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Introduction 

Over the last 20 years, transition metal-catalyzed C-H bond 

activation has emerged as an attractive strategy in organic 
synthesis which avoids the multi-step pre-activation of starting 

materials and minimizes the production of unwanted by-

products.
1-6

 Typically, C-H bond activation requires a metal-

coordinating functional group to control the regioselectivity of 

transition metal insertion into a C-H bond.
7
 Due to an array of 

structural properties and the unique pharamacophore features of 
1,2,3-triazoles,

8-11
 our group became interested in 1,2,3-triazole 

directed C-H activation. For example, the ruthenium-catalyzed, 

1,2,3-triazole directed intermolecular C–H amidation of arenes 

with sulfonylazides; the palladium-catalyzed, 1,2,3-triazole 

directed C–H ethoxycarbonylation of 2-aryl-1,2,3-triazoles with 

diethyl azodicarboxylate; the cobalt(III)-catalyzed, 1,2,3-triazole-
assisted C-H amidation of arenes with dioxazolones; and the 

rhodium-catalyzed, 1,2,3-triazole-assisted ortho-cyanation of 2-

aryl-1,2,3-triazoles with N-cyano-N-phenyl-p-

toluenesulfonamide (Fig. 1).
12-15

 

Diazo compounds have been widely used as carbene 

precursors in C-H activation. For example, in 2012 Yu and co-
workers reported the Rh(III)-catalyzed, ortho-alkylation of 

directing-group-containing arene C-H bonds with diazomalonates 

to prepare aromatic malonic acids.
16

 More recently, the groups of 

Glorius,
17

 Yao,
18

 Zhu,
19

 Wang,
20

 Li,
21

 and others
22-33

 expanded  

 

Figure 1. Our previous work on 2-aryl-1,2,3-triazoles directed C-

H functionalization.
12-15

 

and enriched this C-H functionalization method using different 

diazo compounds to construct heterocycles (Scheme 1a). In 
addition, we recently used diazomethylene-diphosphonates as 

carbene precursor reagents to insert into the O–H bond of 

carboxylic acids, which can be used to synthesize a bone-

targeting prodrug,
34

 and to couple with 2-phenylpyridines 

generating aromatic bisphosphonates, which were identified as β-
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A mild and efficient procedure was developed for the [Cp*Rh(III)]-catalyzed, 1,2,3-triazole 

directed C–H coupling with diazomethylene-diphosphonates. This protocol provided a step- and 

atom-economical protocol for C–C bond formation and led to structurally diverse 2-(1,2,3-

triazol-2-yl)benzyl diphosphonates in good to excellent yields. 
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lactamase inhibitors by computational and experimental 

assays.
35

 With the aim to enlarge the library of aromatic 

bisphosphonates, which may provide more possibilities to identify 

hit/lead compounds for clinically relevant β-lactamases
 
as well as 

other protein targets, plus our interest in the C-H functionalization 

of 2-aryl-1,2,3-triazoles, we herein report the Rh(III)-catalyzed, 
1,2,3-triazole-assisted directed C-H coupling with diazo 

diphosphonates (Scheme 1b). 

 

Scheme 1. C-H coupling with diazo compounds. 

Results and Discussion 

Initial experiments were carried out using 2-(m-tolyl)-2H-

1,2,3-triazole (1a, 0.2 mmol) and tetraethyl diazomethylene-
diphosphonate (2a, 0.24 mmol) in the presence of [Cp*RhCl2]2 

(5.0 mol%) and AgSbF6 (10.0 mol%) at 80 
o
C in 1,2-

dichloroethane (DCE, 2 mL) for 24 h. As expected, the desired 

target product 3aa was obtained in 66% yield under these initial 

conditions (Table 1, entry 1). Next, the effect of the metal 

catalyst was investigated (Entries 2–8). Unfortunately, no 
coupled products were observed for the tested catalysts, except 

for [Cp*IrCl2]2 which gave a moderate yield of 61% (Entry 8). 

Variation of the Ag salt revealed that AgNTf2 was the most 

effective with a yield of 72% (Entries 9–12). Next, we focused 

our attention on the solvent. 1,2,3-Trichloropropane (TCP), 

CH3CN, EtOH, THF, MeOH and hexafluoroisopropyl-alcohol 
(HFIP), which are typically used in direct C–H bond 

functionalization, were less effective in this transformation than 

DCE (Entries 13–18). Finally, an excellent isolated yield of 91% 

was obtained by increasing the temperature to 100 
o
C (Entries 19, 

20). Interestingly, the [Cp*IrCl2]2 catalyst also produced 3aa with 

an excellent isolated yield of 90% (Entry 21). Accordingly, the 
optimized reaction conditions are 5 mol% [Cp*RhCl2]2, 10 mol% 

AgNTf2 in DCE at 100 °C for 24 h. 

With the optimized reaction conditions in hand, we set out to 

explore the scope and limitation of the Rh(III)-catalyzed ortho-

selective C–H carbenoid insertion of 2-aryl-1,2,3-triazoles 

(Scheme 2). Initially, ortho-substituted arenes were investigated. 
Amide substituted arenes underwent the coupling reaction 

smoothly and the corresponding products were obtained in good 

to excellent yields (Scheme 2, 3ba–da). Notably, halogen-

substituted arenes (Scheme 2, 3ea–ha) gave higher yields than 

those with electron-withdrawing groups (EWGs) such as CN and 

NO2 (Scheme 2, 3ea–ha). In contrast to ortho-substituted 
substrates, meta-substituted arenes gave the corresponding 

products in moderate to excellent yields, including those with 

EWGs such as NO2 and COOMe (Scheme 2, 3aa, 3ia–na). These 

results indicate that the coupling efficiency is to some extent 

influenced by the electron density of the aromatic ring and by 

steric hindrance. 

Table 1. Reaction optimization.
a
 

 

Entry Catalyst Ag salt Solvent T [°C] Yield
b
 

1 [Cp*RhCl2]2 AgSbF6 DCE 80 66% 

2 Cu(OAc)2 AgSbF6 DCE 80 N.R. 

3 Pd(OAc)2 AgSbF6 DCE 80 N.R. 

4 [Ru(p-cymene)Cl2]2 AgSbF6 DCE 80 N.R. 

5 [Cp*Co(CH3CN)3][SbF6]2 / DCE 80 N.R. 

6 [Cp*Co(CO)]I2 AgSbF6 DCE 80 N.R. 

7 [Cp*Rh(CH3CN)3][SbF6]2 / DCE 80 56% 

8 [Cp*IrCl2]2 AgSbF6 DCE 80 61% 

9 [Cp*RhCl2]2 AgNTf2 DCE 80 72% 

10 [Cp*RhCl2]2 AgOTf DCE 80 52% 

11 [Cp*RhCl2]2 AgOAc DCE 80 N.R. 

12 [Cp*RhCl2]2 AgTFA DCE 80 N.R. 

13 [Cp*RhCl2]2 AgNTf2 TCP 80 51% 

14 [Cp*RhCl2]2 AgNTf2 CH3CN 80 N.R. 

15 [Cp*RhCl2]2 AgNTf2 EtOH 80 23% 

16 [Cp*RhCl2]2 AgNTf2 THF 80 N.R. 

17 [Cp*RhCl2]2 AgNTf2 MeOH 80 42% 

18 [Cp*RhCl2]2 AgNTf2 HFIP 80 55% 

19 [Cp*RhCl2]2 AgNTf2 DCE 100 91% 

20 [Cp*RhCl2]2 AgNTf2 DCE 120 88% 

21 [Cp*IrCl2]2 AgNTf2 DCE 100 90% 

a 
Reagents and conditions: 1 (0.2 mmol), 2a (0.24 mmol), catalyst (5 mol%), 

Ag salt (10 mol%), solvent (2 mL), 24 h; 
b
 Isolated yield 

 

According to our previous work regarding the 

sulfonamidation of 2-aryl-1,2,3-triazoles with sulfonyl azides,
14

 

non- / para-substituted 2-aryl-1,2,3-triazoles were treated with 

2.4 equivalents of 2a. All substrates were dialkylated while no 

mono-alkylated products were observed (Scheme 2, 3oa–va). 
Furthermore, naphthalene substituted 1,2,3-triazole (1w) and 1H-

indole substituted 1,2,3-triazole (1x) were also tested and gave 

the corresponding products 3wa and 3xa in 95% and 72% yield, 

respectively. Finally, n-butyl and benzyl diazomethylene-

diphosphonate esters were tested and products 3ab and 3ac were 

obtained in moderate yields (Scheme 2). 

We then performed preliminary experiments to investigate 

the reaction mechanism. In the presence of DCE/D2O (9:1), H/D 

exchange at the ortho-position of 1a was observed (with 91% D 

incorporation), suggesting reversible C-H activation. 

Competition experiments with 1a and 1n were used to investigate 

the electronic preference of the reaction. The reaction resulted in 
a 11:1 ratio of 3aa:3na, implying that electron-rich arenes react 

faster (Scheme 3). This result suggested the C-H bond cleavage 

may involve an electrophilic aromatic substitution mechanism. 
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Scheme 2. Rh(III)-catalyzed, directed C–H coupling of 2-aryl-

1,2,3-triazoles with diazomethylene-diphosphonates. 
a 
Reagents 

and
 
conditions: 1 (0.3 mmol), 2a (0.36 mmol), [Cp*RhCl2]2 (5 

mol%), AgNTf2 (10 mol%), DCE (3 mL), 100 
o
C, 24 h, air 

atmosphere; isolated yields. 
b
 2a (0.72 mmol). 

 

 

Scheme 3. Mechanism studies. 

 

Scheme 4. Possible reaction mechanism. 

Based on previous work
16

 and our preliminarily mechanistic 

experiments, a plausible mechanistic pathway is depicted in 

Scheme 4. Firstly, anion exchange between [RhCp*Cl2]2 and the 

Ag salt generates an active catalyst, Cp*Rh(NTf2)2, which 

undergoes C−H bond cleavage to form rhodacyclic intermediate I. 

Coordination of the diazo compound with I may form the 
diazonium intermediate II followed by extrusion of N2 to give 

intermediate III. Next, migratory insertion of the carbene into the 

rhodium–carbon bond affords IV. Finally, protonolysis of IV 

generates the desired alkylated product and the active Rh catalyst. 

Conclusion 

In summary, the Rh(III)-catalyzed, 1,2,3-triazole directed C–
H functionalization of arenes with diazomethylene-

diphosphonates has been established. This synthetic protocol for 
C–C bond formation proceeded efficiently under external base-

free conditions with several advantages, such as operational 
simplicity, high atom efficiency and a broad substrate scope. 

Moreover, this methodology led to structurally diverse 2-(1,2,3-
triazol-2-yl)benzyl diphosphonates, which provide further 

possibilities to identify hit/lead compounds for clinically relevant 
β-lactamases

 
as well as other protein targets.  
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Highlights 

 
1. 1,2,3-Triazole was used as the direct group for C-H 

carbenoid coupling reactions. 

2. A step- and atom economical protocol constructing C-

C bond was developed. 

3. Bisphosphonates motifs, a unique pharmacophore, 

were easily assembled to arenes. 


