s, 1H, aromatic CH), 6.53 (s, 1H, aromatic CH), 5.49–5.32 (m, 2H, CH₂CH=CHCH₃), 4.47 (br t, *J*=6.4 Hz, 1H, NH), 3.84 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.17–3.13 (m, 4H, CH₂CH=CHCH₃+CH₂CH₂CH), 2.74 (t, *J*=7.2 Hz, 2H, CH₂CH₂NH), 1.62 (dd, *J*=1.2, 6.0 Hz, 3H, CH₂CH=CHCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 147.76 (Cq), 147.32 (Cq), 139.90 (Cq), 132.57 (Cq), 131.15 (CH), 129.93 (Cq), 129.05 (2×, CH), 126.97 (2×, CH), 126.40 (CH₃), 43.90 (CH₂), 35.51 (CH₂), 32.39 (CH₂), 17.81 (CH₃).

4.3.7. (*E*)-*N*-(1-(2-Cinnamyl-4,5-dimethoxyphenyl)propan-2-yl)benzenesulfonamide (**5g**). Yield 80% (721 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₂₆H₃₀NO₄S 452.1896, found 452.1900; ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.74 (m, 2H, aromatic CH), 7.50–7.46 (m, 1H, aromatic CH), 7.40–7.36 (m, 2H, aromatic CH), 7.35–7.30 (m, 5H, aromatic CH), 6.73 (s, 1H, aromatic CH), 6.61 (s, 1H, aromatic CH), 6.32–6.30 (m, 2H, CH₂CH=CHPh), 5.25 (t, *J*=6.0 Hz, 1H, NH), 3.86 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.56–3.50 (m, 2H, CH₂CH= CHPh), 3.46–3.40 (m, 1H, CH₂CH(CH₃)NH), 2.99 (t, *J*=7.2 Hz, 2H, CH₂CH(CH₃)NH), 1.62 (dd, *J*=1.2, 6.0 Hz, 3H, CH₂CH(CH₃)NH); ¹³C NMR (100 MHz, CDCl₃): δ 147.65 (Cq), 147.83 (Cq), 139.92 (Cq), 137.44 (Cq), 133.01 (CH), 131.32 (CH), 130.22 (Cq), 129.59 (CH), 128.30 (2×, CH), 128.34 (2×, CH), 127.28 (CH), 127.32 (Cq), 126.37 (2×, CH), 125.26 (2×, CH), 113.81 (CH₂), 112.91 (CH), 55.44 (CH₃), 556.12 (CH₃), 43.94 (CH₂), 35.12 (CH₂), 34.21 (CH₂), 18.28 (CH₃).

4.3.8. (*E*)-*N*-(1-(2-(*But*-2-*enyl*)-4,5-*dimethoxyphenyl*)*propan*-2-*y*)*benzenesulfonamide* (**5h**). Yield 66% (515 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₂₁H₂₈NO₄S 390.1739, found 390.1744; ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.62 (m, 2H, aromatic *CH*), 7.50–7.46 (m, 1H, aromatic *CH*), 7.38–7.34 (m, 2H, aromatic *CH*), 6.53 (s, 1H, aromatic *CH*), 6.40 (s, 1H, aromatic *CH*), 5.45–5.33 (m,

2H, CH₂CH=CHCH₃), 4.92 (br s, 1H, NH), 3.83 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 3.44–3.37 (m, 1H, CH₂CH(CH₃)NH), 3.16–3.04 (m, 2H, CH₂CH=CHCH₃), 2.68 (dd, *J*=8.0, 14.0 Hz, 1H, CH₂CH(CH₃)NH), 2.55 (dd, *J*=6.8, 14.0 Hz, 1H, CH₂CH(CH₃)NH), 1.65 (d, *J*=5.2 Hz, 3H, CH₂CH=CHCH₃), 1.16 (d, *J*=6.4 Hz, 3H, CH₂CH(CH₃)NH); ¹³C NMR (100 MHz, CDCl₃): δ 147.54 (Cq), 146.92 (Cq), 140.30 (Cq), 132.12 (CH), 130.94 (Cq), 130.05 (Cq), 128.68 (2×, CH), 127.34 (CH), 126.73 (2×, CH), 126.34 (CH), 113.20 (CH₂), 112.87 (CH), 55.75 (CH₃), 55.72 (CH₃), 51.04 (CH), 39.83 (CH₂), 35.40 (CH₂), 21.95 (CH₃), 17.78 (CH₃).

4.4. A representative procedure of skeleton 6 is as follows

A solution of 2.5% osmium tetraoxide (OsO₄, 1 mL, in THF) was added to a solution of skeleton 5 (1.0 mmol) in the co-solvent of THF (10 mL) and water (10 mL). N-Methylmorpholine-N-oxide (NMO, 50% in water, 500 mg, 2.2 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at rt for 2 h. Then, sodium periodate (NaIO₄, 257 mg, 1.2 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at rt for 1 h. Acetic acid (1 mL) were added to the reaction mixture at rt. The reaction mixture was stirred at rt for 1 h. The overall synthetic procedure had to be monitored by TLC until the reaction was completed. 10% NaHSO3(aq) (5 mL) was added to the reaction mixture and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to yield crude compound. Purification on silica gel (hexanes/EtOAc=7/1-4/1) afforded skeleton **6**.

4.4.1. 3-Benzenesulfonyl-6,7-dimethoxy-2,3-dihydro-1H-benzo[d] azepine (**6a**). Yield=75% (260 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₈H₂₀NO₄S 346.1113, found 346.1120; ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.81 (m, 2H, aromatic CH), 7.60–7.56 (m, 1H, aromatic CH), 7.53–7.49 (m, 2H, aromatic CH), 6.97 (d, *J*=11.2 Hz, 1H, CH=CHN), 6.67 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.63 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.10 (d, *J*=11.2 Hz, 1H, CH=CHN), 3.81 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.75 (dt, *J*=4.8, 9.2 Hz, 2H, CH₂CH₂N), 2.73 (dt, *J*=4.8, 9.2 Hz, 2H, CH₂CH₂N), 2.73 (dt, *J*=4.8, 9.2 Hz, 2H, CH₂CH₂N), 2.73 (dt, *J*=4.8, 9.2 Hz, 2H, CH₂CH₂N), 128.44 (Cq), 133.05 (CH), 132.79 (Cq), 129.29 (2×, CH), 128.43 (Cq), 126.98 (2×, CH), 125.78 (CH), 123.76 (CH), 110.05 (CH), 102.46 (CH), 60.67 (CH₃), 55.84 (CH₃), 47.76 (CH₂), 35.36 (CH₂); Anal. Calcd for C₁₈H₁₉NO₄S: C, 62.59; H, 5.54; N, 4.06. Found: C, 62.67; H, 5.58; N, 4.18.

4.4.2. 3-Benzenesulfonyl-6,7-dimethoxy-5-methyl-2,3-dihydro-1Hbenzo[d]azepine (**6b**). Yield=61% (220 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₂NO₄S 360.1270, found 360.1277; ¹H NMR (400 MHz, CDCl₃): δ 7.66–7.63 (m, 2H, aromatic *CH*), 7.50–7.45 (m, 1H, aromatic *CH*), 7.40–7.35 (m, 2H, aromatic *CH*), 6.84 (d, J=8.0 Hz, 1H, aromatic *CH*), 6.74 (d, J=8.0 Hz, 1H, aromatic *CH*), 6.28 (br q, J=1.2 Hz, 1H, C(CH₃)=*CHN*), 3.84 (t, J=6.0 Hz, 2H, CH₂CH₂N), 3.83 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 2.68 (t, J=6.0 Hz, 2H, CH₂CH₂N), 2.09 (d, J=1.2 Hz, 3H, C(CH₃)=*CHN*); ¹³C NMR (100 MHz, CDCl₃): δ 151.84 (Cq), 146.61 (Cq), 138.96 (Cq), 132.33 (Cq), 132.28 (Cq), 131.75 (Cq), 131.15 (CH), 128.76 (2×, CH), 126.91 (2×, CH), 123.21 (CH), 122.44 (CH), 111.45 (CH), 60.38 (CH₃), 56.74 (CH₃), 55.85 (CH₂), 31.78 (CH₂), 19.53 (CH₃).

4.4.3. 3-Benzenesulfonyl-6,7-dimethoxy-2-methyl-2,3-dihydro-1Hbenzo[d]azepine (**6**c). Yield=70% (251 mg); colorless oil; HRMS (ESI, M^++1) calcd for C₁₉H₂₂NO₄S 360.1270, found 360.1276; ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.83 (m, 2H, aromatic CH), 7.58–7.48 (m, 3H, aromatic CH), 6.98 (dd, *J*=1.6, 11.2 Hz, 1H, CH=CHN), 6.66 (s, 2H, aromatic CH), 6.09 (d, *J*=10.8 Hz, 1H, CH=CHN), 4.69–4.62 (m, 1H, CH₂CH(CH₃)N), 3.80 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 2.72 (dd, *J*=6.4, 15.2 Hz, 1H, CH₂CH(CH₃)N), 2.25 (d, *J*=15.2 Hz, 1H, CH₂CH(CH₃)N), 0.79 (d, J=6.4 Hz, 3H, CH₂CH(CH₃)N); ¹³C NMR (100 MHz, CDCl₃): δ 151.06 (Cq), 145.69 (Cq), 138.73 (Cq), 132.90 (CH), 129.18 (3×, 2CH+Cq), 128.97 (CH), 126.89 (2×, CH), 125.03 (CH), 123.94 (CH), 110.10 (CH), 101.21 (CH), 60.57 (CH₃), 55.65 (CH₃), 51.95 (CH), 40.00 (CH₂), 17.44 (CH₃); Anal. Calcd for C₁₉H₂₁NO₄S: C, 63.49; H, 5.89; N, 3.90. Found: C, 63.55; H, 6.11; N, 4.10.

4.4.4. 3-Benzenesulfonyl-6-methoxy-2,3-dihydro-1H-benzo[d]azepine (**6d**). Yield=58% (183 mg); colorless solid; mp=109–111 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₇H₁₈NO₃S 316.1007, found 316.1011; ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.81 (m, 2H, aromatic CH), 7.59–7.48 (m, 3H, aromatic CH), 7.03 (t, J=8.0 Hz, 1H, aromatic CH), 6.95 (d, J=11.2 Hz, 1H, CH=CHN), 6.72 (dd, J=0.8, 8.0 Hz, 1H, aromatic CH), 6.60 (d, J=7.6 Hz, 1H, aromatic CH), 6.15 (d, J=11.2 Hz, 1H, CH=CHN), 3.83 (s, 3H, OCH₃), 3.78–3.75 (m, 2H, CH₂CH₂N), 2.79–2.77 (m, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 156.62 (Cq), 141.05 (CH), 138.41 (Cq), 132.99 (CH), 129.27 (2×, CH), 127.97 (2×, CH), 126.89 (Cq), 124.90 (CH), 123.00 (Cq), 121.15 (CH), 108.66 (CH), 102.32 (CH), 55.68 (CH₃), 47.61 (CH₂), 35.92 (CH₂); Anal. Calcd for C₁₇H₁₇NO₃S: C, 64.74; H, 5.43; N, 4.44. Found: C, 64.95; H, 5.62; N, 4.68.

4.4.5. 3-Benzenesulfonyl-7,8-dimethoxy-2,3-dihydro-1H-benzo[d] azepine (**6e**). For compound **5e**: yield=66% (228 mg); For compound **5f**: yield=72% (248 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for $C_{18}H_{20}NO_4S$ 346.1113, found 346.1119; ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.80 (m, 2H, aromatic CH), 7.60–7.49 (m, 3H, aromatic CH), 6.81 (d, *J*=10.4 Hz, 1H, CH=CHN), 6.64 (s, 1H, aromatic CH), 6.50 (s, 1H, aromatic CH), 5.59 (d, *J*=10.4 Hz, 1H, CH=CHN), 3.84 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.78–3.74 (m, 2H, CH₂CH₂N), 2.74–2.72 (m, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 147.31 (Cq), 147.21 (Cq), 138.52 (CH), 133.01 (2×, Cq), 131.75 (CH), 129.29 (2×, CH), 126.95 (2×, CH₃), 47.16 (CH₂), 35.76 (CH₂).

4.4.6. 7,8-Dimethoxy-2-methyl-3-(phenylsulfonyl)-2,3-dihydro-1Hbenzo[d]azepine (**6**f). For compound **5**g: yield=62% (223 mg); for compound **5h**: yield=70% (250 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₂NO₄S 360.1270, found 360.1276; ¹H NMR (400 MHz, CDCl₃): δ 7.85–7.82 (m, 2H, aromatic CH), 7.58–7.48 (m, 3H, aromatic CH), 6.81 (dd, J=1.6, 10.8 Hz, 1H, CH=CHN), 6.65 (s, 1H, aromatic CH), 6.48 (s, 1H, aromatic CH), 5.59 (d, J=10.8 Hz, 1H, CH= CHN), 4.71–4.64 (m, 1H, CH₂CH(CH₃)N), 3.83 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 2.71 (dd, J=6.0, 15.6 Hz, 1H, CH₂CH(CH₃)N), 2.27 (d, J=15.6 Hz, 1H, CH₂CH(CH₃)N), 0.79 (d, J=6.8 Hz, 3H, CH₂CH(CH₃)N); ¹³C NMR (100 MHz, CDCl₃): δ 147.26 (2×, Cq), 138.76 (Cq), 132.87 (CH), 129.18 (2×, CH), 128.14 (Cq), 127.85 (Cq), 126.95 (2×, CH), 121.72 (CH), 113.36 (CH), 112.58 (CH), 108.94 (CH), 55.82 (2×, CH₃), 51.21 (CH), 40.43 (CH₂), 17.34 (CH₃).

4.5. A representative procedure of skeleton 1 is as follows

Palladium on activated carbon (10%, 15 mg) was added to a solution of skeleton **6** (0.5 mmol) in EtOAc (10 mL) at rt. Then hydrogen was bubbled into the mixture for 10 min, and stirring occurred at rt for 20 h. The reaction mixture was filtered and evaporated to yield crude product. Purification on silica gel (hexanes/EtOAc=7/1-4/1) afforded skeleton **1**.

4.5.1. 3-Benzenesulfonyl-6,7-dimethoxy-2,3,4,5-tetrahydro-1H-benzo-[d]azepine (**1a**). Yield=92% (160 mg); colorless solid; mp=90–91 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₈H₂₂NO₄S 348.1270, found 349.1273; ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.74 (m, 2H, aromatic CH), 7.55–7.45 (m, 3H, aromatic CH), 6.77 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.64 (d, *J*=8.4 Hz, 1H, aromatic CH), 3.80 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 3.29–3.27 (m, 4H, CH₂CH₂N), 3.12–3.09 (m, 2H, CH₂CH₂N), 2.95–2.92 (m, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 151.42 (Cq), 146.44 (Cq), 138.15 (Cq), 134.37 (Cq), 133.91 (Cq), 132.45 (CH), 129.01 (2×, CH), 127.15 (2×, CH), 124.40 (CH), 109.80 (CH), 60.96 (CH₃), 55.68 (CH₃), 48.68 (CH₂), 48.38 (CH₂), 36.47 (CH₂), 27.27 (CH₃); Anal. Calcd for C₁₈H₂₁NO₄S: C, 62.23; H, 6.09; N, 4.03. Found: C, 62.35; H, 6.28; N, 4.31.

4.5.2. 3-Benzenesulfonyl-8,9-dimethoxy-1-methyl-2,3,4,5-tetrahydro-1H-benzo[d]azepine (**1b**). Yield=83% (150 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₄NO₄S 362.1426, found 362.1430; ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.75 (m, 2H, aromatic CH), 7.51–7.42 (m, 3H, aromatic CH), 6.73 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.66 (d, *J*=8.4 Hz, 1H, aromatic CH), 4.45–4.41 (m, 1H, CH(CH₃)CH₂N), 4.11–4.10 (m, 1H, CH(CH₃)CH₂N), 3.81 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.22 (dd, *J*=2.8, 14.8 Hz, 1H, CH(CH₃)CH₂N), 3.11–3.05 (m, 1H, CH₂CH₂N), 2.93–2.89 (m, 1H, CH₂CH₂N), 2.70–2.66 (m, 1H, CH₂CH₂N), 2.55 (dd, *J*=6.4, 14.8 Hz, 1H, CH₂CH₂N), 0.79 (d, *J*=6.8 Hz, 3H, CH(CH₃)CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 151.78 (Cq), 147.32 (Cq), 141.39 (Cq), 134.88 (Cq), 132.23 (CH), 130.92 (CH), 129.04 (2×, CH), 126.90 (2×, CH), 126.12 (Cq), 1010.32 (CH), 61.02 (CH₃), 52.17 (CH₃), 48.18 (CH), 44.12 (CH₂), 40.87 (CH₂), 28.42 (CH₂), 16.01 (CH₃).

4.5.3. 3-Benzenesulfonyl-6,7-dimethoxy-2-methyl-2,3,4,5-tetrahydro-1H-benzo[d]azepine (**1c**). Yield=84% (152 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₄NO₄S 362.1426, found 362.1428; ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.76 (m, 2H, aromatic CH), 7.53–7.42 (m, 3H, aromatic CH), 6.70 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.63 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.70 (d, *J*=8.4 Hz, 1H, aromatic CH), 6.63 (d, *J*=8.4 Hz, 1H, aromatic CH), 4.49–4.45 (m, 1H, CH₂CH(CH₃)N), 4.12–4.06 (m, 1H, CH₂CH₂N), 3.81 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 3.31 (ddd, *J*=1.6, 6.4, 15.2 Hz, 1H, CH₂CH₂N), 3.11 (dd, *J*=2.8, 14.4 Hz, 1H, CH₂CH(CH₃)N), 2.98 (ddd, *J*=1.6, 10.4, 14.4 Hz, 1H, CH₂CH(CH₃)N), 2.66–2.59 (m, 1H, CH₂CH₂CH₂N), 2.62 (dd, *J*=6.0, 14.4 Hz, 1H, CH₂CH₂CH₂N), 0.78 (d, *J*=6.8 Hz, 3H, CH₂CH(CH₃)N); ¹³C NMR (100 MHz, CDCl₃): δ 151.45 (Cq), 146.30 (Cq), 141.40 (Cq), 133.71 (Cq), 132.08, 130.41 (CH), 128.94 (2×, CH), 126.78 (2×, CH), 125.62 (Cq), 109.63 (CH), 60.88 (CH₃), 55.57 (CH₃), 49.89 (CH), 42.10 (CH₂), 41.00 (CH₂), 27.47 (CH₂), 15.45 (CH₃).

4.5.4. 3-Benzenesulfonyl-6-methoxy-2,3,4,5-tetrahydro-1H-benzo[d]azepine (**1d**). Yield=90% (143 mg); colorless gum; HRMS (ESI, M⁺+1) calcd for C₁₇H₂₀NO₃S 318.1164, found 318.1166; ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.74 (m, 2H, aromatic CH), 7.59–7.44 (m, 3H, aromatic CH), 7.06 (d, *J*=7.6 Hz, 1H, aromatic CH), 6.72 (d, *J*=7.6 Hz, 1H, aromatic CH), 6.68 (d, *J*=7.6 Hz, 1H, aromatic CH), 3.76 (s, 3H, OCH₃), 3.31–3.28 (m, 2H, CH₂CH₂N), 3.26–2.24 (m, 2H, CH₂CH₂N), 3.12–3.10 (m, 2H, CH₂CH₂N), 3.00–2.97 (m, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 156.59 (Cq), 142.49 (Cq), 132.67 (Cq), 132.43 (CH), 128.99 (2×, CH), 127.66 (Cq), 127.21 (2×, CH), 127.14 (CH), 121.61 (CH), 109.14 (CH), 55.65 (CH₃), 48.20 (CH₂), 48.13 (CH₂), 36.69 (CH₂), 26.00 (CH₂).

4.5.5. 3-Benzenesulfonyl-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-benzo-[d]azepine (**1e**). For compound **5e** → **6e**, yield=94% (163 mg); for compound **5f** → **6e**, yield=94% (163 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₈H₂₂NO₄S 348.1270, found 348.1270; ¹H NMR (400 MHz, CDCl₃): δ 7.75–7.73 (m, 2H, aromatic CH), 7.54–7.44 (m, 3H, aromatic CH), 6.59 (s, 2H, aromatic CH), 3.80 (s, 6H, OCH₃), 3.29–3.27 (m, 4H, CH₂CH₂N), 2.93–2.90 (m, 4H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 146.92 (2×, Cq), 138.05 (Cq), 132.46 (Cq), 132.41 (CH), 128.95 (2×, Cq), 127.02 (2×, CH), 126.21 (CH), 113.13 (2×, CH), 55.88 (2×, CH₃), 48.53 (2×, CH₂), 36.42 (2×, CH₂).

4.5.6. 7,8-Dimethoxy-2-methyl-3-phenylsulfonyl-2,3,4,5-tetrahydro-1H-benzo[d]azepine (**1f**). For compound **5g** \rightarrow **6f**, yield=82% (148 mg); for compound **5h** \rightarrow **6f**, yield=80% (144 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₄NO₄S 362.1426, found 362.1428; ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.74 (m, 2H, aromatic CH), 7.50–7.43 (m, 3H, aromatic CH), 6.52 (s, 1H, aromatic CH), 6.51 (s, 1H, aromatic CH), 4.47–4.43 (m, 1H, CH₂CH(CH₃)N), 4.09–4.03 (m, 1H, CH₂CH₂CH₂N), 3.81 (s, 6H, OCH₃), 3.12 (dd, *J*=2.8, 14.8 Hz, 1H, CH₂CH₂CH₂N), 3.08–3.01 (m, 1H, CH₂CH(CH₃)N), 2.95–2.88 (m, 1H, CH₂CH(CH₃)N), 2.71–2.66 (m, 1H, CH₂CH₂N), 2.59 (dd, *J*=6.4, 14.8 Hz, 1H, CH₂CH₂CH₂N), 0.80 (d, *J*=6.8 Hz, 3H, CH₂CH(CH₃)N); ¹³C NMR (100 MHz, CDCl₃): δ 147.09 (Cq), 146.99 (Cq), 141.38 (Cq), 132.05 (CH), 131.83 (Cq), 129.11 (CH), 128.90 (2×, CH), 126.75 (2×, CH), 114.20 (CH), 112.98 (CH), 55.97 (CH₃), 55.85 (CH₃), 50.02 (CH), 42.13 (CH₂), 40.94 (CH₂), 36.51 (CH₂), 14.47 (CH₃).

4.6. 3-Benzenesulfonyl-8,9-dimethoxy-4,5-dihydro-3*H***-benzo-[***d***]azepine-2-carbonitrile (7)**

N-Bromosuccinimide (NBS, 90 mg, 0.5 mmol) was added to a solution of compound 6a (173 mg, 0.5 mmol) with trimethylsilyl cyanide (TMSCN, 3 mL) in CH₂Cl₂ (10 mL) at rt. The reaction mixture was stirred at rt for 5 min. Boron trifluoride etherate (BF₃·OEt₂, \sim 0.1 mL) was added to the reaction mixture. The reaction mixture was stirred at rt for 3 h. Saturated NaHCO_{3(aq)} solution (2 mL) was added to the reaction mixture and the solvent was concentrated under reduced pressure. The residue was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexane/ethyl acetate=6/ 1–3/1) afforded compound **7**. Yield=82% (152 mg); colorless oil; HRMS (ESI, M⁺+1) calcd for C₁₉H₁₉N₂O₄S 371.1066, found 371.1070; ¹H NMR (400 MHz, CDCl₃): δ 7.91–7.88 (m, 2H, aromatic CH). 7.57-7.53 (m, 1H, aromatic CH), 7.49-7.44 (m, 2H, aromatic CH), 7.37 (s, 1H, CH=C(CN)N), 6.82 (br s, 2H, aromatic CH), 3.83 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.81 (t, J=5.2 Hz, 2H, CH₂CH₂N), 2.99 (d, *I*=5.2 Hz, 2H, CH₂CH₂N); ¹³C NMR (100 MHz, CDCl₃): δ 150.95 (Cq), 147.74 (Cq), 138.57 (Cq), 133.30 (CH), 132.32 (Cq), 130.53 (CH), 129.09 (2×, CH), 127.38 (2×, CH), 125.78 (Cq), 124.73 (CH), 116.96 (Cq), 114.11 (CH), 111.72 (Cq), 61.29 (CH₃), 55.89 (CH₃), 50.91 (CH₂), 35.61 (CH₂).

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China for its financial support (NSC 99-2113-M-037-006-MY3).

Supplementary data

Scanned photocopies of ¹H and ¹³C NMR spectral data were supported. Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2012.10.017.

References and notes

1. For Lorcaserin, see: (a) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. J. Med. Chem. 2008, 51, 305; (b) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Thomsen, W. J.; Saldana, H. R.; Whelan, K. T.; Menzaghi, F.; Webb, R. R.; Beeley, N. R. A. Bioorg. Med. Chem. Lett. 2005, 15, 1467 For Fenoldopam, see: (c) Ladd, D. L.; Weinstock, J.; Wise, M.; Gessner, G. W.; Sawyer, J. L.; Flaim, K. E. J. Med. Chem. 1986, 29, 1904; (d) Weinstock, J.; Ladd, D. L.; Wilson, J. W.; Brush, C. K.; Yim, N. C. F.; Galladher, G.; McCarthy, M. E.; Silvestry, J.; Sarau, H. M.; Flaim, K. E.; Ackerman, D. M.; Setler, P. E.; Tobia, A. J.; Hahn, R. A. J. Med. Chem. 1986, 29, 2315 For SCH-23390, see: (e) Frishman, W. H. J. Clin. Pharmacol. 1998, 38, 2 For PNU 22394, see: (f) Garfield, A. S.; Heisler, L. K. J. Physiol. 2010, 587, 49; (g) McCall, R. B.; Franklin, S. R.; Hyslop, D. K.; Knauer, C. S.; Chio, C. L.; Haber, C. L.; Fitzgerald, L. W. Soc. Neurosci. Abstr. 2001, 27, 309 302. For Talipexole, see: (h) Maina, F. K.; Mathews, T. A. ACS Chem. Neurosci. 2010, 12, 450; (i) Ricci, D.; Taira, C. A. Gen. Pharmacol. 1999, 32, 29.

- (a) Weinstock, J.; Hieble, J. P.; Wilson, J. W., III. Drugs Future 1985, 10, 645; (b) Sorbera, L. A.; Castaner, J. Drugs Future 2003, 28, 652; (c) Boros, T.; Hamilton, S. M.; Katz, B.; Kulanthaivel, P. J. Antibiot. 1994, 47, 1010; (d) Pettersson, I.; Liljefors, T.; Bogeso, K. J. Med. Chem. 1990, 33, 2197; (e) Kaiser, C.; Dandridge, P. A.; Garvey, E.; Hahn, R. A.; Sarau, H. M.; Setler, P. E.; Bass, L. S.; Clardy, J. J. Med. Chem. 1982, 25, 697; (f) Micheli, F.; Bonanomi, G.; Braggio, S.; Capelli, A. M.; Celestini, P.; Damiani, F.; Di Fabio, R.; Donati, D.; Gagliardi, S.; Gentile, G.; Hamprecht, D.; Petrone, M.; Radaelli, S.; Tedesco, G.; Terreni, S.; Worby, A.; Heidbreder, C. Bioorg. Med. Chem. Lett. 2008, 18, 901; (g) Krull, O.; Wunsch, B. Bioorg. Med. Chem. 2004, 1439; (h) Yu, Y.; Wang, J.; Sun, P. H.; Guo, Y.; Zhang, Z.; Jin, G.; Zhen, X. J. Neurochem. 2008, 104, 946; (i) Sarkar, S.; Husain, S. M.; Schrpmann, D.; Frohlich, R.; Wunsch, B. Tetrahedron 2012, 68, 2687.
- 3. For Varenicline, see: (a) Coe, J. W.; Brooks, P. R.; Vetelino, M. G.; Wirtz, M. C.; Arnold, E. P.; Huang, J.; Sands, S. B.; Davis, T. I.; Lebel, L. A.; Fox, C. B.; Shrikhande, A.; Heym, J. H.; Schaeffer, E.; Rollema, H.; Lu, Y.; Mansbach, R. S.; Chambers, L. K.; Rovetti, R. S.; Schulz, D. W.; Tingley, F. D., III; O'Neill, B. T. J. Med. *Chem.* **2005**, 48, 3474 For Aphanorphine, see: (b) Bower, J. F.; Szeto, P.; Gallagher, T. Org. Biomol. Chem. **2007**, 5, 143 and references cited therein. For Lennoxamine, see: (c) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. Tetrahedron **2006**, 62, 3882 and references cited therein; (d) Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.; Ishibashi, H. Org. Lett. **2005**, 7, 4389; (e) Onozaki, Y.; Kurono, N.; Senboku, H.; Tokuda, M.; Orito, K. J. Org. Chem. **2009**, 74, 5486 For Cephalotaxine, see: (f) Tietze, L. F.; Modi, A. Med. Res. Rev. **2000**, 20, 304 and references cited therein.
- Condensation, see: (a) DeMarinis, R. M.; Krog, A. J.; Shah, D. H.; Lafferty, J.; Holden, K. G.; Hieble, J. P.; Mathews, W. D.; Regan, J. W.; Lefkowitz, R. J.; Caron, M. G. J. Med. Chem. **1984**, 27, 918; (b) Krull, O.; Wunsch, B. Bioorg. Med. Chem. **2004**, *12*, 1439; (c) Husain, S. M.; Frohlich, R.; Schepmann, D.; Wunsch, B. J. Org. Chem. **2009**, 74, 2788; (d) Husain, S. M.; Frohlich, R.; Wunsch, B. Tetrahedron: Asymmetry **2008**, *19*, 1613; (e) Foubelo, F.; Gomez, C.; Gutierrez, A.; Yus, M. J. Heterocycl. Chem. **2000**, *37*, 1061; (f) Garcia, D.; Foubelo, F.; Yus, M. Eur. J. Org. Chem. **2010**, 2893.
- Ring-expansion rearrangement, see: (a) Dixit, V. M.; Khanna, J. M.; Anand, N.; Chak, I. M. *Indian J. Chem.* **1975**, *13*, 893; (b) Kametani, T.; Premila, S. M.; Hirata, S.; Seto, H.; Hemoto, H.; Fukumoto, K. *Can. J. Chem.* **1975**, *53*, 3824;

(c) Dalence-Guzman, M. F.; Berglund, M.; Skogvallc, S.; Sternera, O. Bioorg. Med. Chem. 2008, 16, 2499.

- Friedel-Crafts electrophilic aromatic substitution reaction, see: (a) Deady, L. W.; Pirzada, N. H.; Topsom, R. D. J. Chem. Soc., Perkin Trans. 1 1973, 782; (b) Zhai, H.; Luo, S.; Ye, C.; Ma, Y. J. Org. Chem. 2003, 68, 8268; (c) Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923; (d) Kawase, M.; Motohashi, N.; Niwa, M.; Nozaki, M. Heterocycles 1997, 45, 1121; (e) Kawase, M.; Saito, S.; Motohashi, N. Int. J. Antimicrob. Agents 2000, 14, 193; (f) Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923.
- Heck reaction, see: (a) Tietze, L. F.; Schimpf, R. Synthesis **1993**, 876; (b) Worden, S. M.; Mapitse, R.; Hayes, C. J. *Tetrahedron Lett.* **2002**, 43, 6011; (c) Donets, P. A.; Van der Eycken, E. V. Org. Lett. **2007**, 9, 3017.
- Pummerer cyclization, see: Toda, J.; Ichikawa, T.; Saitoh, T.; Horiguchi, Y.; Sano, T. Heterocycles 2000, 53, 2009.
- (a) Chang, M.-Y.; Wu, M.-H.; Lee, N.-C.; Lee, M.-F. Tetrahedron Lett. 2012, 53, 2125;
 (b) Chang, M.-Y.; Tai, H.-Y.; Chen, Y.-L.; Hsu, R.-T. Tetrahedron 2012, 68, 7941.
- (a) Chang, M.-Y.; Wu, M.-H. Tetrahedron Lett. 2012, 53, 3173; (b) Chang, M.-Y.; Wu, M.-H.; Tai, H.-Y. Org. Lett. 2012, 14, 3936; (c) Chang, M.-Y.; Wu, M.-H. Tetrahedron 2012, 68, 9616.
- (a) Chang, M.-Y.; Lee, N.-C. Synlett 2012, 867; (b) Chang, M.-Y.; Wu, M.-H.; Lee, T.-W. Tetrahedron 2012, 68, 6224; (c) Chang, M.-Y.; Wu, M.-H.; Chen, Y.-L. Tetrahedron Lett. 2012, 53, 4156.
- (a) Ishiyama, H.; Yoshizawa, K.; Kobayashi, J. *Tetrahedron* **2012**, *68*, 6186;
 (b) Burkhard, J. A.; Tchitchanov, B. H.; Carreira, E. M. Angew. Chem., Int. Ed. **2011**, *50*, 5379.
- (a) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217; (b) Nielsen, T. E.; Meldal, M. Org. Lett. 2005, 7, 2695; (c) Nielsen, T. E.; Le Quement, S. T.; Meldal, M. Org. Lett. 2007, 9, 2469.
- (a) Kadouri-Puchot, C.; Comesse, S. Amino Acids 2005, 29, 101; (b) Watanabe, L. A.; Haranaka, S.; Jose, B.; Yoshida, M.; Kato, T.; Moriguchi, M.; Soda, S.; Nishino, N. Tetrahedron: Asymmetry 2005, 16, 903 and references cited herein; (c) Carballo, R. M.; Valdomir, G.; Purino, M.; Martin, V. S.; Padron, J. I. Eur. J. Org. Chem. 2010, 2304; (d) Leon, L. G.; Carballo, R. M.; Vega-Hernandez, M. C.; Martín, V. S.; Padron, J. I.; Padron, J. M. Bioorg. Med. Chem. Lett. 2007, 17, 2681; (e) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359 and references cited herein.
- (a) Chang, M.-Y.; Lee, M.-F.; Lee, N.-C.; Huang, Y.-P.; Lin, C.-H. Tetrahedron Lett.
 2011, 52, 588; (b) Chang, M.-Y.; Lee, T.-W.; Lin, C.-H. Tetrahedron 2011, 67, 4892; (c) Chang, M.-Y.; Lin, C.-H.; Lee, T.-W. Tetrahedron Lett. 2012, 53, 627.