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Abstract. Aqueous formic acid (37%) as a green organocatalyst was used to synthesis ofα-aminophosphonates
in one-pot, three-component Kabachnik–Fields reaction. The structures of compounds were determined by FT-
IR, 1H-NMR and 13C-NMR spectroscopy. After optimization of the experimental conditions, the reaction was
carried out at 65 ◦C under solvent- free condition. Use of a nontoxic effective organocatalyst, easy work up
process and low-cost cleaning procedure are from the main advantages of this research.
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1. Introduction

The α-aminophosphonates and their derivatives are very
useful compounds with wide range of applications in
organic chemistry especially in medicinal chemistry.1

A large number of α- aminophosphonate derivatives are
known as antiviral,2 antifungal,3 antibacterial4 and anti-
tumor5 agents. Thus, they form an important class of
compounds with diverse biological activities (Figure 1).
Some other activities such as peptidomimetic,6 enz-

yme inhibitors,7 pharmacogenic agent,8 haptens of cat-
alytic antibodies,9 inhibitors of UDP-galactopyranose
mutase10 and antitumor agents11–13 have been rec-
ognized for these compounds. Some of significant
studies for synthesis of α- aminophosphonate deriva-
tives are such as: synthesis of di or tri-alkyl phos-
phite derivatives,14 hydrogenation of aziridinylphos-
phonate,15 aldol-type reactions of (isocyanomethyl)
phosphonates with aldehydes,16 addition of phosphites
to sulphimines17 and catalyzed Mannich-type reac-
tion.18 Among the versatile procedures, the Kabachnik
- Fields reaction is one of the basic methods for prepa-
ration of α-aminophosphonate which was discovered
in 1952 independently by Kabachnik19 and Fields.20

Recently some new researches have been reported for
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promotion of one-pot Kabachnik-Fields reaction such
as microwave irradiation, heating21 and acidic or basic
catalysts. Some Lewis acid catalysts, such as ZrOCl2 ·
5H2O,22 Mg(ClO4)2, 23 FeCl3,24 Al(H2PO4), 25 BiCl3,26

InCl3,27 YbCl3,28 In(OTf)3,
29 Ce(OTf)4,

30 Fe3O4@ZrO2

/SO2−
4 , 31 CAN,32 TaCl5SiO2,33 SmI2,34 LiClO4,35 and

some solid acids (montmorillonite KSF), silica sul-
phuric acid, and also some base catalysts like CaCl2,
PPh3 and other catalysts such as ZnO, TiO2, tosyl
chloride and mesoporous aluminosilicate nanocage36

have been used to succeed this reaction. In spite of all
researches, still there are some serious limitations such
as hard work up process, long reaction time and expen-
sive and toxic catalyst in these methods. With regard
to importance of removal of toxic and hazardous cata-
lysts from organic reactions, we decided to introduce
formic acid as an efficient and green organocatalyst
for synthesis of α-aminophosphonates with interest-
ing specifications in Kabachnik-Fields reaction. Formic
acid is a colourless liquid with a pungent, penetrating
odour and often used in an aqueous solution. Formica,
is Latin word of ant and name of formic acid has
been derived from its root referring to its early iso-
lation by the distillation of ants’ bodies. In nature,
formic acid has been found in the stings and bites
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Figure 1. α- aminophosphonate with biological activities.

of many insects of the order Hymenoptera, including
bees and ants. Furthermore formic acid is used as a
preservative and antibacterial agent in livestock feed.
Also it has been known as an important intermediate
in chemical synthesis. In synthetic organic chemistry,
it is used as a source of hydride ion which has been
reported in some reactions like Eschweiler-Clarke and
the Leuckart-Wallach. So its azeotrope with triethy-
lamine is applied as a source of hydrogen in transfer
hydrogenation. Sometime formic acid is employed as
a volatile pH modifier in HPLC and capillary elec-
trophoresis like acetic acid and trifluoroacetic acid.
Also, formic acid can be a convenient source of carbon
monoxide by being readily decomposed by sulphuric
acid. Another important chemical activity of formic
acid, is its useas reductant in combination with a cat-
alyst, for the transfer hydrogenation of anilines37 and
reduction of alkynes can selectively produce cis, trans-
alkenes and alkanes,38 α-substituted acetophenones,39

β-keto esters40 and nitroarenes. In aspect of physical
description it is a strong oxidizer, andwith strong caustic
properties. In our previouswork, we showed formic acid
as an efficient organocatalyst for synthesis of imines and
α-aminonitriles in Strecker reaction.41 In this work, in
order to favour environmental considerations, we used
aqueous formic acid as a green organocatalyst in the
synthesis of α-aminophosphonates through kabachnik -
field reaction.

2. Experimental

All of the chemicalswere obtained fromMerck and usedwith-
out further purification. Infrared (IR) spectra were obtained
on a Shimadzu FT-IR-8400S spectrophotometer using a KBr
pellet. Melting points were measured by an Electro thermal
9100 apparatus. Analytical TLC was performed on Merck
0.2 mm silica gel 60 F-254 Al-plates. 1H NMR and 13C NMR
spectrawere recorded usingBrukerDRX-500Avance,Bruker
DRX-400 Avance and Bruker DRX-250 Avance spectrome-
ters at ambient temperature, respectively.

2.1 General procedure for the synthesis of
α-aminophosphonate

For synthesis of α-aminophosphonate 1c, in a 5 mL dry bal-
loon, a mixture of 15μL catalyst (formic acid (37%)) and
1 mmol aldehyde was combined, after that 1 mmol amine
and 1.2 mmol dimethylphosphite were added to the mixture.
The reaction proceeds under solvent free condition and 65 ◦C
temperature for a period of time on a vigorous magnetic stir-
rer. The progress of reaction by TLC in solvent samples 1: 1
hexane / ethyl acetate was followed. Finally, after completion
of the reaction, the solid product was filtered, washed with
deionized water. After recrystalization it was dried at room
temperature.

2.2 Spectral data of representative compounds

2.2a Dimethyl [(phenyl) (phenylamino) methyl] phos-
phonate 1a: M.p.: 90–92 ◦C, 1HNMR (400MHz, CDCl3):
δ 3.67 (d, J = 10.8Hz, 3H), 3.89 (d, J = 11.2Hz, 3H),
5.86 (m, 1H), 5.93 (d, 1H), 7.28-8.09 (m, 7 H) ppm. 13C
NMR (CDCl3, 100 MHz): δ = 53.70 (d, 2 JP,C = 6.7Hz),
54.4 (d, 2 JP,C = 7.6Hz), 54.7 (d, 1 JP,C = 152.0Hz), 114.3,
118.7, 123.0, 128.1, 129.0 (d, 2 JP,C = 4.4Hz),131.0, 134.7
(d, 2 JP,C = 2.5Hz), 146.6 (d,2 JP,C = 14.9Hz) ppm.

2.2b Dimethyl[(2-chlorophenyl)(phenylamino)
methyl]phosphonate 1b: M.p.: 128–129 ◦C, FT-IR (KBr,
νmax cm−1); 3311(N-H), 1602, 1519, 1232, 1033; 1H NMR
(CDCl3, 500MHz) = 3.4 (d, J = 10.4Hz, 3H), 3.8 (d,
J = 10.7Hz, 3H), 5.0 (br, NH, 1H), 5.36 (d, J = 24.6Hz,
1H), 6.6 (d, J = 7.6 (m, 9H).13C NMR (CDCl3, 125 MHz):
51. 04, 52.26, 54.24 (m), 114. 02, 119.13, 127.87, 129.39,
129.72, 130.05, 134.18, 134.41 (d, 2 JP,C =7.12 Hz), 145.87
(d, 2 JP,C = 14.7Hz).

2.2c Dimethyl [(4-chlorophenyl) (phenylamino)
methyl] phosphate 1c: M.p.: 139-140 ◦C, IR (KBr, νmax
cm−1): 3319(N-H), 1602, 1494, 1232, 1033; 1H NMR (500
MHz, CDCl3): δ 3. 55 (d, J = 10.8Hz, 3H), 3.79 (d, J =
10.5Hz, 3H), 4.98(d, 1 JP−H = 24Hz, 1H), 7.3-8.2 (m, 9H).
13C NMR (125MHz, CDCl3): δ = 53.8, 54.2, 56.1, 114.3,
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126.8, 128.2(d, 3 Jp−c = 5.5Hz), 128.4 (d, 3 Jp−c = 3.0Hz),
131.1, 132.2, 141.0, 146.6 (d, 2 Jp−c = 14.5Hz) ppm.

2.2d Dimethyl (4-Dimethyl amino phenyl) (N-pheny-
lamino) methylphosphonate 1d:: M.p.: 144 ◦C; IR (KBr,
νmax cm−1); 3446, 2926, 1350, 1251, 1167, 1030. 1H NMR
(CDCl3, 400 MHz): δ = 2.12 (s, 1H), 2.93 (s, 6 H), 3.51(d,
J = 10.4Hz, 3 H), 3.78 (d, J = 10.4Hz, 3 H), 4.70 (d,
1 JP−H = 23.6Hz, 2 H), 6.63(d, d, J = 8.6Hz, J = 0.8Hz,
2 H), 6.68 (m, 3 H), 7.12(m, 2 H), 7.32(t, t J = 6.8Hz,
J = 2Hz, 2 H) ppm.

2.2e Dimethyl(4- methoxy phenyl)(N-phenylamino)
methylphosphonate 1e: M.p.: 123-124 ◦C; IR (KBr, νmax
cm−1): 3290, 1602, 1508, 1240, 1024 cm−1; 1H NMR
(CDCl3, 400 MHz): 2.93 (s 3H), 3.50 (3H, d, J = 10.4Hz),
3.77 (d, J = 10.8Hz 3H), 4.74 (1H, d, 1 JP−H = 24.08Hz),
6.60 (d, d, J = 8.6Hz, J = 1.2Hz, 2H), 6.72(t, J = 7.2Hz
1H),6.90(d, J = 8.4Hz, 2H), 7.13(t, J = 8.2Hz, 2H),7.40(t,
t, J = 2.4Hz, 2.4 Hz, 2H), ppm; 13C NMR (CDCl3, 100
MHz): 54.01, 55.82, 57.52, 115.05, 115.74, 120.05, 128.87,
129.45, 129.73, 146.60, 146.90, 159.96 ppm.

2.2f Dimethyl(4-methylphenyl)(N-phenylamino)meth-
ylphosphonate 1f: M.p.: 128 ◦C; IR (KBr, νmax cm−1):
3313, 1602, 1498, 1232, 1031 cm−1; 1H NMR(400 MHz,
CDCl3): δ 2.18 (s, 3H), 3.49 (d, J = 10.4Hz, 3H), 3.79 (d,
J = 10.8Hz, 3H), 4.82 (d, 1 JP−H = 23.6Hz, 1H), 6.60 (d,d
J = 8.6Hz, J=1.2 Hz, 2H), 6.71 (t, J = 7.2Hz, 1H), 6.90
(d, J = 8.4Hz, 2H), 7.12 (t, J = 7.8Hz, 2H), 7.40 (t, t,
J = 6.4Hz, J = 2.4Hz 2H) ppm.

2.2g Dimethyl(Terephthal)(N-phenylamino)methylph-
osphonate 1g: M.p.: 130-135 ◦C; IR (KBr, νmax cm−1):
3290, 1602, 1508, 1240, 1024 cm−1; 1H NMR (CDCl3, 400
MHz): 2.83 (br, s 1H), (3.51 (3H, d, J = 10.4Hz), 3.77
(s, 3H), 3.80 (d, J = 1.2Hz, 3H), 4.77 (1H, d, 1 JP−H =
24.08Hz). 6.60-7.41 (9H, m) ppm; 13C NMR (CDCl3, 100
MHz):54.01, 55.82, 57.52, 115.05, 115.74, 120.05, 128.87,
129.45, 129.73, 146.60, 146.90, 159.96 ppm.

2.2h Dimethyl(4-chlorophenyl)(N-4-nitrophenyla-mino)
methylphosphonate 1J: M.p.: 160-162 ◦C; IR (KBr, νmax
cm−1): 3413(N-H), 3176(br O-H), 1602, 1504, 1231, 1029;
1H NMR (500 MHz, CDCl3): δ 3.45 (d, J = 10.5Hz, 3H),
3.74 (d, J = 10.7Hz, 3H), 4.73 (d, 1 JP−H = 23.8Hz, 1H),
5.82(br 2H) 6.60 (d, J = 7.5Hz, 2H), 6.70 (t, J = 7.2Hz,
1H), 6.79(d, J = 8.0Hz, 1H), 6.91 (d, J = 6.51Hz 1H), 7.07
(d, J = 7.6Hz, 2H), 7.17(m, 2H) ppm. 13C NMR (CDCl3,
125 MHz): 54.0, 54.1, 54.7-56.3(d, 1 Jc−p = 152Hz), 113.9,
114.4, 115.8, 118.7, 119.7, 129.2, 129.9, 136.7, 145.9, 146.0,
157.3 ppm.

2.2i Dimethyl(2,6-dichlorophenyl)(4-nitrophenyla-
mino)methylphosphonate 1k: M.p.: 135 ◦C; IR (KBr,
νmax cm−1): 3303, 2952, 1602, 1498, 1315, 1240, 1180,
1051, 1029 cm−1; 1H NMR (CDCl3, 400 MHz): δ = 3.65

(d, J = 10.8Hz, 3H), 3.90 (d, J = 11.2Hz, 3H), 5.90 (d
d, J = 9.2Hz, J = 30.8Hz 2 H),5.87(s br, 1H), 6.62 (d,
J = 9.2Hz, 2H) 7.22 (t,d, J = 8Hz, J = 2Hz 1 H), 7.30 (d,
J = 1.2Hz, 1H) 7.40 (d, t, J = 8Hz, J = 1.2Hz, 1H), 8.1
(d, J = 9.2Hz, 2H) ppm.

2.2j Dimethyl(4-nitrophenyl)(4-nitrophenylamino)
methylphosphonate 1l: M.p.: 123 ◦C; IR (KBr, νmax
cm−1): 3310, 1602, 1498, 1237, 1027cm−1; 1H NMR (500
MHz, CDCl3): δ 3.18 (d, J = 10.5Hz, 3H), 3.85 (d, J =
10.6Hz, 3H), 5.69 (d, J = 24.0, 1H), 6.58 (d, J = 8.0Hz,
2H), 6.69 (t, J = 7.6Hz, 1H), 7.06 (t, J = 7.7Hz, 2H), 7.47
(t, 7.7 Hz, 1H), 7.57 (t, J = 7.3Hz, 1H), 7.65 (t, 7.8 Hz, 1H),
7.83 (d, J = 7.3Hz, 2H), 7.94 (d, J = 8.1Hz, 1H), 8.26
(d, J = 8.7Hz, 1H) ppm. 13C NMR (CDCl3, 125 MHz):
δ = 50.96, 52.18, 54.13 (d, J = 7.1Hz), 114.04, 118.89,
123.03, 125.96 (m), 126.95, 129.10 (d. 3 JC−P = 3.6Hz),
129.55, 129.66, 131.79 (d, 3 JC−P = 4.5Hz), 134.30, 146.30
(d, 2 JC−P = 14.1Hz) ppm.

2.2k Dimethyl (Terephthal) (N-4-nitrophenylamino)
methylphosphonate 1m: M.p.: 237 ◦C, IR (KBr, νmax
cm−1); 3446, 2926, 1350, 1251, 1167, 1030. 1H NMR
(DMSO, 250 MHz): δ = 3.45 (m, 6H) 3.70 (m, 6H), 4.90(s
br), 5.05 (dd, J = 23.5Hz, J = 5.2Hz 2H), 6.70 (m, 4H),
7.39 (m, 6 H), 7.94(d, J = 8.5Hz 4H) ppm.

2.2l Dimethyl (4-methylphenyl) (N-4-nitrophenyla-
mino) methylphosphonate 1n: M.p.: 158 ◦C; IR (KBr,
νmax cm−1) 3306, 1600, 1500, 1313, 1240, 1027. 1H NMR
(400MHz, CDCl3 d6): δ = 2.34(s, 3H), 3.47 (d, J = 10.8Hz,
2H), 3.8 (d, J = 11.2, 3H), 4.83(d, J = 24Hz, 3H), 5.9 (s, br
1H), 6.6 (d, J = 9.2Hz, 2H), 7.2 (d, J = 8.0Hz, 2H), 7.35
(d d, J = 12.4Hz, J = 2.0Hz, 2H)8.0 (d, J = 10.8Hz, 2H)
ppm.

2.2m Dimethyl (3-hydroxyphenyl) (N-4-nitrophenyla-
mino)methylphosphonate 1p: M.p.: 165 ◦C, IR (KBr,
νmax cm−1) 3301, 2950, 1612, 1514, 1458, 1337, 1238,
1178, 1058, 1027. 1H NMR(CDCl3, 250 MHz): δ 3.41 (d,
J = 10.5Hz, 3 H), 3.68 (d, J = 14.2Hz, 3H), 4.71 (d,
J = 23.7, 1H), 5.49 (s, br, 1 H), 6.52 (d, J = 3.2Hz, 1H),
6.76 (d, J = 7.7Hz, 1H), 6.9 (m, 2 H), 7.14 (t, J = 7.7Hz,
1H) 7.96 (d, J = 7.2Hz, 1H) ppm.

2.2n Dimethyl(4-hydroxyphenyl)(N-4-nitrophenyla-
mino)methylphosphonate 1q: M.p.: 166 ◦C, IR (KBr,
νmax cm−1) 3298, 3074, 2921, 2852, 2432, 1600, 1546, 1490,
1328, 1278, 1234, 1178, 1112, 1091, 1051, 1024, 1H NMR
(CDCl3, 250 MHz): δ 3.4 (d, J = 10.5Hz, 3H), 3.70 (d,
J = 10.7Hz, 3 H), 4.74 (d, 1 JP−H = 23.5Hz, 1 H), 5.6 (s,
2H), 6.52 (d, J = 9Hz, 2H), 6.80 (d, J = 8.5Hz, 2H) 7.20
(d, J = 9.4, 2H), 7.96 (d, J = 9.2Hz, 2H) ppm.

2.2o Dimethyl(2-chlorophenyl)(4-methylphenyla-mino)
methylphosphonate 1r: M.p.: 158 ◦C, IR (KBr, νmax
cm−1) 3271, 3070, 2954, 2923, 2848, 1483, 1182.1H NMR
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Scheme 1. Kabachnik-Fields reaction by aqueous formic acid as organocatalyst.

Table 1. Optimization of reaction conditions for the synthesis of α-
aminophosphonate by aqueous formic acid as green organocatalyst.a

Entry Temp. (oC) Solvent Time(min) Catalyst(mL) Yield (%)

1 25 - 2h 0 Trace
2 25 - 25 15 45
3 40 - 25 10 50
4 65 - 25 10 85
5 80 - 25 10 80
6 65 H2O 25 10 -
7 65 EtOH 25 10 80
8 65 Toluene 25 10 80
9 65 n-Hexane 25 10 83
10 65 - 25 15 60
11 65 - 25 20 50
12 65 - 25 25 55

a 1 mmol aldehyde, 1 mmol amine and 1.2 mmol dimethylphosphate.

(CDCl3, 250 MHz): δ = 2.20 (s, 3 H), 3.46 (d, J = 10.5Hz,
3 H), 3.70 (d, J = 11Hz, 3 H), 3.71 (s, 3 H), 5.40 (d,
1 JP−H = 24.7Hz, 1H), 5.86 (s, br 1H), 6.53 (d, J = 8.3Hz,
2 H), 6.92 (d, J = 8.3Hz, 2 H), 7.25 (m, 2 H), 7.40 (d,
J = 8.2Hz, 1 H), 7.60 (d, J = 8.2Hz, 1 H) .13C NMR
(CDCl3, 62.9MHz): δ 20.3, 50.1, 52.5, 53.8 (m), 113.7, 126.8,
127.4 (d), 127.9, 128.8 (d), 129.2 (d), 129.5 (d), 129.8 ppm.

2.2p Dimethyl[(4-nitrophenyl)-(N-2-methylphenyla-
mino)methyl]phosphonate 1t: M.p.: 146-150 ◦C; IR
(KBr, νmax cm−1): 3331, 1602, 1498, 1449, 1230, 1028 cm−1;
1H NMR(250 MHz, CDCl3): δ 2.19 (s, 3H), 3.70 (d, J ==
8.0 Hz, 2H) 7.67 (d, J = 8.5Hz, 2H), 8.2 (d, J = 8.2Hz,
2H);13C NMR (CDCl3, 62.9MHz): δ 20.3, 54.2(m), 57.0(d),
114.0(d), 123.8(d), 123.9, 128.6(d), 129.8, 142.9 (d), 143.7
(d), 147.8(d) ppm.

3. Results and Discussion

Aqueous formic acid was used to synthesis of α-
aminophosphonate by a one-pot, three-component reac-
tion of aldehyde, amine and dimethylphosphite under
solvent-free conditions (Scheme 1).

3.1 Optimization of synthetic conditions for
kabachnik-fields reaction catalyzed by aqueous formic
acid

To determine the best experimental conditions, the reac-
tion of, 4-chlorobenzaldehyde, aniline and dimethyl-
phosphite was considered as the model of reaction
(Table 1).
For optimization of the best condition to carry out the
reaction different conditions were tested and the results
summarized in Table 1.
Positive effect of aqueous formic acid in promotion

of this reaction has been indicated in Table 1. With-
out using catalyst, No significant amount of product is
obtained after 2 h. To determine the optimum amount of
catalyst, we compared four diverse amounts of catalyst
and the results show that 10% is the best amount for this
reaction.More or lower than this range, can decrease the
yield percentage. To determination the best solvent con-
dition, some current solvent were tested and compared
with solvent free (SF) condition and SF had shown the
best result in this reaction. In aspect of temperature con-
ditions, among the various temperatures, the best result
was obtained at 65 ◦C (Table 2).
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Table 2. Synthesized derivatives of α-aminophosphonate in the presence of aqueous formic acid as reaction
organocatalysta.

Entry Amine Aldehyde Product Time
(min)

Yield
(%)

M.p (oC)
(found)

M.p (◦C)
(Ref)

1 Aniline PhCHO
P

NHPh

O

OMe
OMe

1a

30 85 94 90–9240

2 Aniline 2-(Cl)C6H4CHO
P

NHPh

O

OMe
OMe

Cl

1b

25 80 130 128–12941

3 Aniline 4-(Cl)C6H4CHO
P

NHPh

O

OMe
OMe

Cl

1c

18 85 138 139–14042

4 Aniline 4-[N(Me)2]PhCHO

P

NHPh

O

OMe
OMe

N
Me

Me

1d

30 87 145-150 14443

5 Aniline 4-(MeO)C6H4CHO P

NHPh

O

OMe
OMe

MeO

1e

25 78 123-125 123–12440

6 Aniline 4-(Me)C6H4CHO P

NHPh

O

OMe
OMe

1f

30 80 129 125–12831

7 Aniline Terephthaldehyde
P

NHPh
O

OMe
MeOP

NHPh

O
MeO
MeO

1g

15 86 130-135 164–16544

8 Aniline 1-naphthaldehyde

PPhHN
OMe
OMe

O 1h

30 62 144 143–145

9 Aniline 4-(NO2)C6H4CHO
P

NHPh

O

OMe
OMe

O2N

1i

25 78 127 127–12840

10 4-Nitroaniline 4-(Cl)C6H4CHO

P

HN
O

OMe
MeO

NO2

Cl 1J

20 78 168 160–16245

11 4-Nitroaniline 2,6-(Cl)2C6H3CHO

P

HN
O

OMe
MeO

NO2

Cl

CL
1k

35 85 135 (New)
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Table 2. (contd.)

Entry Amine Aldehyde Product Time
(min)

Yield
(%)

M.p (oC)
(found)

M.p (◦C)
(Ref)

12 4-Nitroaniline 4-(NO2)C6H4CHO

P

HN
O

OMe
MeO

NO2

O2N 1l

25 70 123 18646

13 4-Nitroaniline Terephthaldehyde

P
O

MeO
OMe P

O
OMe

OMe

NO2

NH

O2N

NH

1m

15 80 237 (New)

14 4-Nitroaniline 4-(Me)C6H4CHO

P

HN
O

OMe
MeO

NO2

1n

45 80 158 (New)

15 4-Nitroaniline 4-(OMe)C6H4CHO
P

HN
O

OMe
MeO

NO2

MeO 1o

35 80 153 150–15246

16 4-Nitroaniline 3-(OH)C6H4CHO

P

HN
O

OMe
MeO

NO2

HO

1p

35 72 165 (New)

17 4-Nitroaniline 4-(OH)C6H4CHO

P

HN
O

OMe
MeO

NO2

HO 1q

30 68 166 (New)

18 p-Toluidine 2-(Cl)C6H4CHO

P

HN
O

OMe
MeO

Me

CL

1r

25 80 158 (New)

19 p-Toluidine 4-(Cl)C6H4CHO

P

HN
O

OMe
MeO

Me

Cl 1s

20 80 137 134–137

20 p-Toluidine 4-(NO2)C6H4CHO

P

HN
O

OMe
MeO

Me

O2N 1t

25 83 146–150 209–21146
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Table 2. (contd.)

Entry Amine Aldehyde Product Time
(min)

Yield
(%)

M.p (oC)
(found)

M.p (◦C)
(Ref)

21 p-Toluidine 4-(MeO)C6H4CHO

P

HN
O

OMe
MeO

Me

MeO 1u

35 75 90 96–9946

22 p-Toluidine PhCHO

P

HN
O

OMe
MeO

Me

1v

25 77 70 68–7146

23 4-Bromoaniline PhCHO

P

HN
O

OMe
MeO

Br

1w

40 70 65 6047

a1 mmol aldehyde, 1 mmol amine and 1.2 mmol dimethylphosphate, 15μL catalyst (formic acid (37%)), 65 ◦C
temperature.
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Scheme 2. The reaction of, 4-chlorobenzaldehyde, aniline and dimethylphosphite to preparation of α

–aminophosphonates.

After optimization of the reaction condition, in order
to generalize the method, it was expanded with versatile
aldehydes and amines for synthesis of other derivatives
of α-aminophosphonates and the results were summa-
rized in (Table 2). Six derivatives including (Entry 11,
13, 14, 16, 17, 18) have been synthesized for the first
time in this work.

3.2 The proposed mechanism of the
Kabachnik–Fields reaction in the presence of aqueous
formic acid

The suggested mechanism to synthesis of α-amino-
phosphonate by aqueous formic acid as organocatalyst
is shown in Scheme 3.
As shown in Scheme 3, the first step is the acti-

vation of carbonyl groups in aldehydes by hydrogen
bond interaction with HCOOH (I). Second, a nucle-
ophilic addition of amine to activated carbonyl, cause
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R NH2 H2O

N
R

R2
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N H
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P

R2

R1

MeO
MeO O
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H

O
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(III)

1
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3

4

H2O

Scheme 3. The proposed mechanism of the Kabachnik—
Fields reaction by aqueous formic acid as organocatalyst.
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the formation of an imine intermediate (II). The forma-
tion of imine intermediate by formic acid was reported
in our former research41. Also, the addition of nucle-
ophilic phosphonate 3 to imine cause the formation of
α-aminophosphonate 4. After the separation of catalyst,
the pure product can be obtained.

4. Conclusions

Aqueous formic acid was demonstrated as a green and
effective organocatalyst in Kabachnik-Fields reaction to
synthesize α-aminophosphonate derivatives. The eco-
friendly and low cost organocatalysts and solvent free
condition provide considerable advantages for this pro-
cedure. Also, this method has shown several benefits
such as: easy work up process, short reaction time and
lack of toxicity. Six of the reported derivatives were syn-
thesized for the first time in this study.

Supplementary Information (SI)

Additional experimental data and spectroscopic character-
ization data are given in the Supplementary Information.
Supplementary Information is available at www.ias.ac.in/
chemsci.
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