Accepted Manuscript

Palladium-Catalyzed Hydrodehalogenation of Butenolides: An Efficient and Sustainable Access to β -Arylbutenolides

Milandip Karak, Luiz C.A. Barbosa, Celia R.A. Maltha, Thiago M. Silva, John Boukouvalas

PII:	S0040-4039(17)30737-2
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.06.016
Reference:	TETL 49008
To appear in:	Tetrahedron Letters
Received Date:	4 April 2017
Revised Date:	25 May 2017
Accepted Date:	6 June 2017

Please cite this article as: Karak, M., Barbosa, L.C.A., Maltha, C.R.A., Silva, T.M., Boukouvalas, J., Palladium-Catalyzed Hydrodehalogenation of Butenolides: An Efficient and Sustainable Access to β-Arylbutenolides, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.06.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters

journal homepage: www.elsevier.com

Palladium-Catalyzed Hydrodehalogenation of Butenolides: An Efficient and Sustainable Access to β -Arylbutenolides

Milandip Karak,^{a,b} Luiz C. A. Barbosa,^{a,b} * Celia R. A. Maltha,^b Thiago M. Silva,^a John Boukouvalas^{a,c}

^aDepartment of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, Brazil. ^bDepartment of Chemistry, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil. ^cDepartment of Chemistry and Centre for Green Chemistry and Catalysis, Université Laval, 1045 Av. de la Médecine, Quebec City, Quebec GIV 0A6, Canada.

ARTICLE INFO

ABSTRACT

Several α -unsubstituted β -arylbutenolides have been prepared in 69-92% yield by reductive dehalogenation of α -halo- β -arylbutenolides. The latter were assembled in a single-step from α , β -dihalobutenolides, which are accessible on a large-scale from biomass-derived furfural. Our dehalogenation protocol is illustrated by a new synthesis of the marine antibiotics rubrolide E and F, and 3"-bromorubrolide F.

2009 Elsevier Ltd. All rights reserved.

Article history: Received Received in revised form Accepted Available online

Keywords: Reductive dehalogenation Suzuki cross-coupling Vinylogous aldol condensation Rubrolides synthesis

1. Introduction

The α -unsubstituted β -arylbutenolide unit is found in several natural ¹ and unnatural products² endowed with significant biological activities. For instance, the synthetic drug benfurodil (Eucilat[®], 1) is used in the treatment of congestive heart failure^{2a} while β -(2,5-dihydroxyphenyl) butenolide (2),^{2c} a synthetic analogue of the natural product amisnolide (3),^{1c} displays antitumor activity comparable to that of Adriamycin[®].^{2c}

Given the medicinal value and demonstrated utility of β arylbutenolides as synthetic intermediates, a number of methods for their preparation have been developed.³⁻⁶ Among the most versatile are those involving transition metal catalyzed crosscoupling of tetronic acid derivatives.^{4a,5} In this regard, inexpensive mucohalic acids **4a-b** (ca. 0.20–1 US\$/gram) represent an attractive starting point as they are readily available on a large scale from furfural,⁷ obtained from raw biomass via acid-catalyzed dehydration of xylose⁸ (Scheme 1). Addition of chlorine or bromine to furfural affords the corresponding <u>mucohalic</u> acids⁷ that can be used in the synthesis of medicinally relevant compounds.⁹ For example, replacement of the hydroxyl group in mucochloric acid **4a** by amines provided a series of γ -amino derivatives displaying activity against *Trypanosoma cruzi*.¹⁰ On the other hand, **4a-b** can be easily reduced with sodium borohydride in the presence of sulfuric acid to afford α , β -dihalobutenolides **5a-b** in high yields.¹¹ These butenolides are also versatile, stable building blocks frequently employed in site-selective cross-coupling reactions leading to α -halo- β -aryl/alkyl butenolides. The latter have served as intermediates in the synthesis of a variety of bioactive compounds,¹² including the well-known COX-2 inhibitor rofecoxib (Vioxx[®]).^{12a,d}

Scheme 1. Sustainable access to α , β -dihalobutenolides from biomass

* Corresponding author. Tel.: +55 31 38993068; fax: +55 31 38993065; e-mail: lcab@ufmg.br

Tetrahedron

Given the ready availability α -halo- β -arylbutenolides from **5a-b**,¹² access to their α -unsubstituted counterparts would simply entail removal of the superfluous halogen.

Although many methods are available for the dehalogenation of aromatic halides,¹³ few have been shown to be applicable to α or β -halobutenolides.^{12a,14,15} Further, only two α -halo- β arylbutenolides have been dehalogenated thus far, notably by Rossi.^{12a} Both of them bear an α -bromo substituent. Their dehalogenation was carried out using either an excess of activated zinc powder (4 equiv) or Pd(OAc)₂/PPh₃ (3 mol% each) in the presence of HCOOH/Et₃N, affording the desired products in yields of 74% and 41%, respectively.^{12a}

Reported herein is a broader investigation of the latter process along with the development of a new procedure, applicable to a range of α -bromo and chloro- β -arylbutenolides. In addition, we describe an application of this chemistry to the synthesis of three rubrolide antibiotics, notably rubrolides E, F and 3"bromorubrolide F.¹⁶

2. Results and discussion

The quest to find optimal conditions for effecting Pdcatalyzed hydrodehalogenation of α -halo- β -arylbutenolides began with **6a** as a model substrate. This compound was prepared in 76% yield by Suzuki-Miyaura coupling of α , β dibromobutenolide **5b** with phenylboronic acid using a literature procedure.^{12k} Bromobutenolide **6a** was then subjected to reduction using different catalysts, ligands, amines/hydrogen sources and solvents, as outlined in Table 1.

At first, we tried the reaction conditions reported by Rossi^{12a} and found that the dehalogenated product 7a was obtained in only 29% yield (Table 1, entry 1). Next, we investigated the effect of the palladium salt (Table 1, entries 2–5). The use of $Pd(PPh_3)_4$ or $PdCl_2(PPh_3)_2$ in the presence or absence of formic acid resulted in low product yields (21-26%, entries 2-3). However, switching to other Pd-salts, such as Pd(PhCN)₂Cl₂ or Pd(MeCN)₂Cl₂, led to a substantial improvement in yield (58-59%, entries 4-5). A control experiment further revealed that the use of a mixture of an equimolar amount of formic acid and triethylamine resulted in a better yield than the use triethylamine alone as a hydrogen source (entry 5 vs 6). Replacing triphenylphosphine by other ligands (cf. triphenylarsine or dppf) did not improve yields (entries 7-8). Likewise, Hünig's base and triethylamine gave comparable yields (entry 5 vs 9). In terms of solvent, acetonitrile turned out to be the best choice, with DMF coming a close second (entries 9-14). Ultimately, it was found that the yield of 7a could be significantly improved (81%) by using a combination of palladium salts, notably equimolar quantities of Pd(OAc)₂ and Pd(MeCN)₂Cl₂, along with Hünig's base and formic acid in acetonitrile (entry 15). Given the elusive nature of the catalytic species involved in such processes,¹⁷ it is difficult to account for the enhanced performance of this particular procedure. That said, control experiments have shown that when either of the two palladium salts is used alone, the yield of 7a is substantially lower (Table 1, entry 15 vs entries 10 and 16).

 Table 1. Optimization of the Reductive Dehalogenation of 6a

Br Catalyst, Ligand						
		Hydrogen source				
Entry	Catalyst ^a	Ligand ^b	Hydrogen	Solvent	Yield ^f	
•	·	0	Source ^c		(%)	
1	Pd(OAc) ₂	PPh ₃	Et ₃ N ^d	DMF	29	
2	Pd(PPh ₃) ₄	-	$\mathrm{Et}_3\mathrm{N}^{\mathrm{d}}$	DMF	21	
3	$PdCl_2(PPh_3)_2$	-	Et ₃ N	DMF	26	
4	$Pd(PhCN)_2Cl_2$	PPh ₃	Et ₃ N ^d	DMF	58	
5	$Pd(MeCN)_2Cl_2$	PPh ₃	Et ₃ N ^d	DMF	59	
6	$Pd(MeCN)_2Cl_2$	PPh ₃	Et ₃ N	DMF	47	
7	$Pd(MeCN)_2Cl_2$	AsPh ₃	Et ₃ N ^d	DMF	31	
8	$Pd(MeCN)_2Cl_2$	dppf	Et ₃ N	DMF	22	
9	Pd(MeCN) ₂ Cl ₂	PPh ₃	DIPEA ^d	DMF	61	
10	Pd(MeCN) ₂ Cl ₂	PPh ₃	\mathbf{DIPEA}^{d}	MeCN	64	
11	Pd(MeCN) ₂ Cl ₂	PPh ₃	\mathbf{DIPEA}^{d}	Toluene	56	
12	Pd(MeCN) ₂ Cl ₂	PPh ₃	\mathbf{DIPEA}^{d}	DCM	33	
13	Pd(MeCN) ₂ Cl ₂	PPh ₃	\mathbf{DIPEA}^{d}	DMSO	58	
14	Pd(MeCN) ₂ Cl ₂	PPh ₃	DIPEA ^d	Dioxane	47	
15 ^e	Pd(OAc) ₂ /	PPh ₃	DIPEA^{d}	MeCN	81	
	Pd(MeCN) ₂ Cl ₂					
16	$Pd(OAc)_2$	PPh ₃	DIPEA ^d	MeCN	46	

^a Catalyst (5.0 mol%); ^b Ligand (10.0 mol%); ^c Hydrogen source/base (5.0 equiv.); ^d Mixture of equimolar amount of HCOOH and base (5.0 equiv. each); ^e Each catalyst was used in 2.5 mol%; ^f Isolated yield after purification by column chromatography; no other compound(s) could be isolated or identified from the crude reaction mixture.

Having uncovered an efficient procedure for converting **6a** to **7a**, the next task was to investigate the substrate scope. To this end, a range of α -halo- β -arylbutenolides were prepared in good yields by Suzuki cross-coupling^{12k} (Table 2, entries 1-8, 67-89%). For the sake of comparison, we also included in our study a known α -halo- β -alkylbutenolide (**6j**), synthesized from **5b** by cuprate addition-ellimination,¹⁸ as well as the starting α , β -dihalobutenolides **5a-b** (entries 9-10).

As seen from the results, our dehalogenation protocol worked well with all α -halo- β -arylbutenolides tried (Table 2, entries 1-8, 69-92%). However, the highest yields were obtained with substrates bearing an α -bromo substituent (cf. entry 1, **6b** *vs* **6b**'). Importantly, the butenolide halogen could be selectively removed in substrates equipped with a chloro or bromoaryl moiety (entries 3-6). Moreover, the nature of the aromatic substituent(s) had little impact to the yield of **7** (entries 1-8).

In contrast, replacement of the aryl substituent by an alkyl of similar steric bulk (cf. isopropyl) led to a modest yield of dehalogenated product **7j** (47%, entry 9). Further, attempts at removing the β -halogen from dihalobutenolides **5a-b** led to complex product mixtures containing only traces of the completely dehalogenated butenolide **5** (entry 10).

 Table 2. Substrate scope.

^a All yields refer to isolated products after purification by column chromatography. ^b 6j was prepared by cuprate addition-ellimination (ref. 18). ^c In both cases (**5a/5b**) decomposition of starting material was observed and no monohalogenated compound was detected by GC-MS analysis of the crude reaction mixture.

Next, we briefly explored the possibility of performing the Suzuki cross-coupling/dehalogenation sequence in one-pot fashion (Scheme 2). However, these efforts turned out to be only partially successful. Although we were able to generate **7b** or **7c** directly from dibromobutenolide **5b**, the formation of several side-products, including triphenylphosphine oxide and the corresponding α,β -diarylbutenolides (cf. **7b'** or **7c'**) made purification difficult. Thus, **7b** could be isolated in a fairly modest 57% yield when compared to that previously obtained by the 2-step route (cf. 82% overall, entry 1, Table 2).

Scheme 2. One-pot Suzuki coupling and reductive dehalogenation.

Tetrahedron

At this point, we turned our attention to the synthesis of the marine antibiotics rubrolide E, F and 3"-bromorubrolide F (9-11, Scheme 3). Besides antimicrobial activities,¹⁶ compounds 9-11 were recently shown to inhibit NO production, at concentrations of 10.53, 8.53 and 11.91 μ mol/L, respectively.^{4f} The simplest member of the family, rubrolide E 9 has been synthesized on numerous occasions in the past.^{4a-f} However, there is only one synthesis of rubrolides 10-11, reported in early 2017 by Jun and co-workers.^{4f} Jun's route begins from *p*-methoxyacetophenone and involves Wittig-Horner olefination and tandem SeO₂ oxidation/lactonization as key steps.^{4f} A deprotection-reprotection-deprtotection cycle was required to reach 10-11.^{4f} Our approach is substantially different, utilizing 7k as a common precursor to all three targeted rubrolides (Scheme 3).

Scheme 3. Synthesis of rubrolides F & E and 3"-bromorubrolide F

Thus, submission of dibromobutenolide **5b** to Suzuki crosscoupling, followed by dehalogenation and methyl ether cleavage afforded **7k** in 80% yield (3 steps). Next, one-pot vinylogous aldol condensation^{4a} of **7k** with 4-methoxybenzaldehyde (**8a**) directly provided rubrolide F (**10**, 69%). Likewise, using 3bromo-4-methoxybenzaldehyde (**8b**) instead of **8a**, 3"bromorubrolide F (**11**) was obtained in 81% yield. Finally, treatment of rubrolide F with boron tribromide uneventfully led to rubrolide E (**9**).

In conclusion, a new and efficient catalytic method for accomplishing hydrodehalogenation of α -halo- β -arylbutenolides was developed. The procedure is operationally simple and scalable, enabling low-cost access to a variety of α -unsubstituted β -arylbutenolides from sustainable, furfural-derived α , β -dibromo and dichlorobutenolides. Using this methodology, the marine antibiotics rubrolide E, F, and 3"-bromorubrolide F, were synthesized in 4-5 steps and overall yields of 54-65 %.

Acknowledgments

We thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research fellowship (LCAB, TMS), a Visiting Researcher Fellowship (JB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a PhD fellowship (MK), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support. We are grateful to Ms. Cristiane Cerceau for technical assistance with the NMR experiments.

Supplementary Material

Supplementary data (detailed experimental procedures, compounds characterization data, and copies of 1 H and 13 C NMR spectra for all new compounds) associated with this article can be found, in the online version.

References and notes

- (a) Schneider, P.; Jacobs, J. M.; Neres, J. O.; Aldrich, C. C.; Allen, C.; Nett, M.; Hoffmeister, D. *ChemBioChem* **2009**, *10*, 2730; (b) Pauly, J.; Nett, M.; Hoffmeister, D. *J. Nat. Prod.* **2014**, *77*, 1967; (c) Chang, C.-W.; Chang, H.-S.; Cheng, M.-J.; Peng, C.-F.; Chen, I.-S. Helv. Chim. Acta **2015**, *98*, 347.
- (a) Schmitt, J.; Sugnet, M.; Salle, J.; Comoy, P.; Callet, G.; LeMeur, J. *Chim. Ther.* **1966**, 5-6, 305; (b) Evers, B.; Jesudason, C. D.; Karanjawala, R. E.; Remick, D. M.; Ruehter, G.; Sall, D. J.; Schotten, T.; Siegel, M. G.; Stenzel, W.; Stucky, R. D. In Beta3 adrenergic agonists; WO2002006276, **2002**; (c) Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ann, B.-Z. Arch. Pharm. Res. **2002**, 25, 590; (d) Kumar, N.; Iskander, G. In Furanone compounds and lactam analogues thereof; WO2008040097, **2008**.
- Reviews: (a) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287; (b) Bellina, F.; Rossi, R. Curr. Org. Chem. 2004, 8, 1089; (c) Cunha, S.; Oliveira, C. C. Quím. Nova 2011, 34, 1425; (d) Zhang, J.; Sarma, K. D.; Curran, T. T. Synlett 2013, 24, 550; (e) Barbosa, L.; Teixeira, R.; Amarante, G. Curr. Org. Synth 2015, 12, 746. (f) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Curr. Org. Chem. 2017, 21, 964.
 (a) Boukouvalas, J.; Lachance, N.; Ouellet, M.; Trudeau, M. Tetrahedron Lett. 1998, 39, 7665 and cited refs; (b) Kar, A.; Argade, N. P. Synthesis 2005, 2005, 2284; (c) Chavan, S. P.; Pathak, A. B.; Pandey, A.; Kalkote, U. R. Synth. Commun. 2007, 37, 4253; (d) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Synlett 2009, 2009, 1277; (e) Tale, N. P.; Shelke, A. V.; Tiwari, G. B.; Thorat, P. B.; Karade, N. N. Helv. Chim. Acta 2012, 95, 852. (f) Damodar, K.; Kim, J.-K.; Jun, J.-G. Tetrahedron Lett. 2017, 58, 50.
 - (a) Wu, J.; Zhu, Q.; Wang, L. Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670; (b) Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3943; (c) Boukouvalas, J.; Pouliot, M. Synlett 2005, 2005, 343; (d) Le Vézouët, R.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. Tetrahedron 2006, 62, 12252 (e) Boukouvalas, J.; McCann, L. C. Tetrahedron Lett. 2010, 51, 4636; (f) Hua, Y.; Ding, Q.; Ye, S.; Peng, Y.; Wu, J. Tetrahedron 2011, 67, 7258; (g) Boukouvalas, J.; McCann, L. C. Tetrahedron Lett. 2011, 52, 1202; (h) Cheval, N. P.; Dikova, A.; Blanc, A.; Weibel, J.-M.; Pale, P. Chem. Eur. J. 2013, 19, 8765.
- (a) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391. (b) Kumar, Y. K.; Kumar, G. R.; Reddy, M. S. Org. Biomol. Chem. 2016, 14, 1252.
- (a) Simonis, H. Ber. Dtsch. Chem. Ges. 1899, 32, 2085; (b) Simonis, H. Ber. Dtsch. Chem. Ges. 1901, 34, 509; (c) Mowry, D. T. J. Am. Chem. Soc. 1950, 72, 2535.
- (a) Danon, B.; Marcotullio, G.; de Jong, W. *Green Chem.* 2014, *16*, 39.
 (b) Wang, J.; Liu, X.; Hu, B.; Lu, G.; Wang, Y. *RSC Adv.* 2014, *4*, 31101.
- (a) Blazecka, P. G.; Belmont, D.; Curran, T.; Pflum, D.; Zhang, J. Org. Lett. 2003, 5, 5015; (b) Kerdesky, F. A. J.; Leanna, M. R.; Zhang, J.; Li, W.; Lallaman, J. E.; Ji, J.; Morton, H. E. Org. Process Res. Dev. 2006, 10, 512; (c) Biswas, K.; Gholap, R.; Srinivas, P.; Kanyal, S.; Sarma, K. D. RSC Adv. 2014, 4, 2538.
- 10. Gondela, E.; Walczak, K. Z. Eur. J. Med. Chem. 2010, 45, 3993.
- 11. Rossi, R.; Bellina, F. Synthesis 2007, 2007, 1887.
- (a) Rossi, R.; Bellina, F.; Raugei, E. Synlett 2000, 2000, 1749; (b) 12. Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2001, 42, 3851; (c) Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2002, 43, 2023; (d) Zhang, J.; Blazecka, P. G.; Belmont, D.; Davidson, J. G. Org. Lett. 2002, 4, 4559; (e) Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org. Chem. 2003, 2003, 2290; (f) Barbosa, L. C. A.; Maltha, C. R. A.; Lage, M. R.; Barcelos, R. C.; Donà, A.; Carneiro, J. W. M.; Forlani, G. J. Agric. Food Chem. 2012, 60, 10555; (g) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L. Eur. J. Med. Chem. 2014, 82, 127; (h) Varejao, J. O. S.; Barbosa, L. C. A.; Maltha, C. R. A.; Lage, M. R.; Lanznaster, M.; Carneiro, J. W. M.; Forlani, G. Electrochim. Acta 2014, 120, 334; (i) Varejão, J. O. S.; Barbosa, L. C. A.; Ramos, G. Á.; Varejão, E. V. V.; King-Díaz, B.; Lotina-Hennsen, B. J. Photochem. Photobiol. B 2015, 145, 11-18; (j) Lei, M.; Gan, X.; Zhao, K.; Chen, A.; Hu, L. Tetrahedron 2015, 73,

3325; (k) Karak, M.; Acosta, J. A. M.; Barbosa, L. C. A.; Boukouvalas, J. Eur. J. Org. Chem. 2016, 2016, 3780.

- (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009; 13. (b) Chen, J.; Zhang, Y.; Yang, L.; Zhang, X.; Liu, J.; Li, L.; Zhang, H. Tetrahedron 2007, 63, 4266; (c) Jimenez, L.; Ramanathan, A. Synthesis 2010, 2010, 217. (d) Czaplik, W. M.; Grupe, S.; Mayer, M.; von Wangelin, A. J. Chem. Commun. 2010, 46, 6350; (e) Chelucci, G.; Baldino, S.; Ruiu, A. J. Org. Chem. 2012, 77, 9921; (f) Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
- 14. (a) Cunha, S.; Oliveira, C. C.; Sabino, J. R. J. Braz. Chem. Soc. 2011, 22, 598; (b) Xue, F.-L.; Qi, J.; Peng, P.; Mo, G.-Z.; Wang, Z.-Y. Lett. Org. Chem. 2014, 11, 64.
- 15. For the dehalogenation of β -bromo and β -iodobutenolides, see: (a) Meyers, A. I.; Spohn, R. F. J. Org. Chem. 1985, 50, 4872; (b) Sorg, A.; Siegel, K.; Brückner, R. Synlett 2004, 2004, 321; (c) Boukouvalas, J.; Beltrán, P. P.; Lachance, N.; Côté, S.; Maltais, F.; Pouliot, M. Synlett 2007, 2007, 219; (d) Kobayashi, K.; Naka, H.; Wheatley, A. E. H.; Kondo, Y. Org. Lett. 2008, 10, 3375.
- 16. (a) Miao, S.; Andersen, R. J. J. Org. Chem. 1991, 56, 6275; (b) Sikorska, J.; Parker-Nance, S.; Davies-Coleman, M. T.; Vining, O. B.; Sikora, A. E.; McPhail, K. L. J. Nat. Prod. 2012, 75, 1824.
- 17. For some pertinent studies, see: (a) Johansson Seechurn, C. C. C.; Sperger, T.; Scrase, T. G.; Schoenebeck, F.; Colacot, T. J. J. Am. Chem. Soc. 2017, 139, 5194 (b) Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092.
- 18. Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Pinheiro, P. F.; Varejão, J. O. S.; Montanari, R. M.; Andrade, N. J. Quím. Nova 2010, 33, 2020.

Highlights

 \checkmark An efficient reductive dehalogenation of α -

halo-β-arylbutenolides was developed

- \checkmark A protecting group free synthesis of rubrolides E and F is described
- \checkmark β-arylbutenolides were obtained by one-pot
 - process from α,β -dihalobutenolides
 - A regioselective dehalogenation of α -halo-
 - β -arylfuran-2(5H)-ones was developed