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Abstract: A titanium(III)-catalyzed radical cyclization to
unprotected 3-aminoindoles, 3-aminopyrroles, or 3-iminoindo-
lines is reported. The reaction is non-hazardous, scalable, and
allows facile isolation of the free products by extraction. The
method is demonstrated on a large substrate scope and it
further allows the direct installation of various nitrogen
protecting groups or the synthesis of building blocks for
peptide chemistry in a single sequence. Fused bisindoles can be
directly accessed from the cyclization products.

Aminated five-membered heterocycles are important build-
ing blocks in organic synthesis and indispensable to medicinal
chemistry.[1] In particular, 3-aminoindoles, 3-aminopyrroles,
and related heterocycles mark structural motifs of molecules
with striking biological activities.[2] Hence, there is a need for
efficient approaches to the corresponding synthetic precur-
sors. Modern catalytic methods, however, usually furnish
electronically deactivated and N-protected derivatives that
lead to undesired functional-group modifications in the
ensuing synthetic applications.[3] This problem also applies
to conventional anionic cyclizations to nitriles.[4] The develop-
ment of new synthetic approaches to electron-rich, unpro-
tected aminoindoles and aminopyrroles was impeded by the
low stability of the products in solution and in the solid
form.[5] As a consequence, nitration-reduction or azidation-
reduction sequences that present significant hazards still
constitute the main synthetic routes.[5–7] To overcome these
issues, we herein report an operationally convenient and
broadly applicable titanium(III)-catalyzed synthesis of unpro-
tected 3-aminated indoles, pyrroles, and iminoindoline prod-
ucts, which further allows a facile derivatization.

We contemplated that an in situ formed titanium(III)
catalyst would undergo a single-electron transfer to an
N-cyanoarylated or N-cyanoalkenylated imine, forming a sta-
bilized aminoalkyl radical (Scheme 1).[8] In accordance with
previous reports on TiIII-catalyzed cyclizations to nitriles,[9,10]

this would trigger a catalyst-controlled radical attack to the
nitrile,[11, 12] and depending on the nature of the imine an
aminoindole, aminopyrrole, or iminoindoline product is
ultimately received. The overall sequence would constitute
a catalytic reductive umpolung reaction,[13] that is comple-

mentary to F�rstner�s low-valent Ti-promoted and catalyzed
syntheses of indoles or pyrroles in terms of mechanism,
functional-group tolerance, and oxidation-state distribution
at the carbon centers involved.[14]

The cyclization of aldimine 1a to 3-aminoindole 2a served
as the starting point for the development of the new indole
synthesis [Eq. (1)]. Several parameters including the catalyst

type, reducing agent, and additives were optimized in a series
of screening experiments.[15] Importantly, no reaction was
observed in the absence of the catalyst. As expected, product
2a and related unprotected aminoindoles were found to be
unstable, which prevented standard chromatographic purifi-
cation. Crystallization from benzene or toluene–hexanes
mixtures under exclusion of light and oxygen was found to
be a viable way to enhance the product purity,[5c] but the yield
was be diminished. Gratifyingly, an acid–base extraction was
found to allow the isolation of 2a. Using these conditions and
only 5 mol% of titanocene dichloride, the desired product
was isolated in a yield of 92 % from a 2.5 mmol reaction.

A number of unprotected 3-aminoindoles was then
synthesized using this method to demonstrate the scope of
the titanium(III)-catalyzed cyclization (Scheme 2). Electron-

Scheme 1. Concept of a titanium(III)-catalyzed synthesis of unpro-
tected aminated heterocycles.
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rich and electron-poor substituents were tolerated in the para
and meta positions of a 2-aryl substituent and the correspond-
ing products 2b–2j were obtained in good to very good yields
(63–87%). Of particular interest were the smooth reactions
that were observed with the ortho-bromo or ortho-methyl
benzaldehyde-derived imines 1k and 1 l (83% and 92% yield,
respectively). Ortho-substitution was previously found to be
problematic for a number of titanium(III)-catalyzed reduc-
tive couplings.[10] Along these lines, the cyclization to
1-naphthyl-substituted 2m proceeded without problems in
85% yield. The method was further applied to the construc-
tion of thienyl- and benzodioxole-derived products 2n and
2o. Even a free 3-aminoindole containing two mildly elec-
tron-donating methyl groups in the backbone (2 p) could be
accessed in a very good yield of 90%.

All products shown in Scheme 2 were received after
extraction, either in analytically pure form or in> 95 % purity
as judged by NMR spectroscopy. Analysis had to be carried
out quickly because of the rapid decomposition of the free
products in solution. A number of the free aminoindoles
could be precipitated,[15] and limited storage (1–5 days) of the
neat products was possible at �20 8C under argon in the dark.

The titanium(III)-catalyzed cyclization was then tested in
the synthesis of 3-aminopyrroles. Corresponding pyrrolo-
amides play a unique role in the molecular recognition of
DNA,[2d,e] but the ways of preparing unprotected amino-
pyrrole building blocks are limited, in particular with regard
to fully substituted pyrroles. Only recently was 3-amino-
pyrrole itself prepared and characterized in solution.[5a] For
these reasons, we were delighted to find that the unprotected
aminopyrrole 4a was formed in good yield from readily
accessible aldimine 3a under standard reaction conditions
(Scheme 3).[15] The product was isolated in analogy to the
aminoindoles 2a–p by extraction in 88 % yield. In a similar
fashion but with 10 mol% catalyst and 1.5 equivalents of
chlorotrimethylsilane, 2-(o-bromophenyl)-substituted 4b was
obtained in 78% yield.[16]

In a parallel series of experiments we sought to investigate
whether N-cyanoarylated ketimines could be cyclized in
a similar fashion to the corresponding 3-iminoindolines
(Scheme 4). This transformation would be of interest, since
indoxyls, which can be obtained by hydrolysis of iminoindo-
lines,[17] occur in the skeleton of biologically active natural
products, such as brevianamide A or several duocarmy-
cins.[17b, 18] Using ketimine 5a, a brief survey of the cyclization
conditions then showed that the reaction can indeed be
achieved,[15] and a combination of rac-(ebthi)TiCl2 as catalyst
and manganese as reductant at 80 8C gave the best results,
minimizing the formation of unidentifiable byproducts. Fol-
lowing these conditions, the products 6a–c were furnished in
43–66% yield. To our delight, even an ester-substituted imine

Scheme 2. Scope of the cyclization to unprotected aminoindole prod-
ucts. [a] 2.5 mmol scale, identical to Equation (1). [b] 5 mmol scale.
[c] 0.2 mmol scale.

Scheme 3. Catalytic reductive synthesis of unprotected 3-aminopyr-
roles. [a] Reaction in presence of 10 mol% Cp2TiCl2 and 1.5 equiv
TMSCl.

Scheme 4. Catalytic reductive cyclization to iminoindolines. ebthi =
ethylenebis(tetrahydroindenyl).
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5d that was prepared from methyl phenylglyoxylate under-
went the cyclization to iminoindoline 6d in 55% yield.[19]

Then, it was probed whether the cyclization products 2
could be directly submitted after the extraction to sequential
modifications and couplings. Starting from imine 1a, a direct
Boc-protection of the 3-amino group of the crude cyclization
product was conveniently achieved with catalytic amounts of
ZrCl4 in 79% overall yield (7, Scheme 5).[20] In a similar
manner, an N-acetylation with Ac2O, a tosylation with tosyl
chloride, and a phthalimide formation using phthalic anhy-
dride were achieved in good yields in a single reaction
sequence (8–10). The strategy could also be applied to
a peptide coupling with Boc-Ala-OH and T3P (11). The
reaction proceeded smoothly and the 3-(2-phenyl)indolyl-
protected amino acid derivative was isolated in 73% yield.
This could become particularly useful for the introduction of
indoles into peptides.

With a direct cyclization-functionalization strategy at
hand, the scope of the titanium(III)-catalysis was further
expanded (Scheme 6). 3-Aminoindoles having a bromo- or
chloro-substituted backbone (12, 13) were isolated after
a sequential Boc protection in 84 % and 52 % overall yield.
N-Acyl and N-Boc 2-(o-bromophenyl)-3-aminoindoles 14 a
and 14 b and a corresponding N-Boc pyrrole 15 were prepared
in analogy on gram scale. The sequence also enabled the
isolation of aminoheterocycles that were difficult to isolate
otherwise, such as 2-styryl derivative 16, of which the
structure was confirmed by X-ray analysis.[21] 7-azaindoles,
which represent important structural motifs in medicinal
chemistry,[22] could be accessed as well if imines derived from
2-aminonicotinnitrile were employed (17, 72%). The product
could be conveniently isolated by filtration. The synthesis of

2-alkylated products currently represents a limitation of the
method, but 2-alkylated aminoindoles, such as 18, can be
conveniently obtained by hydrogenation of the corresponding
2-alkenyl derivative [Eq. (2)].

To show the value of our approach to other fields, we
applied it to the synthesis of fused bisindoles, which are
a family of organic semiconductors with increasing applica-
tion in the development of novel organic field-effect tran-
sistors (OFETs).[23] The access to such compounds, in
particular to unsymmetric ones, has been very limited until
recently. To this end, product 14b was submitted to copper-
promoted coupling conditions and the corresponding selec-
tively monoprotected building block 19 was received in 78%
yield [Eq. (3)].

In conclusion, an expedient titanium-catalyzed synthesis
of unprotected 3-aminoindoles, 3-aminopyrroles, and 3-imi-
noindolines was developed that excels in functional-group
compatibility and synthetic practicality. It further enables the
direct derivatization of the crude 3-aminoheterocycles, which
makes the overall sequence a valuable transformation for
medicinal chemistry, peptide chemistry, or organic functional-

Scheme 5. Direct sequential N-functionalization. Overall yields are
given with respect to 1a. a) Boc2O, ZrCl4 (10 mol%), THF, 23 8C, 24 h,
79%; b) Ac2O, Et3N, CH2Cl2, 0 8C ! 23 8C, 14 h, 71 %; c) TsCl, Et3N,
CH2Cl2, 0 8C ! 23 8C, 14 h, 58 %; d) Phthalic anhydride, [bmim][PF6],
80 8C, 24 h, 42%; e) Boc-Ala-OH, T3P (1.43m in DMF), Et3N, CH2Cl2,
0 8C ! 23 8C, 24 h, 73 %.

Scheme 6. Expansion of the substrate scope. The overall yield with
respect to the imine precursor is reported. [a] Gram scale. [b] Isolated
by filtration.
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material synthesis. A further extension of this cyclization
approach will be reported in due course.
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Aminoindoles, Aminopyrroles, and
Iminoindolines

Free at last : A titanium(III)-catalyzed
reductive cyclization allows the safe and
convenient synthesis of unprotected
aminoindoles, aminopyrroles, and other
aminated heterocycles. The novel cycli-

zation approach further enables the direct
functionalization at the nitrogen atom via
various coupling methods in a single
sequence.
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