Tetrahedron Letters 53 (2012) 7093-7096

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of N-aryl-D-glucosamines through copper-catalyzed C-N coupling

Chuanzhou Tao^{a,c,*}, Feng Liu^{a,b}, Weiwei Liu^{a,b,*}, Youmin Zhu^a, Yafeng Li^a, Xiaolang Liu^a, Jing Zhao^{c,*}

^a School of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, PR China

^b School of Chemical Engineering, China University of Mining and Technology, XuZhou 221116, PR China

^c State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history: Received 15 July 2012 Revised 16 October 2012 Accepted 18 October 2012 Available online 24 October 2012

Keywords: N-Aryl-D-glucosamine Copper Catalysis Cross-coupling

ABSTRACT

A catalytic protocol was developed to synthesize *N*-aryl-D-glucosamines from the corresponding aryl halides. Cross-coupling of 1,3,4,6-tetra-O-benzyl- β -D-glucosamine with aryl iodides or bromides was catalyzed with copper. Subsequent deprotection of the benzyl group gave the arylation product *N*-aryl-D-glucosamines.

© 2012 Elsevier Ltd. All rights reserved.

D-Glucosamine, produced commercially by the hydrolysis of crustacean exoskeletons, is one of the most abundant monosaccharides. D-Glucosamine and its N-substituted derivatives are found in numerous biologically active molecules¹ such as cell surface *N*-glycoproteins, proteoglycans, glycosylphosphatidylinositol (GPI) anchors, glycosphingolipids, lipopolysaccharides, and chitin/chitosan. Furthermore, these molecules have been used as ligands or organocatalysts to introduce chirality in catalytic asymmetric reactions.² Chemical modifications of D-glucosamine at the *N*-position mainly rely on acylation,³ Schiff-base formation⁴, azidation,⁵ and alkylation⁶ (Scheme 1). However, N-arylation of D-glucosamine has rarely been studied due to synthetic difficulty in the past. Only in a few examples N-arylation of D-glucosamine and aryl halides containing a strong electron-withdrawing group.⁷

Recently we have been interested in the copper-catalyzed arylation of nucleophiles.⁸ Herein we report the synthesis of *N*-aryl-D-glucosamines by the copper-catalyzed cross-coupling between aryl halides and D-glucosamine (Scheme 2) in the hope to develop more general and practical catalytic protocols for the synthesis of D-glucosamine derivatives.

Initially, D-glucosamine (1) and iodobenzene (2a) were selected as model substrates for the coupling reaction. Chemoselective copper-catalyzed N- or O-arylation of amino alcohols has been achieved with [O,O] ligands (Scheme 3).^{9,10} However, we could

Scheme 1. Chemical modification of D-glucosamine.

not obtain the N-arylation product **3a** from D-glucosamine with the reported ligands (Table 1, entries 1–3). We speculated that the hydroxyl groups, especially the 1-hydroxyl, have influence on the cross-coupling reaction. Then we turned to the protected D-glucosamine. 1,3,4,6-Tetra-O-benzyl- β -D-glucosamine (**4**)¹¹ was selected as a model substrate because the benzyl protecting group is stable in the catalytic system and can be readily removed under mild conditions (Scheme 2).¹²

The key step for the *N*-aryl-D-glucosamine (**3**) synthesis is the Cu-catalyzed cross-coupling between 1,3,4,6-tetra-*O*-benzyl- β -D-glucosamine (**4**) and aryl halides (**2**). Although a number of catalytic systems^{9,10,13} have been shown to promote the Cu-catalyzed arylation of amines, it remains unclear how the glycosyl and benzyl groups would affect the efficiency. Thus we evaluate the ligands in the cross-coupling of iodobenzene with 1,3,4,6-tetra-*O*-benzyl- β -D-glucosamine (Table 1).

As shown in Table 1, when 1,3,4,6-tetra-O-benzyl- β -D-glucosamine (**4**) was used as a surrogate for D-glucosamine (**1**), the cross-coupling could be achieved in 25 °C with Cul as catalyst and glycol, BINOL, and 2-acetylcyclohexanone as ligands, although the designed product is obtained in only 5–11% yield (entries 4–6). Then we elevated the temperature to 110 °C and a satisfactory

^{*} Corresponding authors. Tel.: +86 (518)85895121 (C.T., W.L.); tel.: +86 (25)83592672 (J.Z.).

E-mail addresses: chuanzhoutao@yahoo.com.cn (C. Tao), liuww323@yahoo.com. cn (W. Liu), jingzhao@nju.edu.cn (J. Zhao).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.10.069

Scheme 2. Synthesis of N-aryl-D-glucosamines.

Scheme 3. Ligands used in this study.

Table 1

Copper-catalyzed cross-coupling of *D*-glucosamine with iodobenzene (2a)^a

Entry	R	Cat.	Ligand	Base	Sol.	Temp.	Yield ^b (%)
1	Н	CuI	L1	Cs ₂ CO ₃	DMF	25	0
2	Н	CuI	L2	Cs ₂ CO ₃	DMF	25	0
3	Н	CuI	L3	Cs_2CO_3	DMF	25	0
4	Bn	CuI	L1	Cs_2CO_3	DMF	25	5
5	Bn	CuI	L2	Cs ₂ CO ₃	DMF	25	10
6	Bn	CuI	L3	Cs_2CO_3	DMF	25	11
7	Bn	CuI	L1	Cs_2CO_3	DMF	110	36
8	Bn	CuI	L2	Cs_2CO_3	DMF	110	40
9	Bn	CuI	L3	Cs_2CO_3	DMF	110	69 (81) ^c
10	Bn	CuI	L4	Cs_2CO_3	DMF	110	42
11	Bn	CuI	L5	Cs ₂ CO ₃	DMF	110	45
12	Bn	CuI	L6	Cs ₂ CO ₃	DMF	110	32
13	Bn	CuI	L7	Cs ₂ CO ₃	DMF	110	44
14	Bn	CuI	L3	K_2CO_3	DMF	110	33
15	Bn	CuI	L3	K_3PO_4	DMF	110	46
16	Bn	CuI	L3	Cs_2CO_3	DMSO	110	61
17	Bn	Cul	L3	Cs ₂ CO ₃	Toluene	110	34

 a Reaction conditions: 0.5 mmol 1 or 4,~1.5 mmol 2a,~20 mol % Cul, 40 mol % Ligand, 1.5 mmol base, 0.25 mL solvent, 20 h.

^b Isolated yields.

^c Reaction temperature = 130 °C.

yield (36–69%) was obtained (entries 7–9). 3-Acetylcoumarin, a ligand developed by our group previously,^{8c} was also investigated. However, a lower yield was obtained even when the temperature was increased to 110 °C (entry 10). Ligands from the amino acid (Scheme 3), which are known in the copper-catalyzed arylation of amines,¹³ were also evaluated. However, the yields were unsatisfactory and the coupling yields from *N*,*N*-dimethylglycosine, Lproline, and *N*-methyl-L-proline were 32–45% (entries 11–13).

Table 2

Cul/L3-catalyzed N-arylation of 1,3,4,6-tetra-O-benzyl- $\beta\text{-}D\text{-}glucosamine}$ (4) with aryl iodides and aryl bromides (2)^a

Table 2 (continued)

 a Reaction conditions: 0.5 mmol 4, 1.5 mmol 2, 20 mol % Cul, 40 mol % 2-acetyl-cyclohexanone, 1.5 mmol $Cs_2CO_3,$ 0.25 mL DMF, 130 °C.

^b Isolated yields.

^c At 145 °C.

Scheme 4. Deprotection of *N*-aryl-1,3,4,6-tetra-O-benzyl-β-D-glucosamines.

Subsequently, with the use of **L3** as the ligand, a range of combinations of bases and solvents were examined (entries 14–17), and the optimal condition was as follows: 20 mol % CuI as the catalyst, 40 mol % 2-acetylcyclohexanone as the ligand relative to 1,3,4,6tetra-O-benzyl- β -D-glucosamine, DMF as the solvent, and Cs₂CO₃ as the base at 130 °C.

Having identified the optimal catalytic system of Cul/2acetylcyclohexanone, we next examined the scope of the coupling of 1,3,4,6-tetra-O-benzyl- β -D-glucosamine with various aryl halides (Table 2).¹⁴ It was found that aryl iodides carrying electrondonating groups could be smoothly converted into the desired products with good isolated yields (65–81%, entries 1–3). The coupling of aryl iodides containing electron-withdrawing groups also afforded *N*-aryl-1,3,4,6-tetra-*O*-benzyl- β -D-glucosamines in moderate to good isolated yields (54–83%, entries 4–9). However, aryl iodides carrying an *ortho*-substituent failed to participate in the reaction (entry 10). Functional groups including ether, halo, ester, nitro, and cyano moieties were tolerated under the current conditions. Satisfactory yields (36–57%) of arylation products were obtained when the electron deficient aryl bromides (entries 11–13) were utilized.

The above arylation products can easily be converted into the target *N*-aryl-D-glucosamines. Many classic methods¹² are known to deprotect the benzyl group from alcohol, and hydrogenolysis catalyzed by Pd/C was employed to release the hydroxyl of *N*-aryl-1,3,4,6-tetra-O-benzyl- β -D-glucosamine. As shown in Scheme 4, under the standard conditions,¹² *N*-phenyl-D-glucosamine (**3a**) and *N*-(4-methoxyl phenyl)- D-glucosamine (**3c**) were obtained with high yields (76%, 87%).¹⁵

To conclude, we have developed a general, cheap, and practical catalytic protocol for the synthesis of *N*-aryl-*D*-glucosamines. 1,3,4,6-Tetra-*O*-benzyl- β -*D*-glucosamine is used as a *D*-glucosamine surrogate and Cul is used as the catalyst to achieve the C–N coupling. The efficiency and functional-group tolerance of this procedure have been demonstrated by the synthesis of a number of functionalized *N*-aryl-1,3,4,6-tetra-*O*-benzyl- β -*D*-glucosamines. The final *N*-aryl-D-glucosamines were easily obtained by deprotection of the benzyl protecting group. Given the fact that *D*-glucosamine derivatives play an important role in biomedical research and chiral molecule design, we anticipate that the method described in the present report will find applications in a number of fields such as pharmaceutical research and organic material synthesis.

Acknowledgments

We are grateful to the Open-end Funds of Jiangsu Key Laboratory of Marine Biotechnology (2009HS02), the Scientific and Technological Research Project of Lianyungang (CG1004), the Open-end Funds of Jiangsu Marine Resources R&D Institute (JSIMR10C05), the Project of Natural Science Foundation of Jiangsu Education Committee (10KJA170003, 10KJB150001), and China Postdoctoral Science Foundation (20110491383).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012. 10.069.

References and notes

- (a) Varki, A.; Cummings, D. C.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E. Essentials of Glycobiology, 2nd ed.; Cold Spring Habor Laboratory Press: New York, 2009; (b) Gandhi, N. S.; Mancera, R. L. Chem. Biol. Drug Des. 2008, 72, 455; (c) Paulick, M. G.; Bertozzi, C. R. Biochemistry 2008, 47, 6991; (d) Wang, L-X.; Huang, W. Curr. Opin. Chem. Biol. 2009, 13, 592; (e) Bryant, C. E.; Spring, D. R.; Gangloff, M.; Gay, N. J. Nat. Rev. Microbiol. 2010, 8, 8; (f) Taube, S.; Jiang, M.; Wobus, C. E. Viruses 2010, 1011, 2; (g) Liu, L.; Bennett, C. S.; Wong, C.-H. Chem. Commun. 2006, 21.
- (a) Tollabi, M.; Framery, E.; Goux-Henry, C.; Sinou, D. *Tetrahedron: Asymmetry* 2003, *14*, 3329; (b) Glegola, K.; Framer, E.; Goux-Henry, C.; Pietrusiewicz, K. M.; Sinou, D. *Tetrahedron* 2007, 63, 7133; (c) Glegola, K.; Johannesen, S. A.; Thim, L.; Goux-Henry, C.; Skrydstrup, T.; Framery, E. *Tetrahedron Lett.* 2008, *49*, 6635; (d) Agarwal, J.; Peddinti, R. K. *J. Org. Chem.* 2011, *76*, 3502.
- (a) Bendale, A. R.; Narkhede, S. B.; Jadhav, A. G.; Vidyasagar, G. J. Chem. Pharm. Res., 2010, 2, 225. (b) Vendrell, M.; Samanta, A.; Yun, S.-W. Org. Biomol. Chem. 2011, 9, 4760. (c) Bauer, T.; Ski, S. S. Appl. Catal. A: General 2010, 375, 247. (b) Cheuk, N. G. S.; Wang, G. J. Tetrahedron 2010, 66, 5962.
- (a) Mensah, E. A.; Yu, F.; Nguyen, H. M. J. Am. Chem. Soc. 2010, 132, 14288; (b) Pérez, E. M. S.; ávalos, M.; Babiano, R. Carbohydr. Res. 2010, 345, 23; (c) Silva, D. J.; Wang, H.-M.; Allanson, N. M.; Jain, R. K.; Sofia, M. J. J. Org. Chem. 1999, 64, 5926; (d) Cheng, A.; Hendel, J. L.; Colangelo, K. J. Org. Chem. 2008, 73, 7574.

- 5. (a) Emmadi, M.; Kulkarni, S. S. J. Org. Chem. 2011, 76, 4703; (b) Chang, K. L.; Zulueta, M. M.; Lu, X. A.; Zhong, Y. Q.; Hung, S. C. J. Org. Chem. 2010, 75, 7425.
- 6. Liberek, B.; Melcer, A.; Osuch, A.; Wakiec, R.; Milewski, S.; Wisniewski, A. Carbohydr. Res. 1876, 2005, 340.
- 7 (a) Kadunce, R. E. J. Chromatography A 1967, 30, 204; (b) Winkler, R., Jr.; Sandermann, H. J. Agric. Food Chem. 2008, 1992, 40; (c) Margret, B.; Christiane, R.; Brigitte, T.; Thomas, J.; Burkhard, S. Z. Naturforschung C 1995, 49, 719; (d) Koto, S.; Hirooka, M.; Yago, K.; Komiya, M.; Shimizu, T.; Kato, K.; Takehara, T.; Ikefuji, A.; Iwasa, A.; Hagino, S.; Sekiya, M.; Nakase, Y.; Zen, S.; Tomonaga, F.; Shimada, S. Bull. Chem. Soc. Jpn. 2000, 73, 173; (e) Frank, N.; Mustafa, A.; Horst, H.; Astrid, K.; Andreas, R.; Georg, S.; Ursula, H. DE 10129466, 2003.; (f) Yamamoto, T.; Nishiuchi, Y.; Teshima, T.; Matsuoka, H.; Yamada, K. Tetrahedron Lett. 2008, 49, 6876; (g) Jung, M. E.; Dong, T. A.; Cai, X.-L. Tetrahedron Lett. 2011, 52, 2533; (h) Hidenori, T.; Hiroshi, I.; Masahiro, K. WO2012086802, 2012.; (i) Hisakage, F.; Shiho, O.; Mikako, S.; Hideaki, M. Electrochemistry 2012, 80, 299.
- Our recent work about copper-catalyzed arylation of nucleophiles: (a) Tao, C.-Z.; Lv, A.-F.; Zhao, N.; Yang, S.; Liu, X.-L.; Zhou, J.; Liu, W.-W.; Zhao, J. Synlett 2011, 134. (b) Tao, C.-Z.; Liu, W.-W.; Lv, A.-F.; Sun, M.-M.; Tian, Y.; Wang, Q.; Zhao, J. Synlett 2010, 1355. (c) Tao, C.-Z.; Liu, W.-W.; Sun, J.-Y. Cao, Z.-L.; Li, H.; Zhang, Y.-F. Synthesis 2010, 1280. (d) Tao, C.-Z.; Liu, W.-W.; Sun, J.-Y. Chin. Chem. Lett. 2009, 20, 1170. (e) Tao, C.-Z.; Li, J.; Fu, Y.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2008, 49, 70. (f) Tao, C.-Z.; Cui, X.; Li, J.; Liu, A.-X.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2007, 48, 3525. (g) Tao, C.-Z.; Li, J.; Cui, X.; Fu, Y.; Guo, Q.-X. Chin. Chem. Lett. 2007, 18, 1199.
- (a) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742; (b) Shafir, A.; 9. Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3490; (c) Yu, H.-Z.; Jiang, Y.-Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.
- (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581; (b) Jiang, D.; 10. Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672.

- Aly, M. R. E.; Schmidt, R. R. Eur. J. Org. Chem. 2005, 4382.
 (a) Wuts, P. G. M.; Greene, T. W. In Greene's Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons, 2007, pp 106-120.; (b) Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981.
- 13. (a) Deng, W.; Wang, Y.-F.; Zou, Y.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2004, 45, 2311; (b) Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46, 7295; (c) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164; (d) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453; (e) Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2007, 26, 4546; (f) Yang, C.-T.; Fu, Y.; Huang, Y.-B.; Yi, J.; Guo, Q.-X.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 7398.
- 14. General procedure for coupling aryl iodides (**2**) with 1,3,4,6-tetra-0-benzyl-βp-glucosamine (4): An oven-dried Schlenk tube was charged with 1,3,4,6-tetra-O-benzyl-β-D-glucosamine 4 (288 mg, 0.5 mmol), CuI (20 mg, 20 mol %), and Cs₂CO₃ (490 mg, 1.5 mmol). The tube was evacuated and backfilled with nitrogen (this procedure was repeated three times). Then aryl halide 2 (1.5 mmol), 2-acetylcyclohexanone (26 µL, 40 mol %), and DMF (0.25 mL) were added under nitrogen. The tube was sealed and the reaction mixture was stirred at 130 °C for 16-20 h. The resulting suspension was cooled to room temperature and filtered through a pad of silica gel with the help of CH₂Cl₂ (50 mL). The filtrate was concentrated and the residue was purified by column chromatography (silica gel, EtOAc-PE) to afford the product 5.
- 15. General procedure for the deprotection of N-Aryl-1,3,4,6-tetra-O-benzyl-β-Dglucosamine(5): Under hydrogen atmosphere, a solution of 5 (0.5 mmol) in CH₃OH and EtOAc (4 mL + 2 mL) were stirred in the presence of Pd/C (10%, 100 mg) and trichloroacetic acid (80 mg, 0.5 mmol) at 40 °C. After 40 h the reaction mixture was cooled to room temperature and filtered through a pad of silica gel with the help of CH₃OH. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, CHCl₃-CH₃OH) to afford the product 3.