ORIGINAL RESEARCH

Simple and efficient synthetic routes to bioactive s-triazinyl dithiocarbamate derivatives

R. M. Desai · D. K. Dodiya · A. R. Trivedi · V. H. Shah

Received: 6 December 2007/Accepted: 22 January 2008/Published online: 14 February 2008 © Birkhäuser Boston 2008

Abstract Series of 2,4-diarylamino-6-[N-(3'-methylphenyl)dithiocarbamoyl]-striazines (**4a–l**) and 2,4-bis[N-(3'-methylphenyl)dithiocarbamoyl]-6-arylamino-striazines (**7a–l**) were synthesized by two different synthetic routes. In the first route (**A**), 2,4,6-tricholoro-s-triazine (**1**) was condensed with N-(3-methylphenyl)ammoniumdithiocarbamate to afford compounds **3** or **6**, which on reaction with different aryl amines afforded compounds **4a–l** or **7a–l**. In the second route (**B**), condensation of **1** with different aryl amines yielded compounds **2a–l** or **5a–l**. On further treatment with N-(3-methylphenyl)ammoniumdithiocarbamate these afforded compounds **4a–l** or **7a–l**. The newly synthesized compounds **4a–l** and **7a–l** were characterized by elemental analyses, infrared (IR), and ¹H nuclear magnetic resonance (NMR) spectroscopic investigation. All the products were evaluated for their antibacterial and antifungal activity.

Keywords s-Triazinyl dithiocarbamates · Antibacterial activity · Antifungal activity

Introduction

In the family of heterocyclic compounds, nitrogen-containing heterocycles with sulfur atoms are an important class of compounds in medicinal chemistry. Dithiocarbamates and congeners have shown diverse biological activities as antibacterial (Chauhan *et al.*, 1987), antitubercular (Tiwari *et al.*, 1979), diuretic (Korablav *et al.*, 1977) and antihypertensive (Husain *et al.*, 1974) agents. The chemistry of nitrogen–sulfur heteroatoms, containing the s-triazines nucleus, is presently a popular area of research. The s-triazine derivatives are found to posses

Department of Chemistry, Saurashtra University, Rajkot 360 005, India e-mail: Shah_v_h@yahoo.com

R. M. Desai · D. K. Dodiya · A. R. Trivedi · V. H. Shah (🖂)

biological activities including antitubercular (Dabhi *et al.*, 1992), antitumor (Brzozowski *et al.*, 2000), anticancer (Sanders *et al.*, 1985), sedative (Tobe *et al.*, 1976), anti-inflammatory (Kambayashi *et al.*, 1975; Saxena *et al.*, 1994) and anthelmintic (Chauhan *et al.*, 1994). Compounds combining s-triazines and N-(3-methylphenyl)ammoniumdithiocarbamates are expected to possess pharmacological properties.

A slight variation in the substitution pattern of the s-triazine nucleus causes a marked difference in activities and may give rise to better medicines. Recent literature surveys reveals no single method for the synthesis of 2,4-diarylamino-6-[N-(3'-methylphenyl)dithiocarbamoyl]-s-triazines (4a–l) and 2,4-bis-[N-(3'-methylphenyl)-dithiocarbamoyl]-6-arylamino-s-triazines (7a–l). We report a simple and facile synthetic route for the condensation of 2,4,6-trichloro-s-triazine (1) with N-(3-methylphenyl)ammoniumdithiocarbamate. Compounds 4a–l and 7a–l were evaluated for antibacterial and antifungal activity.

Chemistry

The synthesis of 2,4-diarylamino-6-[N-(3'-methylphenyl)dithiocarbamoyl]-s-triazines (4a–l) and 2,4-bis-[N-(3'-methylphenyl)dithiocarbamoyl]-6-arylamino-striazines (7a–l) can be achieved by two synthetic routes. In the first route (A), condensation of 2,4,6-trichloro-s-triazine (1) with 1 and 2 moles of N-(3-methylphenyl)ammoniumdithiocarbamate afforded compounds 3 and 6, respectively, which, on treatment with 2 and 1 moles of different aromatic amines furnished the title compounds 4a–l and 7a–l, respectively. In the second route (B), 2,4,6-trichloros-triazine (1) was condensed with 2 and 1 moles of different aromatic amines to give compounds 2a–l and 5a–l, respectively, which on reaction with 1 and 2 moles of N-(3-methylphenyl)ammoniumdithiocarbamate furnished compounds 4a–l and 7a–l, respectively Scheme 1.

In another experiment, the authors also tried N-(3-methylphenyl)sodiumdithiocarbamate instead of N-(3-methylphenyl)ammoniumdithiocarbamate in both the routes. However, use of N-(3-methylphenyl)sodiumdithiocarbamate could not furnish the title compounds (4a-l and 7a-l). The failure of using the sodium salt can be attributed to the low ionization potential of the sodium ion of the salt N-(3methylphenyl)sodiumdithiocarbamate, which makes it to act as a strong Lewis acid, whereas all three chlorine atoms of **1** are highly electronegative, i.e., strong Lewis bases. According to the Lewis acid-base theory, every strong Lewis acid (electrophile) has a counterpart weak Lewis base (nucleophile) and vice versa. Thus, the sodium ion, being a strong electrophile. does not easily react with the strong nucleophile chloride ion. Thus, condensation of N-(3-methylphenyl)sodiumdithiocarbamate with 2a-l or 3 and 5a-l or 6 is not feasible by the removal of sodium chloride. On the other hand, the ammonium ion of the salt N-(3methylphenyl)ammoniumdithiocarbamate can act as a counterpart weak Lewis acid (electrophile) to the three chlorine atoms (strong nucleophile) of compound 1, which results in successive removal of ammonium chloride to furnish the desired compounds Scheme 2.

Scheme 1

Structure–Activity Relationship (SAR)

Antimicrobial activity

Preliminary antimicrobial testing has been carried out by the cup-plate method (Barry, 1976). The antimicrobial activity was carried out against three bacterial strains, *E. coli*, *B. subtilis*, and *S. pyogens*, and a fungal strain, *A. niger*. The reference drugs used for the comparison purpose were Ampicillin, Chloramphenicol, Norfloxacin and Griseofulvin. The activity of the samples and the reference drugs was assayed under identical conditions at 50 mg concentration in dimethyl sulfoxide (DMSO) as the control. Appropriate nutrient media were prepared and poured in to a sterile Petri dish of diameter 90 mm, under sterile conditions. After solidification of the media, test organisms from standard culture inoculum were swabbed all over the surface using a sterile cotton swab. Wells were prepared on the agar surface by a sterile cork borer of internal diameter 6 mm. With the help of a micropipette, the test compounds were loaded into the well and left to stand to allow the solution to diffuse totally in the medium. Plates were incubated at 37°C for 24 h and the zones of inhibition were measured in millimeters (Table 3).

Among the series of synthesized s-triazinyl derivatives, compounds **4e**, **4f**, and **4i** showed moderate antibacterial activity against *B. subtillis*, while compounds **7d** and **7f** exhibited comparatively very good antibacterial activity against *B. subtillis*,

497

Scheme 2

which may be due to the presence of 2-methylphenyl and 4-methylphenyl groups as the substituent R'. The wide-spectrum antibacterial activity of compound **7b** against *S. pyogens* and *E. coli* might be due to the presence of 4-chlorophenyl group. Further, compounds **4f** and **7c** were moderately active against *E. coli*. Looking at the antifungal activity results, compounds **4d**, **4e**, **4g**, **7f**, and **7i** exhibited excellent antifungal activity against *A. niger* as compared to the standard drug Griseofulvin, which led to the SAR conclusion that the presence of 2-methylphenyl, 4methylphenyl, and 2-methoxyphenyl substituents greatly increase the antifungal activity in the compounds **4a–I**, and that the presence of 4-methylphenyl and 2nitrophneyl substituents leads to better antifungal activity in the compounds **7a–I**.

Experimental

All the melting points were determined routinely in open capillaries and are uncorrected. The melting points are recorded in degrees Celsius. Formation and purity of the compounds was routinely checked by thin-layer chromatography (TLC) using silica gel-G and spots were located by iodine. ¹H NMR spectra were

recorded in CDCl₃ on a Brucker DRX-300 at 300 MHz using tetramethyl silane (TMS) as internal standard.

Route A: compounds 4a-l

Preparation of 2,4-dichloro-6-[N-(3'-methylphenyl)dithiocarbamoyl]-s-triazines (3)

An equimolar mixture of 2,4,6-trichloro-s-triazine (1) and N-(3-methylphenyl)ammoniumdithiocarbamate in dry acetone was stirred at 0°C for 3 h. The content was poured onto crushed ice. The solid obtained was filtered, dried and recrystallized from 95% ethyl alcohol.

Preparation of 2,4-di-(phenyl)amino-6-[N-(3-methylphenyl)dithiocarbamoyl]-s-triazines (4a)

A mixture of 2,4-dichloro-6-[N-(3-methylphenyl)dithiocarbamoyl]-s-triazine (3) (0.01 mole) and aniline (0.02 mole) in dioxane (50 ml) was stirred at 35° C for 3 h. and then the mixture was refluxed for 3 h at $85-90^{\circ}$ C. The content was poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

Similarly, the other compounds (4a–l) were prepared as mentioned above. The physical data are shown in Table 2.

Route B: compounds 4a-l

Preparation of 2,4-di-(phenyl)-amino-6-chloro-s-triazine (2a)

A mixture of 2,4,6-trichloro-s-triazine (1) (0.01 mole) and aniline (0.02 mole) in dry acetone (50 ml) was stirred at 0°C for 3 h and the content was further stirred for 3 h at 35°C. The content was poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

Similarly, the other compounds (2a–1) were prepared as mentioned above. The physical data are shown in Table 1.

Preparation of 2,4-di-(phenyl)-amino-6-[N-(3-methylphenyl)dithiocarbamoyl]-s-triazines (4a)

An equimolar mixture of 2,4-di(phenyl)amino-6-chloro-s-triazine (**2a**) and N-(3-methylphenyl)ammoniumdithiocarbamate in dioxane (50 ml) was refluxed on water bath at 90°C for 3 h. The content was poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

Similarly, other the compounds (4a–1) were prepared as mentioned above. The physical data are shown in Table 2, Table 3, Table 4.

Compound	R	Molecular formula	M.P. (°C)	Yield (%)
2a	Phenyl	C ₁₅ H ₁₂ ClN ₅	197	93
2b	4-Chlorophenyl	C15H10Cl3N5	222	90
2c	4-Ethoxyphenyl	C19H20ClN5O2	167	93
2d	2-Methylphenyl	C ₁₇ H ₁₆ ClN ₅	164	90
2e	3-Methylphenyl	C17H16ClN5	143	85
2f	4-Methylphenyl	C17H16ClN5	198	80
2g	2-Methoxyphenyl	C17H16ClN5O2	201	80
2h	4-Methoxyphenyl	C17H16ClN5O2	200	83
2i	2-Nitrophenyl	C15H10ClN7O4	229	85
2ј	4-Nitrophenyl	C15H10ClN7O4	303	86
2k	Morpholinyl	C11H16ClN5O2	203	90
21	Diethenoyl	C11H20ClN5O4	155	91
5a	Phenyl	$C_9H_6Cl_2N_4$	196	83
5b	4-Chlorophenyl	C ₉ H ₅ Cl ₃ N ₄	320	90
5c	4-Ethoxyphenyl	$C_{11}H_{10}Cl_2N_4O$	182	91
5d	2-Methylphenyl	$C_{10}H_8Cl_2N_4$	155	81
5e	3-Methylphenyl	$C_{10}H_8Cl_2N_4$	125	82
5f	4-Methylphenyl	$C_{10}H_8Cl_2N_4$	135	85
5g	2-Methoxyphenyl	$C_{10}H_8Cl_2N_4O$	175	84
5h	4-Methoxyphenyl	$C_{10}H_8Cl_2N_4O$	160	81
5i	2-Nitrophenyl	$C_9H_5Cl_2N_5O_2$	320	80
5j	4-Nitrophenyl	$C_9H_5Cl_2N_5O_2$	300	80
5k	Morpholinyl	C7H8Cl2N4O	255	90
51	Diethenoyl	$C_7H_{10}Cl_2N_4O_2$	200	89

Table 1 Physical data of compounds 2a-l and 5a-l

Route A: compounds 7a-l

Preparation of 2,4-bis-[N-(3'-methylphenyl)dithiocarbamoyl]-6-chloro-s-triazines (6)

A mixture of 2,4,6-trichloro-s-triazine (1) (0.01 mole) and N-(3-methylphenyl) ammoniumdithiocarbamate (0.02 mole) in dioxane (50 ml) was stirred at 0°C for 3 h and then the content further stirred for 3 h at 35°C. The content was poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

Preparation of 2,4-bis-[N-(3'-methylphenyl)dithiocarbamoyl]-6-(phenyl)amino-s-triazines (7a)

An equimolar mixture of 2,4-bis-[N-(3'-methylphenyl)dithiocarbamoyl]-6-chloro-striazine (6) and aniline in dioxane (50ml) was refluxed on water bath at 90°C for 3 h. The content was cooled and poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

No.	R	R'	Molecular formula	M.P. (°C)	Yield (%)
4a	3-Methylphenyl	Phenyl	$C_{23}H_{20}N_6S_2$	135	58
4b	3-Methylphenyl	4-Chlorophenyl	$C_{23}H_{18}N_6S_2Cl_2$	130	59
4c	3-Methylphenyl	4-Ethoxyphenyl	$C_{27}H_{28}O_2N_6S_2$	185	64
4d	3-Methylphenyl	2-Methylphenyl	$C_{25}H_{24}N_6S_2$	128	53
4e	3-Methylphenyl	3-Methylphenyl	$C_{25}H_{24}N_6S_2$	112	65
4f	3-Methylphenyl	4-Methylphenyl	$C_{25}H_{24}N_6S_2$	128	67
4g	3-Methylphenyl	2-Methoxyphenyl	$C_{24}H_{24}O_2N_6S_2$	111	49
4h	3-Methylphenyl	4-Methoxyphenyl	$C_{24}H_{24}O_2N_6S_2$	93	61
4i	3-Methylphenyl	2-Nitrophenyl	$C_{23}H_{18}O_4N_8S_2$	82	67
4j	3-Methylphenyl	4-Nitrophenyl	$C_{23}H_{18}O_4N_8S_2$	116	57
4k	3-Methylphenyl	Morpholinyl	C22H25ON7S2	133	56
41	3-Methylphenyl	Diethanoyl	$C_{22}H_{26}N_6S_2$	160	60
7a	3-Methylphenyl	Phenyl	$C_{25}H_{22}N_6S_4$	260	63
7b	3-Methylphenyl	4-Chlorophenyl	$C_{25}H_{21}N_6S_4Cl$	170	60
7c	3-Methylphenyl	4-Ethoxyphenyl	C27H26ON6S4	122	59
7d	3-Methylphenyl	2-Methylphenyl	$C_{26}H_{24}N_6S_4$	101	51
7e	3-Methylphenyl	3-Methylphenyl	$C_{26}H_{24}N_6S_4$	135	57
7f	3-Methylphenyl	4-Methylphenyl	$C_{26}H_{24}N_6S_4$	280	52
7g	3-Methylphenyl	2-Methoxyphenyl	C26H24ON6S4	132	57
7h	3-Methylphenyl	4-Methoxyphenyl	C26H24ON6S4	99	51
7i	3-Methylphenyl	2-Nitrophenyl	$C_{25}H_{21}O_2N_7S_6$	131	59
7j	3-Methylphenyl	4-Nitrophenyl	$C_{25}H_{21}O_2N_7S_6$	140	58
7k	3-Methylphenyl	Morpholinyl	$C_{20}H_{26}O_2N_8S_4$	109	61
71	3-Methylphenyl	Diethanoyl	$C_{20}H_{28}N_6S_4$	116	62

Table 2 Physical data of compounds 4a-l and 7a-I

Similarly, the other compounds (7a–l) were prepared as above. The physical data are shown in Table 2.

Route B: compounds 7a-l

Preparation of 2,4-dichloro-6-(4'-methoxyphenyl)amino-s-triazine (5a)

An equimolar mixture of 2,4,6-trichloro-s-triazine (1) and aniline in dry acetone (50 ml) was stirred at 0°C for 3 h. The content was cooled and poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

Preparation of 2,4-bis-[N-(3'-methylphenyl)dithiocarbamoyl]-6-(4'-methoxy phenyl)amino-s-triazines (7a)

A mixture of 2,4-dichloro-6-(4'-methoxyphenyl)amino-6-s-triazine (5a) (0.01 mole) and N-(phenyl)ammoniumdithiocarbamate (0.02 mole) in dioxane (50 ml) was

No.	R	R′	Zones of inhibition (mm)			
			B. subtilis	S. pyogens	E. coli	A.niger
4a	3-methylphenyl	Phenyl	12	15	13	17
4b	3-Methylphenyl	4-chlorophneyl	12	13	15	16
4c	3-Methylphenyl	4-Ethoxyphenyl	13	13	14	18
4d	3-Methylphenyl	2-Methylphenyl	12	11	12	23
4e	3-Methylphenyl	3-Methylphenyl	14	12	15	20
4f	3-Methylphenyl	4-Methylphenyl	15	15	19	14
4g	3-Methylphenyl	2-Methoxyphenyl	14	14	13	18
4h	3-Methylphenyl	4-Methoxyphenyl	12	15	12	17
4i	3-Methylphenyl	2-Nitrophenyl	15	14	15	16
4j	3-Methylphenyl	4-Nitrophenyl	13	15	13	17
4k	3-Methylphenyl	Morpholinyl	12	13	12	15
41	3-Methylphenyl	Diethanoyl	12	11	11	14
7a	3-Methylphenyl	Phenyl	15	12	12	12
7b	3-Methylphenyl	4-Chlorophenyl	18	18	15	17
7c	3-Methylphenyl	4-Ethoxyphenyl	14	15	16	12
7d	3-Methylphenyl	2-Methylphenyl	19	12	12	13
7e	3-Methylphenyl	3-Methylphenyl	13	12	13	14

4-Methylphenyl

2-Methoxyphenyl

4-Methoxyphenyl

2-Nitrophenyl

4-Nitrophenyl

Morpholinyl

Diethanoyl

stirred for 2 h at 35°C and then the content was refluxed on water bath at 90°C for 3 h. The content was cooled and poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from 95% ethyl alcohol.

19

15

15

14

16

13

12

06

22

28

19

_

13

11

14

13

17

14

12

06

26

22

26

_

13

15

15

17

15

12

12

06

24

19

25

_

20

14

15

19

16

13

13

06

_

_

20

Similarly, the other compounds (7a–l) were prepared as above. The physical data are shown in Table 2.

Conclusion

This research addresses a novel class of potent, wide spectrum antimicrobial compounds. The parent s-triazine and bis-s-triazine derivatives have shown good

7f

7g

7h

7i

7j

7k

71

DMSO

Ampicillin

Norfloxacin

Griseofulvin

Chloraphenicol

3-Methylphenyl

3-Methylphenyl

3-Methylphenyl

3-Methylphenyl

3-Methylphenyl

3-Methylphenyl

3-Methylphenyl

Table 4 IR and 1H NMR data of the compounds 4a-l and 7a-I

- IR (KBr) ν cm⁻¹: 3357 (N–H str.), 3011 (C–H str., aromatic), 2963 (C–H str., asym.), 2919 (C–H str., CH₃), 2848 (C–H str., CH₃), 1568 (N–H, str. def.), 1324 (C–N str.), 810 (C₃N₃ str., s-triazinyl), 719 (C–S str.). Mass: 458 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.89 (s, 3H, NH), 6.74–7.58 (m, 14H, Ar–H), 1.26 (s, 3H, –CH₃). Anal. calcd. for C₂₄H₂₂N₆S₂: C 62.86, H 4.84, N 18.33, S 13.98%. Found: C 62.74, H 4.72, N 18.24, S 13.87%.
- **4b** IR (KBr) ν cm⁻¹: 3351 (N–H str.), 3014 (C–H str., aromatic), 2969 (C–H str., asym.), 2919 (C–H str., CH₃), 2853 (C–H str., CH₃), 1572 (N–H, str. def.),1321 (C–N str.), 821 (C₃N₃ str., s-triazinyl), 756 (C–Cl str.), 716 (C–S str.). Mass: 493 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.76 (s, 3H, NH), 6.40–7.46 (m, 12H, Ar–H), 1.32 (s, 3H, CH₃). Anal. calcd. for C₂₄H₂₂N₆S₂Cl: C 58.46, H 4.29, N 17.05, S 13.01%. Found: C 58.33, H 4.18, N 16.98, S 12.89%.
- 4c IR (KBr) ν cm⁻¹: 3361 (N–H str.), 3012 (C–H str., aromatic), 2969 (C–H str., asym.), 2919 (C–H str., CH₃), 2851 (C–H str., CH₃), 1571 (N–H, str. def.),1322 (C–N str.), 1256 (Ar–O–C str.), 826 (C₃N₃ str., s-triazinyl), 723 (C–S str.) Mass: 502 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.79 (s, 3H, NH), 6.65–7.59 (m, 12H, Ar–H), 3.73 (s, 6H, OCH₃), 1.29 (s, 3H, CH₃). Anal. calcd. for C₂₆H₂₆N₆OS₂: C 62.13, H 5.21, N 16.72, S 12.76%. Found: C 62.04, H 5.12, N 16.60, S 12.64%.
- 4d IR (KBr) ν cm⁻¹: 3358 (N–H str.), 3013 (C–H str., aromatic), 2968 (C–H str., asym.), 2916 (C–H str., CH₃), 2850 (C–H str., CH₃), 1570 (N–H, str. def.),1326 (C–N str.), 818 (C₃N₃ str., s-triazinyl), 716 (C–S str.). Mass: 472 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.80 (s, 3H, NH), 6.69–7.49 (m, 12H, Ar–H), 1.34 (s, 9H, CH₃). Anal. calcd. for C₂₅H₂₄N₆S₂: C 63.53, H 5.12, N 17.78, S 13.57%. Found: C 63.42, H 5.03, N 17.64, S 13.49%.
- 4e IR (KBr) ν cm⁻¹: 3352 (N–H str.), 3009 (C–H str., aromatic), 2963 (C–H str., asym.), 2914 (C–H str., CH₃), 2849 (C–H str., CH₃), 1566 (N–H, str. def.),1328 (C–N str.), 812 (C₃N₃ str., s-triazinyl), 714 (C–S str.). Mass: 472 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.74 (s, 3H, NH), 6.66–7.45 (m, 12H, Ar–H), 1.30 (s, 9H, –CH₃). Anal. calcd. for C₂₅H₂₄N₆S₂: C 63.53, H 5.12, N 17.78, S 13.57%. Found: C 63.40, H 5.02, N 17.62, S 13.46%.
- **4f** IR (KBr) ν cm⁻¹: 3357 (N–H str.), 3016 (C–H str. aromatic), 2972 (C–H str. asym.), 2919 (C–H str. CH₃), 2851 (C–H str. CH₃), 1577 (N–H, str. def.),1319 (C–N str.), 812 (C₃N₃ str., s-triazinyl), 719 (C–S str.). Mass: 472 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.14 (s, 2H, NH), 6.68–7.50 (m, 12H, Ar–H), 1.34 (s, 9H, –CH₃). Anal. calcd. for C₂₅H₂₄N₆S₂: C 63.53, H 5.12, N 17.78, S 13.57%. Found: C 63.42, H 5.01, N 17.62, S 13.45%.
- **4g** IR (KBr) ν cm⁻¹: 3354 (N–H str.), 3008 (C–H str., aromatic), 2965 (C–H str., asym.), 2914 (C–H str., CH₃), 2847 (C–H str., CH₃), 1578 (N–H, str. def.),1314 (C–N str.), 1247 (Ar–O–C str.), 814 (C₃N₃ str., s-triazinyl), 710 (C–S str.). Mass: 488 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.89 (s, 2H, NH), 6.74–7.58 (m, 12H, Ar–H),3.84 (s, 6H, –OCH₃), 1.26 (s, 3H, –CH₃). Anal. calcd. for $C_{25}H_{24}N_6OS_2$: C 61.45, H 4.95, N 17.20, S 13.12%. Found: C 61.33, H 4.86, N 17.09, S 13.01%.
- 4h IR (KBr) ν cm⁻¹: 3352 (N–H str.), 3022 (C–H str., aromatic), 2960 (C–H str., asym.), 2912 (C–H str., CH₂), 2850 (C–H str. CH₃), 1314 (C–N str.), 1582 (N–H, str. def.),1248 (Ar–O–C str.), 809 (C₃N₃ str., s-triazinyl), 711 (C–S str). Mass: 488 (M⁺). ¹H NMR (CDCl₃) δppm: 8.90 (s, 2H, NH), 6.77–7.58 (m, 12H, Ar–H), 3.78 (s, 6H, –OCH₃), 1.19 (s, 3H, –CH₃). Anal. calcd. for C₂₅H₂₄N₆OS₂: C 61.45, H 4.95, N 17.20, S 13.12%. Found: C 61.35, H 4.84, N 17.07, S 13.01%.
- 4i IR (KBr) ν cm¹: 3349 (N–H str.), 3016 (C–H str., aromatic), 2951 (C–H str., asym.), 2916 (C–H str., CH₂), 2849 (C–H str., CH₃), 1313 (C–N str.), 1579 (N–H, str. def.), 812 (C₃N₃ str., s-triazinyl), 710 (C–S str). Mass: 503 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.88 (s, 3H, NH), 7.07–8.11 (m, 12H, Ar–H), 1.27 (s, 3H, –CH₃). Anal. calcd. for C₂₄H₂₁N₇O₂S₂: C 57.24, H 4.20, N 19.47, S 12.73%. Found: C 57.16, H 4.11, N 19.34, S 12.61%.
- IR (KBr) ν cm⁻¹: 3356 (N–H str.), 3021 (C–H str., aromatic), 2946 (C–H str., asym.), 2919 (C–H str., CH₂), 2853 (C–H str., CH₃), 1321 (C–N str.), 1575 (N–H, str. def.), 816 (C₃N₃ str., s-triazinyl), 711 (C–S str). Mass: 503 (M⁺). ¹H NMR (CDCl₃) δppm: 8.79 (s, 2H, NH), 7.01–8.16 (m, 12H, Ar–H), 1.23 (s, 3H, –CH₃). Anal. calcd. for C₂₄H₂₁N₇O₂S₂: C 57.24, H 4.20, N 19.47, S 12.73%. Found: C 57.12, H 4.09, N 19.35, S 12.62%.

Table 4 continued

- 4k IR (KBr) ν cm⁻¹: 3352 (N–H str.), 3022 (C–H str., aromatic), 2960 (C–H str., asym.), 2912 (C–H str., CH₂), 2850 (C–H str., CH₃), 1314 (C–N str.), 1582 (N–H, str. def.), 809 (C₃N₃ str., s-triazinyl), 711 (C–S str). Mass: 467 (M⁺). ¹H NMR (CDCl₃) δppm: 8.90 (s, 2H, –NH), 6.77–7.58 (m, 12H, Ar–H), 3.78 (s, 6H, –OCH₃), 1.19 (s, 3H, ⁺CH₃). 4.84 (t, 2H, –CH₂), 3.26–2.76 (d, 1H, –CH), 2.60–2.49 (t, 2H, –CH₂), 3.92–3.78 (t, 2H, –CH₂), 4.08 (s, 1H, –NH). Anal. calcd. for C₂₂H₂₅N₇OS₂: C 57.24, H 4.20, N 19.47, S 12.73%. Found: C 57.12, H 4.09, N 19.35, S 12.62%.
- **4I** IR (KBr) ν cm⁻¹: 3352 (N–H str.), 3022 (C–H str., aromatic), 2960 (C–H str., asym.), 2912 (C–H str., CH₂), 2850 (C–H str., CH₃), 1314 (C–N str.), 1582 (N–H, str. def.),1248 (Ar–O–C str.), 809 (C₃N₃ str. s-triazinyl), 711 (C–S str). Mass: 467 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.90 (s, 2H, NH), 6.77–7.58 (m, 12H, Ar–H), 3.78 (s, 6H, –OCH₃), 1.19 (s, 3H, –CH₃), 1.12 (t, 12H, –CH₃), 2.46 (q, 8H, –CH₂). Anal. calcd. for C₂₂H₂₆N₆S₂: C 56.51, H 5.39, N 20.97, S 13.71%. Found: C 56.40, H 5.27, N 20.82, S 13.62%.
- **7a** IR (KBr) ν cm⁻¹: 3354 (N–H str.), 3013 (C–H str., aromatic), 2946 (C–H str., asym.), 2862 (C–H str., CH₃), 1564 (C=S str.), 1549 (N–H str., def.), 1511 (C=C str., aromatic), 1311 (C–N str.), 812 (C₃N₃ str., s-triazinyl), 714 (C–S str.). Mass: 520 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.79 (s, 3H, NH), 6.81–7.54 (m, 13H, Ar–H), 1.21 (s, 6H, –CH₃). Anal. calcd. for C₂₄H₂₀N₆S₄: C 55.36, H 3.87, N 16.14, S 24.63%. Found: C 55.24, H 3.76, N 16.03, S 24.52%.
- **7b** IR (KBr) ν cm⁻¹: 3352 (N–H str.), 3012 (C–H str., aromatic), 2949 (C–H str., asym.), 2864 (C–H str., CH₃), 1562 (C=S str.), 1551 (N–H str., def.), 1508 (C=C str., aromatic), 1321 (C–N str.), 814 (C₃N₃ str., s-triazinyl), 754 (C–Cl str.), 716 (C–S str.). Mass: 589 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.76 (s, 3H, NH), 6.82–7.56 (m, 13H, Ar–H), 1.32 (s, 6H, –CH₃). Anal. calcd. for C₂₄H₁₈N₆S₄Cl₂: C 48.89, H 3.08, N 14.25, S 21.75%. Found: C 48.78, H 2.97, N 14.14, S 21.63%.
- **7c** IR (KBr) ν cm⁻¹: 3356 (N–H str.), 3010 (C–H str., aromatic), 2951 (C–H str., asym.), 2862 (C–H str., CH₃), 1561 (C=S str.), 1552 (N–H str., def.), 1512 (C=C str., aromatic), 1311 (C–N str.), 1256 (Ar–O–C str.), 811 (C₃N₃ str., s-triazinyl), 719 (C–S str.). Mass: 608 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.77 (s, 3H, NH), 6.80–7.54 (m, 12H, Ar–H), 3.98 (q, 2H, –OCH₂), 1.32 (t, 3H, CH₃), 1.19 (s, 6H, –CH₃). Anal. calcd. for C₂₈H₂₈N₆O₂S₄: C 55.24, H 4.64, N 13.80, S 21.07%. Found: C 55.13, H 4.64, N 13.69, S 20.94%.
- **7d** IR (KBr) ν cm⁻¹: 3355 (N–H str.), 3012 (C–H str., aromatic), 2946 (C–H str., asym.), 2862 (C–H str., CH₃), 1562 (C=S str.), 1551 (N–H str., def.), 1518 (C=C, str., aromatic), 1307 (C–N str.), 814 (C₃N₃ str., s–triazinyl), 714 (C–S str.). Mass: 548 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.76 (s, 3H, NH), 6.72–7.48 (m, 12H, Ar–H), 1.19 (s, 9H, –CH₃). Anal. calcd. for C₂₆H₂₄N₆S₄: C 56.91, H 4.41, N 15.31, S 23.37%. Found: C 56.78, H 4.30, N 15.21, S 23.26%.
- **7e** IR (KBr) ν cm⁻¹: 3351 (N–H str.), 3011 (C–H str., aromatic), 2949 (C–H str., asym.), 2860 (C–H str., CH₃), 1564 (C=S str.), 1550 (N–H str., def.), 1516 (C=C, str., aromatic), 1309 (C–N str.), 811 (C₃N₃ str., s-triazinyl), 716 (C–S str.). Mass: 548 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.78 (s, 3H, NH), 6.79–7.56 (m, 12H, Ar–H), 1.23 (s, 9H, –CH₃). Anal. calcd. for C₂₆H₂₄N₆S₄: C 56.91, H 4.41, N 15.31, S 23.37%. Found: C 56.80, H 4.32, N 15.20, S 23.25%.
- **7f** IR (KBr) ν cm⁻¹: 3356 (N–H str.), 3014 (C–H str., aromatic), 2948 (C–H str., asym.), 2859 (C–H str., CH₃), 1561 (C=S str.), 1554 (N–H str. def.), 1516 (C=C str., aromatic), 1310 (C–N str.), 816 (C₃N₃ str., s-triazinyl), 712 (C–S str.). Mass: 548 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.79 (s, 3H, NH), 6.69–7.51 (m, 12H, Ar–H), 1.21 (s, 9H, –CH₃). Anal. calcd. for C₂₆H₂₄N₆S₄: C 56.91, H 4.41, N 15.31, S 23.37%. Found: C 56.81, H 4.30, N 15.22, S 23.27%.
- **7g** IR (KBr) *ν* cm⁻¹: 3359 (N–H str.), 3015 (C–H str., aromatic), 2950 (C–H str., asym.),2866 (C–H str., CH₃), 1568 (C=S str.), 1554 (N–H str., def.), 1508 (C=C str., aromatic.), 1309 (C–N str.), 1258 (Ar–O–C str.), 814 (C₃N₃ str., s-triazinyl),716 (C–S str.). Mass: 580 (M⁺). ¹H NMR (CDCl₃) *δ* (ppm): 8.81 (s, 2H, NH), 6.78–7.51 (m, 12H, Ar–H), 3.80 (s, 3H, –OCH₃), 1.21 (s, 6H, –CH₃). Anal. calcd. for C₂₆H₂₄N₆O₂S₄: C 53.77, H 4.17, N 14.47, S 22.08%. Found: C 53.66, H 4.07, N 14.35, S 21.93%.

Table 4 continued

- **7h** IR (KBr) ν cm⁻¹: 3320 (N–H str.), 3017 (C–H str., aromatic), 2945 (C–H str., asym.), 2865 (C–H str., CH₃), 1562 (C=S str.), 1564 (N–H str., def.), 1495 (C=C str., Aromatic),1305 (C–N str.), 1256 (Ar–O–C str.), 815 (C₃N₃ str., s-triazinyl), 712 (C–S str.). Mass: 580 (M⁺). ¹H NMR (CDCl3) δ (ppm): 8.83 (s, 2H, NH), 6.68–7.45 (m, 12H, Ar–H), 3.81 (s, 3H, –OCH₃), 1.18 (s, 6H,–CH₃). Anal. calcd. for C₂₆H₂₄N₆O₂S₄: C 53.77, H 4.17, N 14.47, S 22.08%. Found: C 56.81, H 4.05, N 14.34, S 21.94%.
- 7i IR (KBr) ν cm⁻¹: 3356 (N–H str.), 3009 (C–H str., aromatic), 2953 (C–H str., asym.), 2861 (C–H str., CH₃), 1569 (C=S str.), 1553 (N–H str., def.), 1511 (C=C, str., aromatic.), 1310 (C–N str.), 812 (C₃N₃ str., s-triazinyl), 714 (C–S str.). Mass: 610 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.82 (s, 3H, NH), 6.93–7.54 (m, 12H, Ar–H), 1.29 (s, 6H, –CH₃). Anal. calcd. for C₂₆₄H₁₈N₈O₄S₄: C 47.20, H 2.97, N 18.35, S 21.00%. Found: C 47.06, H 2.83, N 18.24, S 20.88%.
- **7j** IR (KBr) ν cm⁻¹: 3353 (N–H str.), 3012 (C–H str., aromatic), 2954 (C–H str., asym.), 2860 (C–H str., CH₃), 1563 (C=S str.), 1551 (N–H str., def.), 1513 (C=C str., aromatic.), 1314 (C–N str.), 814 (C₃N₃ str., s-triazinyl), 718 (C–S str.). Mass: 610 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.79 (s, 3H, NH), 6.98–7.60 (m, 12H, Ar–H), 1.26 (s, 6H, –CH₃). Anal. calcd. for C₂₄H₁₈N₈O₄S₄: C 47.20, H 2.97, N 18.35, S 21.00%. Found: C 47.08, H 2.85, N 18.21, S 20.86%.
- **7k** IR (KBr) ν cm⁻¹: 3359 (N–H str.), 3015 (C–H str., aromatic), 2950 (C–H str., asym.), 2866 (C–H str., CH₃), 1568 (C=S str.), 1554 (N–H str., def.), 1508 (C=C str., aromatic.), 1309 (C–N str.), 819 (C₃N₃ str., s-triazinyl), 707 (C–S str.). Mass: 538 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.81 (s, 1H, NH), 6.56–7.11 (m, 4H, Ar–H), 1.21 (s, 6H, –CH₃), 4.93 (t, 2H, –CH₂), 3.34–2.85 (d, 1H, –CH), 2.65–2.56 (t, 2H, –CH₂), 3.92–3.84 (t, 2H, –CH₂), 4.12 (s, 2H, –NH). Anal. calcd. for C₂₀H₂₆N₈O₂S₄: C 44.59, H 4.86, N 20.80, S 23.81%. Found: C 44.47, H 4.74, N 20.69, S 23.68%.
- **71** IR (KBr) ν cm⁻¹: 3359 (N–H str.), 3015 (C–H str., aromatic), 2950 (C–H str., asym.), 2866 (C–H str., CH₃), 1568 (C=S str.), 1554 (N–H str., def.), 1508 (C=C str., aromatic.), 1309 (C–N str.), 809 (C₃N₃ str., s-triazinyl), 715 (C–S str.). Mass: 480 (M⁺). ¹H NMR (CDCl₃) δ (ppm): 8.81 (s, 1H, NH), 6.48–7.07 (m, 4H, Ar–H), 1.21 (s, 6H, –CH₃), 0.94 (t, 12H, –CH₃), 2.32 (q, 8H, –CH₂). Anal. calcd. for C₂₀H₂₈N₆S₄: C 49.97, H 5.87, N 17.48, S 26.68%. Found: C 49.86, H 5.74, N 17.35, S 26.55%.

antibacterial and antifungal activity against *B. substillis*, *S. pyogens*, *E. coli*, and *A. niger* respectively. We have developed a simple and efficient method for the synthesis of bioactive 2,4-diarylamino-6-[N–(3'-methylphenyl)dithiocarba-moyl]-6-arylamino-s-triazines and 2,4-bis[N-(3'-methylphenyl)dithiocarbamoyl]-6-arylamino-s-triazines with good yield and purity.

Acknowledgements The authors wish to thank the Professor and Head, Department of Chemistry, Saurashtra University, Rajkot for research facilities. The Authors are also thankful to CDRI, Lucknow for spectral data.

References

Barry AL (1976) The Antimicrobial Susceptibility Test, Principle and Practices, ELBS-4th edition, pp 180 Brzozowski Z, Saczewski F, Gdaniec M (2000) Synthesis, structural characterization and antitumor activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur J Med Chem 35:1053–1064

- Chauhan NA, Parikh AR, Shah VH (1987) Preparation and pharmacological activity of 4-/S-2acetylamino-5-(o,m,p-nitrophenyl/benzoylaminomethyl-1,3,4-thiadiazol-2-yl)-N-aryldithiocarbamates and their studies as growth regulator. J Inst Chem 59:249
- Chauhan PM, Chatterjee RK (1994) Synthesis of 1,3-substituted indoles, 2,4,6-substituted s-triazines and 4,5 substituted pyrazoles as possible antifilarial agents. Indian J Chem 33B:32–37

- Dabhi TP, Shah VH, Parikh AR (1992) Studies on s-Triazines: Preparation, antitubercular and antimicrobial activity of 2,4-diaryl-amino-6-(benzthiazol-2-yl-thio)-s-triazines. Indian J Pharma Sci 54(3):109
- Husain I, Agarwal S (1974) Novel thiocarbamate derivatives as cardioactive and antihypertensive agents. J Inst Chem 55:883–885
- Kambayashi Y, Mizushima Y (1975) Anti-inflammatory action of an s-triazine derivative in rats. Arzneimittelforschung 25(2):230–231
- Korablav ML, Events MA (1977) Antidiuretic activity of dithiocarbamic acid derivatives. Farmacol Toksikol 40(5):603–604
- Sanders ME, Matthew M (1985) Acylhydroperoxide oxidations of the anticancer agent hexamethylmelamine. Tet Lett 26(43):5247–5250
- Saxena S, Verma M, Saxena AK, Shanker K (1994) Triazines as anti-inflammatory agents. Arzneimittelforschung 44(6):766–769
- Tiwari SS, Mishra S (1975) Synthesis of dithiocarbamte derivatives as anthelmintic, amoebicidal and antitubercular agents. J Indian Chem Soc 52:432
- Tobe A, Kobayashi T (1976) Pharmacological studies on triazine derivatives V Sedative and neuroleptic actions of 2-amino-4-[4-(2-hydroxyethyl)-piperazin-1-yl]-6-trifluoromethyl-s-triazine (TR-10). Jpn J Pharmacol 26(5):559–570