

Subscriber access provided by CORNELL UNIVERSITY LIBRARY

Article

Asymmetric Allylation/RCM-Mediated Synthesis of Fluorinated Benzofused Bicyclic Homoallylic Amines as Dihydronaphthalene Derivatives

Daniel M. Sedgwick, Pablo Barrio, Antonio Simon, Raquel Roman, and Santos Fustero J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b01590 • Publication Date (Web): 30 Aug 2016 Downloaded from http://pubs.acs.org on September 1, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Asymmetric Allylation/RCM-Mediated Synthesis of Fluorinated Benzo-fused Bicyclic Homoallylic Amines as Dihydronaphthalene Derivatives

Daniel M. Sedgwick,[†] Pablo Barrio,[†] Antonio Simón,[†] Raquel Román,*[‡] Santos Fustero*^{†‡}

[†]Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain.

[‡]Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain.

santos.fustero@uv.es

raquel.roman@uv.es

ABSTRACT: Enantiomerically enriched fluorinated benzo-fused bicyclic homoallylic amines have been synthesized through an asymmetric allylation/ring closing metathesis (RCM) sequence. This sequence has been carried out using α -trifluoromethylstyrene derivatives as key intermediates, synthesized by microwave radiation. The great deactivating effect exerted by such substituents has been brought to light by a comparative study.

INTRODUCTION

In recent years, the importance of organofluorine compounds in pharmacy and agrochemistry has dramatically increased,¹ due to the beneficial effects brought about by the incorporation of fluorine or fluorine-containing groups in organic molecules, such as increased metabolic stability or lipophilicity.² For this reason, the interest in the

development of new methodologies for the introduction of fluorinated units in organic molecules has rapidly increased.

In this context, chiral homoallylic amines are interesting building blocks in organic synthesis, and one of the most important methods for their preparation is the asymmetric allylation of imines.³ Specifically, the diastereoselective addition of allylzinc bromide to Ellman's *tert*-butylsulfinyl imines represents the most advantageous method with a high degree of diastereocontrol and chemical yields, reliability, and functional group compatibility.⁴ This methodology has recently been combined with the ring closing metathesis reaction (RCM), one of the most versatile methods for the construction of medium-sized rings,⁵ for the synthesis of cyclic amino acid derivatives, pyrazolopyridines, pyrazoloazepines^{6a} and, more recently, benzo-fused systems.^{6b,c}

Therefore, continuing our work within the context of diversity oriented synthesis (DOS)^{7,8} focused on the use of *tert*-butylsulfinyl imines derived from *ortho*-substituted benzaldehydes,^{9,10} a small library of fluoroalkylated 1-amino-1,2-hydronaphthalene derivatives is described herein (Scheme 1). It is worth mentioning that such derivatives are unprecedented in the literature.

Scheme 1. Diversity Oriented Synthesis strategy

Dihydronaphthalene, as a bicyclic molecular scaffold, has been used as model for the design of many interesting pharmacophores.¹¹ Some noteworthy examples include sertraline (Figure 1a), a selective serotonin reuptake inhibiting (SSR1) antidepressant, or podophyllotoxin (Figure 1b), which has a wide range of medical applications in purgative, vesicant, antirheumatic, antiviral, and antitumor agents.¹³ 2-ADN (Figure 1c), also a 1,2-dihydronaphthalene derivative, represents a new, potent and conformationally restricted analog of amphetamine.¹⁴ It produces stimulation of spontaneous motor activity in mice, and the racemate is approximately one-fourth as potent as (+)-amphetamine on a molar basis.

Figure 1. Examples of natural products containing the hydronaphthalene substructure.

RESULTS AND DISCUSSION

In view of this background, and given our interest in fluorinated compounds, we describe a practical method for the synthesis of various fluorinated benzo-fused

homoallylic amines (Scheme 1, this work) using *fluorinated building blocks* **3** as key intermediates (Scheme 2). The strategy described by Valdés *et al.* for the synthesis of α-trifluoromethylstyrenes is a highly versatile technique permitting the addition of fluorinated single-carbon units. This method proceeds through a Palladium-catalyzed cross coupling reaction of 1,1,1-trifluoromethylacetone tosylhydrazone **2** with aryl bromides **1** and represents an alternative to the coupling between boronic acids and 2-bromo-3,3,3-trifluoropropene. However, the original reaction conditions failed when applied to our model substrate 2-bromobenzaldehyde **1a**. A small optimization allowed the determination of the best reaction conditions for complete conversion, which for our system involved microwave heating at 100 °C and an increase in palladium catalytic loading with respect to the conditions already described, finally affording products **3a-f** in good yields. These compounds were used immediately after their purification in the next reaction step due to their instability.

Scheme 2. Synthesis of α-trifluoromethylstyrenes 3a-f

X CHO NNHTs
$$Pd_2(dba)_3 (4 mol\%)$$
 X CHO Xphos $(8 mol\%)$ $Aphos (8 mol\%)$

With aldehyde intermediates 3a-f in hand, and based on our recent research, 6,9 the strategy next required the synthesis of the corresponding Ellman's (R)-N-(tert-butanesulfinyl)imines 4a-f followed by the allylation reaction, giving rise to products 5a-f in moderate to good yields and excellent diastereoselectivities (Scheme 3). 17 The

obtained results show that electron-donating (3d,e), halogen substituents (3b,c), and heteroaromatic imines (3f) are all compatible with the reactions conditions. Moreover, the crotylation reaction made the formation of a new stereocenter possible, and compound 5g was obtained in 82 % yield as a single diastereoisomer (Scheme 3).

Scheme 3. Asymmetric allylation of sulfinimines 4a-h

According to our synthetic strategy, and once a varied library of substrates had been obtained, we set out to apply the RCM reaction as a suitable approach to synthesize the corresponding fluorinated dihydronaphthalene derivatives. Unfortunately, despite several attempts under different reaction conditions, the outcome was not satisfactory for the RCM of **5a**, most likely due to the presence of the *tert*-butanesulfinyl group and the lower reactivity of fluorinated olefins in metathesis processes.¹⁸ In view of this result, we next evaluated the influence of the *N*-protecting group.^{6c} To this end, *N*-Boc

and N-Ac protected amines 6a-g, 6a' and 6f' were prepared and subjected to the RCM reaction in the presence of 5 mol % of 2nd Generation Grubbs catalyst [Ru-II] in toluene at 100 °C, leading to the bicyclic derivatives 7a-g, 7a' and 7f' (Scheme 4).

Scheme 4. Protecting group exchange and RCM

(ii) Ac₂O (1.5 equiv), Et₃N (2 equiv), DMAP (0.02 equiv), 0 °C, CH₂Cl₂, 16 h

In view of the good results obtained with α -CF₃-substituted 2-vinylbenzaldehyde derivatives, we decided to extend our methodology to other α-fluoroalkylated 2vinylbenzaldehyde systems. In addition, we envisioned the preparation of two nonfluorinated α-substituted 2-vinylbenzaldehyde derivatives in order to study the influence of fluoroalkyl groups directly attached to a vinyl moiety on their reactivity in olefin metathesis reactions. However, the strategy described above (see Scheme 2) proved inefficient for the synthesis of other fluoroalkylated substrates by the cross-coupling reaction of tosylhydrazones containing different R_F (C₂F₅, CF₂H, CF₂SO₂Ph and CFHSO₂Ph). Therefore, alternative synthetic sequences were set up for each substrate (Scheme 5). The corresponding CH₃- and C₂F₅-substituted substrates **3h,i** were prepared by means of palladium-catalyzed Suzuki cross-coupling reactions (Scheme 5, Equation 1). It is worth noting that, regarding fluoroalkylated substrates, this methodology has mainly been studied for the trifluoromethyl group and to a much lesser extent for other fluorinated groupings. On the other hand, substrates bearing electron-withdrawing groups at the α -position of the styrene, such as the ester or difluorosulfone, were synthesized by a Wittig methylenation of the corresponding ketones **13a,b** (Scheme 5, Equation 2). Final deprotection of the *ortho* acetal group yielded the desired substrates **3j,k**.

Scheme 5. Synthesis of substrates 3h-k

CHO + R i or ii CHO

8:
$$X = B(OH)_2$$
 9: $Y = Br$, $R = C_2F_5$ 3h: $R = C_2F_5$ 10: $Y = BF_3K$, $R = Me$ 3i: $R = Me$ (70%)

Reagents and conditions: (i) PdCl₂(PPh₃)₂ (0.03 equiv), AsPh₃ (0.15 equiv), DME—THF (1:1), 2 M KOH, 74 °C. (ii) PdCl₂(dppf).CH₂Cl₂, Et₃N, n-propanol, 98 °C

Next, the condensation and allylation steps proceeded uneventfully affording substrates **5h-k** in moderate to good yields with good to complete diastereoselectivities (Scheme 6). Due to their lack of reactivity (*vide infra*), fluoroalkylated sulfinamides **5h,k** were

3k: EWG = CF_2SO_2Ph (55%, 2 steps)

converted into the corresponding *tert*-butyl carbamate **6h** or acetamide **6k**, respectively (Scheme 6).

Scheme 6. Condensation/asymmetric allylation/protecting group exchange sequence

CHO
$$\frac{1. (R) - t - BuSONH_2}{Ti(OEt)_4, DCM}$$

R $\frac{2. ZnBr}{2}$

3h-k $\frac{2. ZnBr}{2}$

1. HCl/dioxane MeOH, rt, 45 min (72-88%, two steps)

R $\frac{5}{10:1-20:1}$

5h: R = C₂F₅

5i: R = CH₃

5j: R = CO₂Et

5k: R = CF₂SO₂Ph

Reaction conditions: (i) Boc_2O (1.3 equiv), K_2CO_3 (2.5 equiv), 50 °C, 1,4-dioxane, 20 h; (ii) Ac_2O (1.5 equiv), Et_3N (2 equiv), DMAP (0.02 equiv), 0 °C, CH_2CI_2 , 16 h

The final RCM step revealed the dramatic effect of the fluoroalkyl substituent at the vinyl group on its performance in olefin metathesis processes (Scheme 7). More specifically, although this step proceeded in high yields with sulfinamides 5i,j at room temperature using the Hoveyda-Grubbs second generation catalyst [Ru-III] in DCM, fluoroalkylated substrates 5h,k required a protecting group exchange to either Boc or Ac in order to participate in the RCM step using [Ru-II] or [Ru-III], respectively (Scheme 7). Moreover, the reaction temperature had to be increased to 100 °C in toluene, showcasing the deactivating effect of fluoroalkyl substituents directly attached to vinyl group in olefin metathesis reactions (Scheme 7). It should be noted that, not only the CH₃-substituted substrate 5i but also the acrylate derivative 5j reacted at room temperature, indicating that the deactivating effect of a fluoroalkyl group is higher than that of an ester group. Besides this noticeable deactivating effect of fluoroalkyl groups, we have also observed a trend in the influence of the several protecting groups used: may only be used for the non-fluorine containing substituents while any fluoroalkyl substitution requires the use of an acetyl or a carbamate protecting groups. This may

indicate that the *tert*-butylsulfinyl group is somewhat deactivating for homoallylic amines in metathesis processes.

Scheme 7. RCM on fluorinated and non-fluorinated α -substituted 2-vinylbenzaldehyde derivatives

CONCLUSION

In summary, a new approach to the synthesis of 1-amino-4-fluoroalkyl-1,2-dihydronaphthalene derivatives from readily available *ortho*-fluoroalkylvinyl benzaldehydes has been developed, with a particular emphasis on those bearing trifluoromethyl substituents. Additionally, we have studied the deactivating effect of such fluoroalkyl substitution on RCM reactions. We can conclude that α -fluoroalkylated styrenes are much less reactive than the corresponding non-fluorinated α -substituted ones. This deactivation is much more pronounced than for common electron-withdrawing groups, i.e. esters. Building on the principles of diversity-oriented synthesis, a new family of fluorinated building-blocks suitable for the preparation of more complex molecules has been described. Further applications for the, in our opinion, understudied α -CF₃-substituted 2-vinylbenzaldehyde scaffold are currently underway in our laboratories.

EXPERIMENTAL SECTION

General methods: Reactions were carried out under a nitrogen atmosphere unless otherwise indicated. Solvents were purified prior to use: THF and PhMe were distilled from sodium and CH₂Cl₂ from calcium hydride. The reactions were monitored with the aid of TLC on 0.25 mm pre-coated silica-gel plates. Visualization was carried out with UV light and aqueous ceric ammonium molybdate solution or potassium permanganate stain. Flash column chromatography was performed with the indicated solvents on silica gel 60 (particle size: 0.040–0.063 mm). ¹H and ¹³C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are given in ppm (δ), referenced to the residual proton resonances of the solvents. Coupling constants (*J*) are given in Hertz (Hz). The letters m, s, d, t, and q stand for multiplet, singlet, doublet, triplet, and quartet, respectively. The letters br indicate that the signal is broad. The abbreviations DCM and THF indicate dichloromethane and tetrahydrofuran.

Microwave reactions were carried out in a 2–5 mL or 15 mL vial with a Biotage InitiatorTM 2.0 microwave synthesizer. The solutions were stirred before the irradiation was started and the absorbance of the solvent was set as "normal". The reaction time was initiated as soon the system reached the input temperature, although it took approximately 2 min to reach it.

QTOF mass analyzer system has been used for the HRMS measurements.

Enantiomeric excess was determined by means of HPLC using a chiral columns and mixtures of hexane and isopropanol as mobile phase.

Synthesis of 3a-f. General procedure. A 5-mL microwave glass vial was charged with Pd₂(dba)₃ (4 mol%, 0.07 mmol), Xphos (8 mol%, 0.09 mmol), Na₂CO₃ (2.2 equiv., 2.37 mmol) and *N*-tosylhydrazone **2** (1.40 mmol, 1.3 equiv.), which was previously prepared from 1,1,1–trifluoroacetone (1 equiv., 22 mmol) and tosylhydrazide (1 equiv., 22 mmol) by heating at 70 °C in EtOH (0.5 M) for 5 h and then filtering the precipitate

solid at room temperature as a crystalline white solid. The solid reagents were dried together under reduced pressure before being used. THF (0.3 M) and the corresponding *o*-bromobenzaldehyde **1** (1.08 mmol) were added. The vial was sealed and the mixture was heated by microwave irradiation at 100 °C for 1.5 h. The reaction mixture was cooled to room temperature, opened, filtered through celite and concentrated under reduced pressure. The residue obtained was purified by flash chromatography and used immediately for the next condensation reaction.²⁰

2-(3,3,3-trifluoro-1-propen-2-yl)benzaldehyde (3a). Flash chromatography of the crude reaction product [n-hexane-Et₂O (30:1)] afforded 3a as a yellow oil (73%, 200 mg). The spectroscopic data of 3a are consistent with those described in the literature.²¹

5-Chloro-2-(3,3,3-trifluoro-1-propen-2-yl)benzaldehyde (3b). Flash chromatography of the crude reaction product [*n*-hexane-Et₂O (30:1)] afforded 3b as a yellow oil (69%, 250 mg). ¹H NMR (CDCl₃, 300 MHz) δ 5.64 (q, J= 3.0 Hz, 1H), 6.32 (q, J= 3.0 Hz, 1H), 7.36 (dd, J= 3.0, 1.5 Hz, 1H), 7.59 (dd, J= 8.4, 2.4 Hz, 1H), 7.97 (d, J= 3.0 Hz, 1H), 10.07 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 122.3 (q, J¹_{CF}= 273.9 Hz; CF₃), 125.6 (q, J³_{CF}= 4.7 Hz; C), 128.2 (CH), 132.1 (CH), 133.6 (CH), 134.4 (q, J³_{CF}= 30.2 Hz; C), 134.4 (q, J³_{CF}= 30.2 Hz; C), 134.7 (C), 136.0 (C), 136.3 (C), 189.4 (CHO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.5 (s, 3F; CF₃) ppm.

4-Fluoro-2-(3,3,3-trifluoro-1-propen-2-yl)benzaldehyde (3c). Flash chromatography of the crude reaction product [n-hexane-Et₂O (30:1)] afforded 3c as a colorless oil (59%, 220 mg). ¹H NMR (CDCl₃, 300 MHz) δ 5.67 (q, J= 2.7 Hz, 1H), 6.32 (q, J= 3.0 Hz, 1H), 7.12 (dd, J= 8.7, 2.4 Hz, 1H), 7.28-7.21 (m, 2H), 8.05 (dd, J= 8.7, 5.7 Hz, 1H), 10.05 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 117.1 (d, J²_{CF}= 21.7 Hz; CH), 117.8 (d, J²_{CF}= 23.0 Hz; CH), 122.1 (q, J¹_{CF}=273.8 Hz; CF₃), 125.7 (q, J³_{CF}= 4.8 Hz; C), 131.2 (d, J³_{CF}= 9.9 Hz; CH), 131.5 (d, J³_{CF}= 2.8 Hz; CH), 134.4 (q, J²_{CF}= 32.5 Hz; C), 139.1

(d, J^3_{CF} = 9.4 Hz; *C*H), 165.2 (d, J^1_{CF} = 264.2 Hz; *C*F), 189.0 (*C*HO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -103.2 to -103.1 (m, 1F; C*F*), -66.4 (s, 3F; C*F*₃) ppm.

6-(3,3,3-Trifluoro-1-propen-2-yl)benzo[d][1,3]dioxole-5-carbaldehyde (3d). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 3d as a yellow solid (71%, 200 mg). Mp 74-76 °C. ¹H NMR (CDCl₃, 300 MHz) δ 4.74 (q, J= 1.2 Hz, 1H), 5.22 (s, 2H), 5.41 (q, J= 1.5 Hz, 1H), 5.94 (s, 1H), 6.56 (s, 1H), 9.06 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 102.4 (CH2), 106.7 (CH), 110.6 (CH), 125.3 (q, J¹_{CF}= 273.8 Hz; CF3), 125.7 (q, J³_{CF}= 4.8 Hz; C), 130.4 (C), 133.5 (C), 134.6 (q, J²_{CF}= 31.9 Hz; CH₂), 149.0 (C), 152.1 (C), 189.0 (CHO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.6 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₁H₇F₃O₃ [M+H⁺]: 245.0420, found: 245.0416.

5-Methoxy-2-(3,3,3-trifluoro-1-propen-2-yl)benzaldehyde (3e). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 3e as a yellow oil (73%, 300 mg). ¹H NMR (CDCl₃, 300 MHz) δ 3.88 (s, 3H), 5.58 (q, J= 1.2 Hz, 1H), 6.37 (q, J= 1.5 Hz, 1H), 7.16 (dd, J= 8.7, 3.0 Hz, 1H), 7.32 (d, J= 8.7 Hz, 1H), 7.48 (d, J= 3.0 Hz, 1H), 10.08 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 55.6 (CH₃), 111.0 (CH), 120.9 (CH), 122.5 (q, J¹_{CF}= 273.9 Hz; CF₃), 125.3 (q, J³_{CF}= 4.8 Hz; CH₂), 129.3 (CH), 131.9 (CH), 134.9 (q, J²= 32.1 Hz; C), 136.1 (C), 160.3 (C), 190.7 (CHO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.6 (s, 3F; CF₃) ppm.

-(3,3,3-trifluoro-1-propen-2-yl)thiophene-2-carbaldehyde (3f). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 3f as a yellow oil (94%, 500 mg). ¹H NMR (CDCl₃, 300 MHz) δ 5.74 (q, J= 1.5 Hz, 1H), 6.27 (q, J= 1.5 Hz, 1H), 7.16-7.19 (m, 1H), 7.72 (dd, J= 4.8, 1.2 Hz, 1H), 9.85 (d, J= 1.5 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 122.1 (q, J¹_{CF}= 273.8 Hz; CF₃), 126.1 (q, J³_{CF}= 5.1 Hz; CH₂), 129.5 (C), 131.9 (q, J²_{CF}= 32.5 Hz; C), 134.1 (C), 141.4 (C), 142.2 (C), 182.9

(CHO) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.0 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₈H₅F₃OS [M+H⁺]: 207.0086, found: 207.0081.

Synthesis of 3h. To a solution of **9** (1.3 equiv, 0.87 mmol) in DME–THF (1:1, 2 mL) and aq. 2 M KOH (1.3 mL), the phenylboronic acid **8** (1 equiv., 0.67 mmol), $PdCl_2(PPh_3)_2$ (0.03 equiv., 0.02 mmol), and AsPh₃ (0.15 equiv.; 0.1 mmol) were added under an inert atmosphere in a sealed tube. The mixture was stirred at 74 °C for 12 h. The mixture was cooled to room temperature, H_2O (5 mL) was added, and the mixture was extracted with Et_2O (2 × 10 mL). The combined organic layers were washed with brine and dried (MgSO₄). The solvent was removed and the crude residue was used immediately in the next condensation reaction.

Synthesis of 3i. A solution of potassium isopropenyltrifluoroborate **10** (237 mg, 1.6 mmol), PdCl₂(dppf).CH₂Cl₂ (21 mg, 0.03 mmol), *o*-bromobenzaldehyde **1a** (237 mg, 1.28 mmol), and Et₃N (0.2 mL, 1.4 mmol) in *n*-PrOH (20 mL) was heated at 98 °C under a N₂ atmosphere for 13 h. Then the mixture was cooled to room temperature, and diluted with water (10 mL) followed by extraction with diethyl ether (20 mL). The ethereal layer was washed with brine (10 mL) and dried over MgSO₄. The solvent was removed *in vacuo*, and the crude product was purified by silica gel chromatography (eluting with hexane/DCM 30:1) affording 2-(1-propen-2-yl)benzaldehyde (130 mg, 0.9 mmol, 70%), whose spectroscopic data are consistent with those described in the literature.²² This product was used immediately for the next condensation reaction.

Synthetic strategy for the synthesis of 3j. (a) *Synthesis of ketone 13a: n*-BuLi (2.5M in *n*-hexane, 1.24 mmol, 0.5 mL) was added slowly to a solution of 2-bromobenzaldehyde ethylene acetal 11 (1.12 mmol, 0.2 mL) in THF (10 mL) at -78 °C. After stirring for 1h, diethyloxalate (1.24 mmol, 0.17 mL) was added to the mixture at -78 °C. The mixture was stirred for 3h, and at this time, saturated aqueous NH₄Cl was

added. The mixture was extracted with Et₂O and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography [n-hexane: Et₂O (7:1)] to afford **13a** (188 mg, 70%), whose spectroscopic data are consistent with those described in the literature.²³ (b) Wittig methylenation: NaHMDS (1 M in toluene, 1.4 mL, 0.822 mmol) was added dropwise to a suspension of methyl triphenylphosphonium chloride (294 mg, 0.822 mmol) in THF (4 mL) at 0 °C under nitrogen atmosphere. The resulting mixture was stirred at this temperature for 45 min, after which a solution of 13a (525 mg, 0.685 mmol) in THF (4 mL) was slowly added. The reaction mixture was stirred at room temperature until 13a was no longer detectable by TLC (12 h). The reaction mixture was then hydrolyzed with a saturated solution of NH₄Cl (3 mL) and extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to give a yellow oil, which was purified by means of column chromatography on silica gel [n-hexane-EtOAc (10:1)] to afford ethyl 2-[2-(1,3dioxolan-2-yl)phenyl]acrylate (Wittig product I) as a colorless oil (60%, 120 mg). ¹H NMR (CD₃OD, 300 MHz) δ 1.24 (t, J= 7.2 Hz, 3H), 3.91-3.93 (m, 2H), 4.00-4.03 (m, 2H), 4.19 (q, J= 7.2, 2H), 5.70 (d, J= 2.0 Hz, 1H), 5.71 (s, 1H), 6.45 (d, J= 2.0 Hz, 1H), 7.15-7.18 (m, 1H), 7.35-7.38 (m, 2H), 7.53-7.56 (m, 1H) ppm. ¹³C NMR (CD₃OD, 75.5 MHz) δ 14.5 (CH₃), 62.2 (CH₂), 64.4 (2CH₂), 102.9 (CH), 127.7 (CH), 128.1 (CH₂), 128.9 (CH), 129.4 (CH), 131.4 (CH), 137.4 (C), 138.0 (C), 143.1 (C), 168.2 (C) ppm. HRMS (EI) calcd. for C₁₄H₁₆O₄ [M+H⁺]: 249.1121, found: 249.1114. (c) Acetal group deprotection: to a solution of the Wittig product (420 mg, 1.15 mmol) in acetone (6 mL) at 0 °C, I₂ (one bead) was added and the mixture was stirred at this temperature for 5 h. After this time, the solvent was removed under reduced pressure and the residue was purified by flash chromatography [n-hexane-EtOAc (7:1)] affording 3i as a colorless oil (54% two steps, 150 mg), whose spectroscopic data are consistent with those described in the literature.²⁴

Synthetic strategy for the synthesis of 3k. (a) CF₂HSO₂Ph addition: In a roundbottom flask, 2-bromobenzaldehyde ethylene acetal 11 (5 mmol, 1 equiv) was dissolved in dry THF (25 mL) and cooled to -78 °C. Then a solution of *n*-BuLi (2.6 M in hexane, 7.5 mmol, 1.5 equiv) was added dropwise and stirred for 1 h at the same temperature. Then, N,N-dimethyl formamide (7.5 mmol, 1.5 equiv.) was added dropwise and the reaction mixture was allowed to warm up to 0 °C. The reaction was quenched with a saturated solution of ammonium chloride and the mixture was extracted with diethyl ether. The organic phase was subsequently washed with brine and dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo, and crude 12 (883 mg, 4.96 mmol) was dissolved in THF (24 mL). PhSO₂CF₂H (0.9 mL, 5.95 mmol) was added, and the mixture was cooled at -78 °C. At this temperature, LiHMDS (1M in THF, 6.5 mL, 6.5 mmol) was added dropwise and the mixture was stirred for 15 h. Saturated ag. NH₄Cl was then added at -78 °C and the residue was brought to room temperature and extracted with diethyl ether. The combined organic layers were dried (MgSO₄) and the solvent was evaporated under reduced pressure. Flash chromatography of the crude reaction mixture [n-hexane-EtOAc (4:1)] afforded 1-[2-(1,3-dioxolan-2-yl)phenyl]-2,2difluoro-2-(phenylsulfonyl)-1-ethanol (addition product II) as a colorless oil (70%, 1.2) g). ¹H NMR (CDCl₃, 300 MHz) δ 3.63 (br, 1H), 4.00-4.07 (m, 2H), 4.12-4.20 (m, 2H), 5.95 (s, 1H), 6.22 (d, J= 22.5 Hz, 1H), 7.35-7.42 (m, 2H), 7.55-7.62 (m, 3H), 7.71-7.76 (m, 2H), 8.02 (d, J=7.5 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 65.1 (CH₂), 65.2 (CH_2) , 66.2 (dd, J^2_{CF} = 27.2, 18.4; CH), 102.1 (CH), 120.7 (dd, J^1_{CF} = 299.9, 289.4; CF₂), 126.9 (CH), 128.8 (CH), 128.9 (CH), 129.2 (CH), 129.5 (CH), 130.7 (CH), 132.9 (C), 139.0 (C), 135.4 (CH), 135.8 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -119.1 (ddd, J=238.3, 22.6, 1.9 Hz; 1F; CFF), -103.0 (d, J=238.3 Hz, 1F; CFF). HRMS (EI) calcd. for C₁₇H₂₀F₂NO₅S [M+NH₄⁺]: 388.1025, found: 388.1025. (b) Oxidation to ketone 13b: To a solution of the alcohol obtained in the previous step (626 mg, 1.69 mmol) in DCM (17 mL), NaHCO₃ (20 mg) and Dess-Martin periodinane were added (907 mg, 2.03 mmol) at room temperature. The reaction mixture was stirred at room temperature for 2 h and was then filtered through celite and the filtrate was extracted with H₂O and saturated aq. NaHCO₃. The combined organic layers were dried (MgSO₄) and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using as eluent hexane:EtOAc (4:1) to afford 1-[2-(1,3dioxolan-2-yl)phenyl]-2,2-difluoro-2-(phenylsulfonyl)-1-ethanone 13b as a colorless oil (80%, 520 mg). ¹H NMR (CDCl₃, 300 MHz) δ 3.74-3.82 (m, 2H), 3.85-3.93 (m, 2H), 6.12 (s, 1H), 7.50-7.55 (m, 3H), 7.60-7.69 (m, 3H), 7.76-7.81 (m, 1H), 7.99-8.02 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 64.5 (2CH₂), 101.5 (CH), 114.7 (t, J^{1}_{CF} = 303.4; CF₂), 126.9 (CH), 127.9 (CH), 129.0 (CH), 129.3 (2CH), 130.9 (2CH), 131.5 (CH), 132.8 (C), 133.1 (C), 135.8 (CH), 138.6 (C), 190.2 (t, J^2_{CF} =25.2; CO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -105.5 (s, 2F; CF₂) ppm. HRMS (EI) calcd. for $C_{17}H_{18}F_2O_5SN$ [M+NH₄⁺]: 386.0874, found: 386.0870. (c) Wittig reaction and acetal deprotection: The Wittig reaction to afford 2-{2-/3,3-difluoro-3-(phenylsulfonyl)-1propen-2-yl]phenyl}-1,3-dioxolane and deprotection of the acetal group to afford 3k, were carried out following the methodology described in the previous section. Flash chromatography [*n*-hexane-EtOAc (6:1)afforded 2-{2-[3,3-difluoro-3-(phenylsulfonyl)-1-propen-2-yl]phenyl}-1,3-dioxolane (Wittig product III), as a colorless oil (78%, 235 mg). ¹H NMR (CDCl₃, 300 MHz) δ 3.97-4.16 (m, 4H), 5.88 (s, 1H), 5.96 (t, J= 0.9 Hz, 1H), 6.37 (t, J=1.5 Hz, 1H), 7.37-7.46 (m, 3H), 7.55-7.60 (m, 2H), 7.65-7.75 (m, 2H), 7.97 (d, J= 7.20 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 65.4 (2CH₂), 101.5 (CH), 120.4 (t, J^{1}_{CF} = 288.3; CF_{2}), 126.8 (CH), 128.7 (CH), 128.9 (CH), 129.1 (2CH), 129.95 (t, J^{3}_{CF} = 6.8; CH_{2}), 130.3 (CH), 130.8 (2CH), 132.9 (C), 133.8 (C), 134.6 (t, J^{2}_{CF} = 22.1; C), 135.1 (CH), 136.7 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -97.7 (br, 2F; CF_{2}) ppm. HRMS (EI) calcd. for $C_{18}H_{20}F_{2}O_{4}SN$ [M+NH₄⁺]: 384.1081, found: 384.1076. Deprotection of the acetal group and flash chromatography purification [n-hexane-EtOAc (7:1)] afforded 2-[3,3-difluoro-3-(phenylsulfonyl)-1-propen-2-yl]benzaldehyde 3k as a white solid (70%, 260 mg). Mp 120-122 °C. ¹H NMR (CDCl₃, 300 MHz) δ 5.91 (t, J= 0.9 Hz, 1H), 6.42 (t, J= 1.5 Hz, 1H), 7.54-7.60 (m, 5H), 7.72-7.78 (m, 1H), 7.94-7.99 (m, 3H), 10.18 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 120.1 (t, J^{1}_{CF} = 288.9; CF_{2}), 129.1 (CH), 129.3 (2CH), 129.4 (CH), 130.2 (t, J^{3}_{CF} = 6.8; CH_{2}), 130.8 (2CH), 131.7 (CH), 132.6 (C), 133.5 (CH), 134.4 (t, J^{2}_{CF} = 22.3; C), 135.0 (C), 135.4 (CH), 136.9 (C), 191.3 (CHO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -99.3 (s, 2F; CF_{2}) ppm. HRMS (EI) calcd. for $C_{16}H_{16}F_{2}O_{3}SN$ [M+NH₄⁺]: 340.0819, found: 340.0814.

General procedure for the condensation of aldehydes 3 to imines 4. A solution of the corresponding aldehyde 3 (5 mmol, 1.0 equiv) and Ti(OEt)₄ (5.0 equiv) in dichloromethane (0.1 M) was stirred for 5 minutes at room temperature. To the resulting solution, (*R*)-*N*-(*tert*-butanesulfinyl)amine was added, and the mixture was stirred at room temperature for 12 hours. After this time, saturated aqueous NaHCO₃ was added until white titanium salts precipitated. The suspension was filtered through a short pad of Celite® washing with small portions of dichloromethane. The filtrate was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography affording imines 4.

(R_S-E)-2-methyl-N-[2-(3,3,3-trifluoro-1-propen-2-yl)benzylidene]propane-2-sulfinamide (4a). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4a as a yellow oil (95%, 525 mg). [α]_D²⁵ = -13.9 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.25 (s, 9H), 5.56 (q, J= 1.2 Hz, 1H), 6.25 (q, J= 1.5 Hz, 1H), 7.36-7.39 (m, 1H), 7.50-7.53 (m, 2H), 8.10-8.13 (m, 1H), 8.71 (s, 1H), ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.6 (3CH₃), 57.9 (C), 122.5 (q, CF₃, J¹_{CF}= 274.3), 124.9 (q, CH₂, J³_{CF}= 5.0), 128.4 (CH), 129.3 (CH), 130.5 (CH), 131.6 (CH), 132.9 (CH), 135.6 (CH), 135.9 (q, CH, CH) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.3 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₄H₁₇F₃NOS [M+H⁺]: 304.0977, found: 304.0982.

 (R_S-E) -N-[5-chloro-2-(3,3,3-trifluoro-1-propen-2-yl)benzylidene]-2-methylpropane-2-sulfinamide (4b). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4b as a pale yellow solid (99%, 400 mg). [α]_D²⁵ = -85.1 (c 1.0; CHCl₃). Mp 49-51 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.25 (s, 9H), 5.57 (q, J= 3.0 Hz, 1H), 6.28 (q, J= 3.0 Hz, 1H), 7.33 (d, J= 9.0 Hz, 1H), 7.48 (dd, J= 8.4, 2.4 Hz, 1H), 8.08 (d, J= 3.0 Hz, 1H), 8.63 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.6 (3CH₃), 58.2 (C), 122.3 (q, CF₃, J¹_{CF}= 271.8), 125.7 (q, CH₂, J³_{CF}= 4.0), 125.7 (C), 128.1 (CH), 131.6 (CH), 131.8 (CH), 133.7 (C), 134.4 (C), 135.8 (C), 134.9 (q, C, J²_{CF} =31.9), 159.6 (CH) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.4 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₄H₁₆F₃NOSCl [M+H⁺]: 338.0588, found: 338.0582.

 $(R_S-E)-N-[4-fluoro-2-(3,3,3-trifluoro-1-propen-2-yl)benzylidene]-2-methylpropane-2-sulfinamide (4c).$ Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4c as a white solid (94%, 425 mg). [α]_D²⁵ = -116.94 (c 1.0; CHCl₃). Mp 46-48 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.24 (s, 9H), 5.60 (q, J= 1.20 Hz, 1H), 6.29 (q, J= 1.5 Hz, 1H), 7.09 (dd, J= 8.7, 2.4 Hz, 1H), 7.18-7.25 (m, 1H), 8.14 (dd, J= 9.0, 6.0

Hz, 1H), 8.64 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.4 (3CH₃), 57.8 (C), 117.0 (d, CH, J^2_{CF} = 21.7), 117.8 (d, CH, J^2_{CF} = 20.7), 122.2 (q, CF₃, J^1_{CF} = 273.8), 125.6 $J_{CF}^3 = 2.8$), 134.6 (q, C, $J_{CF}^2 = 31.9$), 137.6 (d, C, $J_{CF}^3 = 8.9$), 159.5 (CH), 164.1 (d, CF, J_{CF}^{1} = 256.7) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.3 (s, 3F; CF₃), -106.7 (s, 1F; CF) ppm. HRMS (EI) calcd. for $C_{14}H_{15}F_{4}NOS [M+H^{+}]$: 322.0883, found: 322.0875. $(R_S-E)-2$ -methyl- $N-\{[6-(3,3,3-trifluoro-1-propen-2-yl)benzo[d][1,3]dioxol-5-yl]$ methylene{propane-2-sulfinamide (4d). Flash chromatography of the crude reaction product [*n*-hexane-Et₂O (5:1)] afforded **4d** as a white solid (89%, 300 mg). $\lceil \alpha \rceil_D^{25} = -1$ 50.3 (c 1.0; CHCl₃). Mp 58-60°C. ¹H NMR (CDCl₃, 300 MHz) δ 1.23 (s, 9H), 5.55 (q, J= 1.5 Hz, 1H), 6.07 (d, J= 1.2 Hz, 1H), 6.08 (d, J= 1.2 Hz, 1H), 6.25 (q, J= 1.2 Hz, 1Hz)1H), 6.81 (s, 1H), 7.58 (s, 1H), 8.57 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 $(3CH_3)$, 57.7 (C), 102.1 (CH₂), 107.0 (CH), 109.7 (CH), 122.4 (q, CF₃, J^1_{CF} = 274.0), 125.5 (q, CH_2 J^3_{CF} = 4.7), 128.0 (C), 131.4 (C), 134.9 (q, C, J^2_{CF} = 31.5), 148.8 (C), 150.6 (*C*), 159.8 (*C*HO) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.4 (s, 3F; C*F*₃) ppm. HRMS (EI) calcd. for $C_{15}H_{17}F_3NO_3S$ [M+H⁺]: 348.0876, found: 348.0876. $(R_S-E)-N-[5-methoxy-2-(3,3,3-trifluoro-1-propen-2-yl)benzylidene]-2-methyl$ propane-2-sulfinamide (4e). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4e as a colorless oil (92%, 350 mg). $[\alpha]_D^{25} = -80.1$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.21 (s, 9H), 3.83 (s, 3H), 5.48 (d, J= 1.5 Hz, 1H), 6.19 (d, J=1.5 Hz, 1H), 7.02 (dd, J=8.4, 2.7 Hz, 1H), 7.26 (d, J=8.7 Hz, 1H), 7.58 (d, J=2.7Hz, 1H), 8.64 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.4 (3CH₃), 55.3 (OCH₃), 57.8 (C), 112.0 (CH), 118.1 (CH), 122.5 (q, CF_3 , J^1_{CF} = 274.0), 120.7 (C), 125.0 (q, CH_2 , $J^2_{CF} = 4.7$), 131.5 (CH), 134.0 (C), 134.0 (q, C, $J^2_{CF} = 31.5$), 135.4 (q, C, $J^2_{CF} = 31.5$) 31.5), 159.5 (C), 160.0 (C), 160.7 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.0 (s, 3F; CF_3) ppm. HRMS (EI) calcd. for $C_{15}H_{19}F_3NO_2S$ [M+H⁺]: 334.1108, found: 334.1093.

 $(R_S-E)-2$ -methyl- $N-\{[5-(3,3,3-trifluoro-1-propen-2-yl)benzo[b]thiophen-6-windows and the statement of th$

yl]methylene}propane-2-sulfinamide (4f). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4f as a yellow oil (58%, 315 mg). [α]_D²⁵ = -55.0 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.24 (s, 9H), 5.64 (q, J= 1.5 Hz, 1H), 6.22 (q, J= 1.5 Hz, 1H), 7.13-7.16 (m, 1H), 7.55 (dd, J= 5.4, 1.2 Hz, 1H), 8.63 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3CH₃), 58.2 (C), 120.4 (C), 125.7 (q, CH₂, J³_{CF}= 5.05), 129.1 (CH), 131.4 (CH), 131.9 (q, C, J²_{CF}=32.16), 138.5 (C), 139.2 (C), 154.2 (CH) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -66.9 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₂H₁₅F₃NOS₂ [M+H⁺]: 310.0542, found: 310.0545.

(R_S-E)-2-methyl-N-[2-(3,3,4,4,4-pentafluoro-1-buten-2-yl)benzylidene]propane-2-sulfinamide (4h). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded 4h as colorless oil (66%, 100 mg). [α]_D²⁵ = -60.2 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.23 (s, 9H), 5.71 (br, 1H), 6.28 (br, 1H), 7.30-7.33 (m, 1H), 7.47-7.50 (m, 2H), 8.09-8.12 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3CH₃), 57.8 (C), 113.1 (tq, J^1_{CF} = 255.4, J^2_{CF} = 38.1; CF_2F_3), 119.1 (qt, J^1_{CF} = 286.9, J^2_{CF} = 38.1; CF_2CF_3), 127.9 (t, J^3_{CF} = 7.6; CH_2), 128.4 (CH), 129.3 (CH), 130.8 (CH), 131.5 (CH), 132.9 (C), 135.4 (t, J^2_{CF} = 23.1; C), 139.9 (C), 160.8 (CH) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -114.4 (q, J= 57.8 Hz, 2F; CF_2), -83.0 (t, J= 2.0 Hz, 3F; CF_3) ppm. HRMS (EI) calcd. for $C_{15}H_{17}F_5NOS$ [M+H⁺]: 354.0946, found: 354.0948.

methylpropane-2-sulfinamide (*4k*). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (5:1)] afforded **4k** as colorless oil (52%, 120 mg). [α]_D²⁵ = - 16.3 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.21 (s, 9H), 5.86 (t, J= 0.9 Hz, 1H), 6.32 (t,

 $(R_S-E)-N-[2-(3,3-difluoro-3-phenylsulfonyl-1-propen-2-yl)benzylidene]-2-$

J= 1.5 Hz, 1H), 7.47-7.61 (m, 5H), 7.70-7.76 (m, 1H), 7.95-8.06 (m, 3H), 8.71 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3*C*H₃), 57.8 (*C*), 120.18 (t, J^{1}_{CF} = 289.1; *C*F₂), 128.7 (*C*H), 129.2 (2*C*H), 129.3 (*C*H), 129.9 (t, J^{3}_{CF} = 6.7; *C*H₂), 130.8 (2*C*H), 131.7 (2*C*H), 132.7 (*C*), 133.0 (*C*), 135.2 (t, J^{2}_{CF} =22.3; *C*), 135.3 (*C*H), 136.1 (*C*), 161.3 (*C*H) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -99.8 (br, 1F; *CFF*), -98.3 (br, 1F; *CFF*) ppm. HRMS (EI) calcd. For C₂₀H₂₂F₂NO₃S₂ [M+H⁺]: 426.1005, found: 426.1000.

General procedure for the allylation/crotylation of imines 4. A 1M solution of allylzinc/crotylzinc bromide in THF was prepared by stirring, allyl/crotyl bromide (1.0 equiv) and activated Zn (3.0 equiv) in anhydrous THF (1 M) at 55 °C. This freshly prepared solution (1.1 equiv, 0.55 mmol) was then added to a solution of imine 4 (1.0 equiv, 0.5 mmol) in THF (0.1 M) at -60 °C. After stirring for 3h at -60 °C the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted three times with AcOEt. Flash chromatography afforded compounds 5.

(R_S)-2-methyl-N-{(S)-1-[2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl} propane-2-sulfinamide (Sa). Flash chromatography of the crude reaction product [n-hexane-EtOAc (5:1)] afforded Sa as colorless oil (95%, 250 mg). [α]_D²⁵ = - 225.8 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.09 (s, 9H), 2.24-2.50 (m, 2H), 3.69 (br, 1H), 4.54-4.59 (m, 1H), 5.10-5.16 (m, 2H), 5.66 (d, J= 3.0 Hz, 1H), 5.62-5.76 (m, 1H), 6.14 (q, J= 3.0 Hz, 1H), 7.17-7.22 (m, 2H), 7.33-7.41 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.6 (3CH₃), 43.1 (CH₂), 52.4 (CH), 55.6 (C), 119.4 (CH₂), 122.8 (q, CF₃, J¹ $_{C}$ F= 271.8), 124.2 (q, CH₂, J³ $_{C}$ F= 4.9), 127.2 (CH), 127.7 (CH), 129.1 (CH), 129.9 (CH), 133.3 (C), 134.5 (CH), 136.6 (q, C, J² $_{C}$ F= 31.1), 140.8 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₇H₂₂F₃NOS [M+H⁺]: 346.1447, found: 346.1437.

 $(R_S)-N-\{(S)-1-[5-chloro-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl\}-2$ methylpropane-2-sulfinamide (5b). Flash chromatography of the crude reaction product [n-hexane-EtOAc (5:1)] afforded **5b** as colorless oil (99%, 230 mg). $[\alpha]_D^{25} = -57.5$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.18 (s, 9H), 2.27-2.36 (m, 1H), 2.49-2.57(m, 1H), 3.76 (s, 1H), 4.60 (ddd, J= 6.0, 3.0, 0.5 Hz, 1H), 5.19-5.25 (m, 2H), 5.68-5.81 (m, 2H), 6.23 (dd, J= 3.0, 3.0 Hz, 1H), 7.18 (d, J= 9.0 Hz, 1H), 7.26-7.29 (m, 1H), 7.45 (d, J= 3.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3CH₃), 42.9 (CH₂), 52.2 (CH), 55.8 (C), 119.8 (CH₂), 122.5 (q, CF₃, J^{1}_{CF} = 203.8), 124.8 (q, CH₂, J^{3}_{CF} = 4.8), 127.5 (CH), 128.1 (CH), 131.3 (CH), 131.6 (C), 133.9 (CH), 135.7 (q, C, J^2_{CF} = 31.5), 142.9 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for $C_{17}H_{22}ClF_3NOS [M+H^+]$: 380.1057, found: 380.1053. $(R_S)-N-\{(S)-1-[4-fluoro-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl\}-2$ methylpropane-2-sulfinamide (5c). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (4:1)] afforded **5c** as colorless oil (94%, 265 mg). $[\alpha]_D^{25} = -103.4$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.15 (s, 9H; 3CH₃), 2.27-2.38 (m, 1H), 2.46-2.52 (m, 1H), 3.75 (s, 1H), 4.57 (ddd, J=5.7, 3.9, 1.5 Hz, 1H), 5.16-5.21 (m, 2H), 5.66-5.80 (m, 2H), 6.22 (q, J=1.2 Hz, 1H), 6.93 (dd, J=9.3, 2.7 Hz, 1H), 7.09 (dt, J=1.2 Hz, J=1.28.4, 3.0 Hz, 1H), 7.43 (dd, J=5.7, 2.2 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3CH₃), 43.1 (CH₂), 51.8 (CH), 55.6 (C), 116.4 (d, CH, J^2_{CF} = 10.1), 116.7 (d, CH, J^2_{CF} = 11.0), 119.5 (CH₂), 122.6 (q, CF₃, J^1_{CF} = 273.6), 124.7 (q, CH₂, J^3_{CF} = 4.8), 129.7 $(q, CH, J^{3}_{CF} = 8.4), 134.16 (CH), 135.0 (d, C, J^{3}_{CF} = 8.0), 135.4 (q, C, J^{2}_{CF} = 31.3), 136.6$ (d, C, J^3_{CF} = 3.1), 161.1 (d, CF, J^1_{CF} = 249.1) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -114.8 (ddd, J_{FH} = 9.0, 8.2, 5.6 Hz, F; CF), -67.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for

 $C_{17}H_{22}F_4NOS [M+H^+]$: 364.1353, found: 364.1345.

 (R_S) -2-methyl-N- $\{(S)$ -1-[6-(3,3,3-trifluoro-1-propen-2-yl)benzo[d][1,3]dioxol-5-yl]-3buten-1-vl\propane-2-sulfinamide (5d). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (4:1)] afforded **5d** as colorless oil (89%, 225 mg). $[\alpha]_D^{25} = -$ 61.6 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.17 (s, 9H), 2.24-2.38 (m, 1H), 2.44-2.51 (m, 3H), 3.72 (s, 1H), 4.54 (ddd, J=9.6, 3.9, 1.5 Hz, 1H), 5.15-5.21 (m, 2H), 5.67-5.77 (m, 2H), 5.98 (dd, J=6.0, 1.2 Hz, 2H), 6.18 (q, J=1.2 Hz, 1H), 6.67 (s, 1H), 6.88 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3*C*H₃), 43.1 (*C*H₂), 52.3 (*C*H), 55.5 (C), 101.4 (CH₂), 107.2 (CH), 109.4 (CH), 119.3 (CH₂), 122.8 (q, CF₃, J^{1}_{CF} = 273.3), 124.6 (q, CH_2 , J^3_{CF} = 4.6), 134.4 (C), 134.6 (CH), 135.0 (q, C, J^2_{CF} = 31.2), 136.6 (C), 145.6 (C), 148.5 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.6 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for $C_{18}H_{23}F_3NO_3S$ [M+H⁺]: 390.1345, found: 390.1356. $(R_S)-N-\{(S)-1-[5-methoxy-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl\}-2$ methylpropane-2-sulfinamide (5e). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (4:1)] afforded **5e** as a white solid (92%, 280 mg). $[\alpha]_D^{25} = -91.7$ (c 1.0; CHCl₃). Mp 60-62 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.18 (s, 9H), 2.28-2.40 (m, 1H), 2.50-2.57 (m, 1H), 3.73 (br, 1H), 3.81 (s, 3H), 4.60 (ddd, J= 9.6, 3.9, 1.8 Hz, 1H), 5.17-5.23 (m, 2H), 5.69 (q, J=1.5 Hz, 1H), 5.71-5.83 (m, 1H), 6.19 (q, J=1.2 Hz, 1H), $6.84 \text{ (dd, } J= 8.4, 2.7 \text{ Hz, } 1\text{H}), 6.98 \text{ (d, } J= 2.7 \text{ Hz, } 1\text{H}), 7.16 \text{ (d, } J= 9.0 \text{ Hz, } 1\text{H}) \text{ ppm.}^{13}\text{C}$ NMR (CDCl₃, 75.5 MHz) δ 22.5 (3*C*H₃), 43.1 (*C*H), 52.5 (*C*H₂), 55.1 (O*C*H₃), 55.6 (*C*), 112.9 (CH), 112.8 (CH), 119.4 (CH₂), 122.9 (g, CF₃, J^{1}_{CF} = 273.8 Hz), 124.4 (g, CH₂, J^{3}_{CF} = 4.0 Hz), 125.5 (C), 131.1 (CH), 134.4 (CH), 135.9 (g, C, J^{2}_{CF} = 31.1 Hz), 142.4 (C), 160.0 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.7 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for $C_{18}H_{25}F_3NO_2S$ [M+H⁺]: 376.1553, found: 376.1560. (R_S) -2-methyl-N- $\{(S)$ -1-[5-(3,3,3-trifluoro-1-propen-2-yl)benzo[b]thiophen-6-yl]-3buten-1-yl}propane-2-sulfinamide (5f). Flash chromatography of the crude reaction product [n-hexane-EtOAc (4:1)] afforded **5f** as colorless oil (58%, 450 mg). [α]_D²⁵ = -75.7(c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.20 (s, 9H), 2.42-2.53 (m, 1H), 2.57-2.64 (m, 1H), 3.79 (s, 1H), 4.78-4.83 (m, 1H),), 5.16-5.22 (m, 2H), 5.78-5.80 (m, 1H), 5.64-5.77 (m, 1H), 6.12 (q, J= 1.5 Hz, 1H), 6.93 (dd, J= 5.4, 1.2 Hz, 1H), 7.28 (d, J= 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.9 (3CH₃), 44.9 (CH₂), 50.9 (CH), 55.8 (C), 117.2 (C), 119.8 (C), 120.2 (CH₂), 124.3 (q, J³CF = 5.13 Hz, CH₂), 125.2 (CH), 128.2 (CH), 132.5 (q, J²CF = 31.63 Hz; C), 133.9 (CH), 145.2 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.3 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₅H₂₀F₃NOS₂ [M+H⁺]: 352.1011, found: 352.1008.

(R_S)-2-methyl-N-{(1S,2S)-2-methyl-1-[6-(3,3,3-trifluoro-1-propen-2-yl)benzo[d]} [1,3]dioxol-5-yl]-3-buten-1-yl}propane-2-sulfinamide (S_B). Flash chromatography of the crude reaction product [n-hexane-EtOAc (3:1)] afforded S_B as colorless oil (82%, 133 mg). [α]_D²⁵ = -71.1 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 0.75 (d, J= 6.9 Hz, 3H), 1.15 (s, 9H), 2.28-2.41 (m, 1H), 3.98 (s, 1H), 4.21 (dd, J= 9.3, 0.9 Hz, 1H), 5.17-5.25 (m, 2H), 5.63-5.75 (m, 1H), 5.93 (d, J=1.2 Hz, 1H), 5.99 (dd, J= 4.5, 1.5 Hz, 2H), 6.21 (q, J= 1.5 Hz, 1H), 6.72 (d, J= 0.9 Hz, 1H), 6.82 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 16.9(CH₃), 22.6 (3CH₃), 47.5 (CH), 55.6 (C), 56.4 (CH), 101.5 (CH₂), 107.4 (CH), 108.9 (CH), 117.7 (CH₂), 121.1 (q, J¹_{CF}= 273.3 Hz; CF₃), 124.6 (C), 125.6 (q, J³_{CF}= 4.9 Hz; CH₂), 132.9 (C), 135.6 (q, J²_{CF}= 30.7 Hz; C), 146.7 (C), 141.6 (CH), 148.5 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -65.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₉H₂₄F₃NO₃S [M+H⁺]: 404.1502, found: 404.1523.

 (R_S) -2-methyl-N- $\{(S)$ -1-[2-(3,3,4,4,4-pentafluoro-1-buten-2-yl)phenyl]-3-buten-1-yl $\}$ propane-2-sulfinamide (Sh). Flash chromatography of the crude reaction product [n-hexane-EtOAc (5:1)] afforded Sh as a white solid (91%, 180 mg). [α]_D²⁵ = -90.2 (c 1.0; CHCl₃). Mp 59-61 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.15 (s, 9H), 2.32-2.40 (m, 1H),

2.51-2.58 (m, 1H), 3.78 (br, 1H), 4.56-4.61 (m, 1H), 5.17-5.24 (m, 2H), 5.50-5.83 (m, 1H), 5.88 (s, 1H), 6.23 (s, 1H), 7.17-7.19 (m, 1H), 7.24-7.30 (m, 1H), 7.36-7.47 (m, 2H) ppm. 13 C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3*C*H₃), 42.9 (*C*H₂), 52.6 (*C*H), 55.6 (*C*), 108.8-125.0 (*C*₂F₅), 119.4 (*C*H₂), 127.1 (*C*H), 127.6 (t, \mathcal{J}_{CF}^{3} = 7.7, *C*H₂), 127.7 (*C*H), 129.1 (*C*H), 130.1 (*C*H), 133.8 (*C*), 134.5 (*C*H), 140.9 (*C*) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -112.8 (d, \mathcal{J} = 181.3 Hz, 2F; CF₂), -82.7 (s, 3; CF₃) ppm. HRMS (EI) calcd. for C₁₈H₂₂F₅OSN [M+H⁺]: 396.1415, found: 396.1422. (*R*_S)-2-methyl-*N*-{(S)-1-[2-(1-propen-2-yl)phenyl] -3-buten-1-yl}propane-2-sulfinamide

(*5i*). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (8:1)] afforded **5i** as a colorless oil (64% two steps, 100 mg). $[\alpha]_D^{25} = -88.8$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.11 (s, 9H), 2.04 (s, 3H), 2.27-2.55 (m, 2H), 3.59 (br, 1H), 4.66 (br, 1H), 4.81 (s, 1H), 5.08-5.12 (m, 2H), 5.18 (s, 1H), 5.59-5.74 (m, 1H), 7.04 (d, *J*= 7.0 Hz, 1H), 7.16-7.19 (m, 2H), 7.30 (d, *J*= 7.1 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.5 (3*C*H₃), 25.7 (*C*H₃), 43.8 (*C*H₂), 52.5 (*C*H), 55.5 (*C*), 115.8 (*C*H₂), 118.9 (*C*H₂), 127.0 (*C*H), 127.1 (*C*H), 128.1 (*C*), 134.6 (*C*H), 138.2 (*C*), 143.9 (*C*), 144.7 (*C*) ppm. HRMS (EI) calcd. for C₁₇H₂₅NOS [M+H⁺]: 292.1730, found: 292.1722.

Flash chromatography of the crude reaction product [n-hexane-EtOAc (3:1)] afforded **5j** as colorless oil (62% two steps, 39 mg). [α]_D²⁵ = - 99.8 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.16 (s, 9H), 1.27 (t, J= 8.5 Hz, 3H), 2.29-2.40 (m, 1H), 2.56-2.63 (m, 1H), 3.70 (br, 1H), 4.18-4.29 (m, 2H), 4.47-4.52 (m, 1H), 5.13-5.18 (m, 2H), 5.63-5.77 (m, 1H), 5.81 (d, J= 1.5 Hz, 1H), 6.61 (d, J= 1.5 Hz, 1H), 7.12 (dd, J= 7.5, 1.7 Hz, 1H), 7.27-7.28 (m, 1H), 7.31-7.37 (m, 1H), 7.44 (dd, J= 8.0, 1.7 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 14.1 (CH₃), 22.6 (3CH₃), 42.8 (CH₂), 52.9 (CH), 55.6 (C), 61.3 (CH₂), 119.1 (CH₂), 126.9 (CH), 127.1 (CH), 128.2 (CH), 129.8 (CH), 129.9

 (R_S) -ethyl 2- $\{2-\lceil (1S)-1-\lceil (tert-butylsulfinyl)amino\}$ -3-buten-1-yl $\}$ phenyl $\}$ acrylate (5i).

 (CH_2) , 134.5 (CH), 137.0 (C), 139.9 (C), 140.4 (C), 166.4 (C) ppm. HRMS (EI) calcd. for $C_{19}H_{28}NO_3S$ [M+H⁺]: 350.1784, found: 350.1793.

 (R_S) -N-{(S)-1-[2-(3,3-difluoro-3-(phenylsulfonyl)-1-propen-2-yl)phenyl]-3-buten-1-yl}-2-methylpropane-2-sulfinamide (Sk). Flash chromatography of the crude reaction product [n-hexane-EtOAc (2:1)] afforded Sk as colorless oil (95%, 100 mg). [α]_D²⁵ = -66.1 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.16 (s, 9H), 2.30-2.41 (m, 1H), 2.61-2.65 (m, 1H), 3.79 (br, 1H), 4.64-4.68 (m, 1H), 5.14-5.21 (m, 2H), 5.69-5.83 (m, 1H), 6.06 (br, 1H), 6.42 (t, J= 1.5 Hz, 1H), 7.18-7.47 (m, 4H), 7.57-7.62 (m, 2H), 7.72-7.77 (m, 1H), 7.99 (d, J= 7.5 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.6 (3CH₃), 42.9 (CH₂), 52.8 (CH), 55.6 (C), 119.2 (CH₂), 120.5 (t, J¹_{CF}= 287.7 Hz; CF₂), 125.3 (C), 127.1 (CH), 127.5 (CH), 128.2 (CH), 129.0 (CH), 129.2 (CCH), 130.5 (t, J³_{CF}= 6.2 Hz; CH₂), 130.6 (CH), 130.9 (2CH), 132.9 (C), 134.8 (CH), 135.2 (CH), 140.8 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -99.9 (d, J= 219.1 Hz, 1F; CFF), -94.8 (d, J= 205.6 Hz, 1F; CFF) ppm. HRMS (EI) calcd. for C₂₃H₂₈F₂NO₃S₂ [M+H⁺]: 468.1469, found: 468.1468.

General procedure for the protecting group exchange. Hydrogen chloride (2.9 mmol, 4.0 equiv, 4M solution in 1,4-dioxane) was added at room temperature to a solution of the corresponding sulfinyl amine (0.73 mmol, 1.0 equiv) in MeOH (1 M). After 30 minutes the deprotection was complete and the solution was concentrated to dryness. The residue was re-dissolved in CH₂Cl₂ (5 mL) and 2M NaOH was added and extracted three times with dichloromethane. The combined organic layers were dried over anhydrous Na₂SO₄. Solvents were removed under reduced pressure and the crude reaction mixture was used in the next protection step without further purification.

(a) N-Boc-protection: The resulting crude product was dissolved in anhydrous 1,4-dioxane (0.2 M) and treated with K₂CO₃ (1.8 mmol, 2.5 equiv) and di-tert-butyl

dicarbonate (Boc₂O) (0.9 mmol, 1.1 equiv). The mixture was stirred at 50 °C overnight, until TLC revealed the disappearance of the free amine. The suspension was then filtered through a short pad of Celite[®] and washed with small portions of ethyl acetate. Solvents were removed under reduced pressure and the residue was purified by means of flash chromatography on silica gel affording the desired product.

Tert-Butvl $(S)-\{1-[2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl\}carbamate$ (6a). Flash chromatography of the crude reaction product [n-hexane-Et₂O (30:1)] afforded **6a** as a white solid (83%, 100 mg). $[\alpha]_D^{25} = -18.5$ (c 1.0; CHCl₃). Mp 30-32 $^{\circ}\text{C}$. ^{1}H NMR (CDCl3, 300 MHz) δ 1.39 (s, 9H), 2.41-2.47 (m, 2H), 4.78 (br, 1H), 4.92 (br, 1H), 5.04- 5.12 (m, 2H), 5.60-5.74 (m, 2H), 6.20 (d, J= 3.0 Hz, 1H), 7.25-7.38 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3*C*H₃), 41.0 (*C*H₂), 50.4 (*C*H), 50.5 (CH), 79.4 (C), 118.8 (CH₂), 122.9 (q, J^{1}_{CF} = 271.8, CF₃), 124.4 (q, J^{2}_{CF} = 2.2, CH₂), 125.9 (CH), 126.8 (CH), 129.2 (CH), 130.1 (CH), 132.5 (C), 134.0 (CH), 141.5 (C), 154.7 (C), ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -67.0 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₈H₂₂F₃NO₂ [M+H⁺]: 342.1675, found: 342.1673. HPLC (Chiralcel OD-H, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 5.00 min, tR(minor) = 4.56 min. (S)-{1-[5-chloro-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl} Tert-Butyl carbamate (6b). Flash chromatography of the crude reaction product [n-hexane-Et₂O (30:1)] afforded **6b** as a colorless oil (55%, 90 mg). $[\alpha]_D^{25} = -38.2$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.40 (s, 9H), 2.30-2.48 (m, 2H), 4.83-4.89 (m, 2H), 5.09-5.14 (m, 2H), 5.60-5.71 (m, 1H), 5.74 (br, 1H), 6.23 (d, J=1.5 Hz, 1H), 7.18 (d, J=9.0Hz, 1H), 7.23 (dd, J= 9.0, 3.0 Hz, 1H), 7.35 (d, J= 3.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3*C*H₃), 40.9 (*C*H₂), 50.5 (d, \mathcal{J}_{CF}^{4} = 1.4; *C*H), 79.7 (*C*), 118.6 (*C*H₂), 122.7 (q, J^{1}_{CF} = 273.8; CF_{3}), 125.2 (q, CH_{2} , J^{3}_{CF} = 4.7), 126.3 (CH), 127.0 (CH), 130.7 (C), 131.3 (CH), 133.5 (CH), 135.2 (C), 135.7 (C), 143.9 (C), 154.7 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -66.9 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₄H₁₃ClF₃NO₂ [M+H⁺]: 320.0660, found: 320.0658. HPLC (Chiralcel OD-H, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 4.01 min, tR(minor) = 4.24 min.

Tert-Butyl (S)-{1-[4-fluoro-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl} carbamate (6c). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 6c as a yellow solid (68%, 105 mg). [α]_D²⁵ = - 12.2 (c 1.0; CHCl₃). 1 H NMR (CDCl₃, 300 MHz) δ 1.38 (s, 9H), 2.37-2.46 (m, 2H), 4.81-4.89 (m, 2H), 5.04-5.11 (m, 2H), 5.58-5.22 (m, 1H), 5.78 (br, 1H), 6.23 (d, J= 1.5 Hz, 1H), 6.95 (dd, J= 9.3, 2.7 Hz, 1H), 7.07 (dd, J= 8.1, 2.7 Hz, 1H), 7.33 (dd, J= 8.7, 3.4 Hz, 1H) ppm. 13 C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 41.0 (CH₂), 50.1 (CH), 75.5 (C), 116.2 (d, J²_{CF}= 21.0; CH), 116.7 (d, J²_{CF}= 22.1; CH), 118.3 (CH₂), 122.7 (q, J¹_{CF}= 273.9; CF₃), 125.0 (d, J³_{CF}= 2.0; CH), 127.7 (d, J²_{CF}= 83.3; CH), 133.7 (CH), 134.2 (C), 135.5 (d, J³_{CF}= 31.5; C), 137.6 (d, J⁴_{CF}= 3.1; C), 154.7 (C), 160.9 (d, J¹_{CF}= 271.8; CH) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -115.7 (ddd, J= 14.4, 8.5, 5.6 Hz, 1F; CF), -66.9 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₈H₂₁F₄NO₂ [M+H⁺]: 360.1581, found: 360.1573. HPLC (Chiralcel OD-H, 99.5:0.5 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 8.96 min, tR(minor) = 9.82 min.

Tert-Butyl (S)-{1-[6-(3,3,3-trifluoro-1-propen-2-yl)benzo[d][1,3]dioxol-5-yl]-3-buten-1-yl}carbamate (6d). Flash chromatography of the crude reaction product [n-hexane-Et₂O (10:1)] afforded 6d as colorless oil (67%, 120 mg). [α]_D²⁵ = - 19.2 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.25 (s, 9H), 2.25 (t, J= 6.9 Hz, 2H), 4.63-4.70 (m, 2H), 4.89-4.97 (m, 2H), 5.45-5.57 (m, 2H), 5.83 (s, 2H), 6.04 (d, J= 1.5 Hz, 1H), 6.55 (s, 1H), 6.68 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 41.1 (CH₂), 50.7 (CH), 79.4 (C), 101.4 (CH₂), 105.9 (CH), 109.7 (CH), 118.0 (CH₂), 122.9 (q, J¹_{CF}= 279.3 Hz, CF₃), 124.7 (q, J³_{CF}= 2.3 Hz; CH₂), 124.7 (C), 125.6 (C), 133.9 (CH), 135.8

(*C*), 136.3 (*C*), 146.7 (*C*), 148.4 (*C*), 154.7 (*C*) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ - 66.1 (s, 3F; C*F*₃) ppm. HRMS (EI) calcd. for C₁₉H₂₂F₃NO₄ [M+H⁺]: 386.1574, found: 386.1580. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 7.46 min, tR(minor) = 6.65 min.

Tert-Butyl (S)-{1-[5-methoxy-2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl} carbamate (6e). Flash chromatography of the crude reaction product [n-hexane-Et₂O (10:1)] afforded 6e as a colorless oil (84%, 105 mg). [α]_D²⁵ = - 26.3 (c 1.0; CHCl₃). 1 H NMR (CDCl₃, 300 MHz) δ 1.39 (s, 9H), 2.34- 2.50 (m, 2H), 3.81 (s, 3H), 4.81-4.90 (m, 2H), 5.04-5.12 (m, 2H), 5.60-5.74 (m, 2H), 6.17 (d, J= 1.5 Hz, 1H), 6.79 (dd, J= 8.4, 2.7 Hz, 1H), 6.88 (d, J= 2.7 Hz, 1H), 7.16 (d, J= 8.1 Hz, 1H), ppm. 13 C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 40.9 (CH₂), 50.7 (CH), 55.2 (OCH₃), 79.4 (C), 111.8 (2CH), 118.0 (CH₂), 122.9 (q, CF₃, J^{1} _{CF}= 268.8 Hz), 124.5 (q, CH₂, J^{3} _{CF}= 3.5 Hz), 124.7 (C), 131.2 (CH), 134.0 (CH), 136.2 (d, C, J^{3} _{CF}= 28.8 Hz), 143.1 (C), 154.7 (C), 160.1 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -66.1 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₉H₂₄F₃NO₃ [M+H⁺]: 372.1781, found: 372.1783. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 6.67 min, tR(minor) = 5.74 min.

(a)-{1-[3-(3,3,3-try]tuoro-1-propen-2-yl]tntopnen-2-yl]-3-but-3-en-1-yl} carbamate (6f). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 6f as a colorless oil (64%, 160 mg). [α]_D²⁵ = - 4.5 (c 1.0; CHCl₃). 1 H NMR (CDCl₃, 300 MHz) δ 1.41 (s, 3H), 2.47-2.58 (m, 2H), 4.82 (s, 1H), 5.07-5.13 (m, 3H), 5.63-5.72 (m, 1H), 5.76 (s, 1H), 6.12 (d, J= 1.2 Hz, 1H), 6.96 (dd, J=5.1, 0.9 Hz, 1H), 7.20 (d, J=5.4 Hz, 1H) ppm. 13 C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 42.0 (CH₂), 48.6 (CH), 79.8 (C), 118.6 (CH₂), 122.1 (q, J¹_{CF}= 267.0 Hz; CF₃), 123.1 (CH), 123.8 (CH₂), 128.2 (CH), 130.7 (C), 133.2 (CH), 146.1 (C), 154.6 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -66.7 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₆H₂₀F₃NO₂S

[M+H⁺]: 348.1240, found: 348.1249. HPLC (Chiralpeel OD-H, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 4.68 min, tR(minor) = 4.37 min.

Tert-Butyl {(1S,2S)-2-methyl-1-[6-(3,3,3-trifluoro-1-propen-2-yl)benzo[d][1,3] dioxol-5-yl]-3-buten-1-yl}carbamate (6g). Flash chromatography of the crude reaction product [n-hexane-Et₂O (10:1)] afforded 6g as colorless oil (74%, 95 mg). [α]_D²⁵ = - 39.8 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 0.89 (d, J=6.9 Hz, 3H), 1.38 (s, 9H), 2.44 (dd, J= 21.0, 13.8 Hz, 1H), 4.7 (s, 2H), 5.11-5.04 (m, 2H), 5.83-5.71 (m, 2H), 5.96 (dd, J= 3.3, 1.2 Hz, 2H), 6.19 (s, 1H), 6.72 (s, 1H), 6.76 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 17.2 (CH₃), 21.5 (CH), 28.3 (3CH₃), 43.9 (CH), 54.7 (CH), 79.2 (C), 101.4 (CH₂), 106.2 (CH), 109.5 (CH), 116.4 (CH₂), 122.9 (q, J¹_{CF}= 274.3 Hz; CF₃), 124.7 (C), 125.4 (CH₂), 128.4 (C), 135.3 (C), 146.2 (C), 148.3 (C), 154.7 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -66.4 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₂₀H₂₄F₃NO₄ [M+Na]: 422.1550, found: 422.1561. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 6.50 min, tR(minor) = 5.97 min.

Tert-Butyl (S)-{1-[2-(3,3,4,4,4-pentafluoro-1-buten-2-yl)phenyl]-3-buten-1-yl} carbamate (6h). Flash chromatography of the crude reaction product [n-hexane-Et₂O (10:1)] afforded 6h as colorless oil (88%, 80 mg). [α]_D²⁵ = - 19.0 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.32 (s, 9H), 2.38-2.40 (m, 2H), 4.69 (br, 1H), 4.79 (br, 1H), 4.96-5.02 (m, 2H), 5.56-5.64 (m, 1H), 5.75 (s, 1H), 6.14 (s, 1H), 7.11-7.13 (m, 1H), 7.16-7.20 (m, 1H), 7.28-7.33 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 41.1 (CH₂), 50.8 (CH), 79.3 (C), 112.5 (tq, J^1_{CF} = 251.1 Hz, J^2_{CF} = 39.4 Hz; CF₂CF₃), 117.9 (CH₂), 119.4 (qt, J^1_{CF} = 287.7 Hz, J^2_{CF} = 36.6 Hz; CF₂CF₃), 125.9 (CH), 126.8 (CH), 127.7 (CH₂), 129.2 (CH), 130.3 (CH), 133.1 (C), 134.1 (CH), 135.9 (C), 154.6 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -112.7 (br, 2F; CF₂), -82.9 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₉H₂₂F₅NO₂ [M+H⁺]: 392.1643, found: 392.1637.

HPLC (Chiralcel OD-H, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 4.68min, tR(minor) = 4.28 min.

(b) N-Acetyl-protection: The crude residue from the chiral auxiliary deprotection described above was re-dissolved in anhydrous CH₂Cl₂ (8 mL), and Ac₂O (1.2 mmol, 1.5 equiv.), Et₃N (1.62 mmol, 2 equiv.) and DMAP (0.162 mmol, 0.8 equiv.) were successively added at room temperature. The mixture was stirred at room temperature for 16 h. At this time, the reaction was hydrolyzed with aq. NH₄Cl and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by means of flash chromatography on silica gel.

(S)-N-{1-[2-(3,3,3-trifluoro-1-propen-2-yl)phenyl]-3-buten-1-yl}acetamide (6a'). Flash chromatography of the crude reaction product [n-hexane-EtOAc (2:1)] afforded 6a' as colorless oil (74%, 90 mg). [α]_D²⁵ = - 41.7 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.90 (s, 3H), 2.43-2.48 (m, 2H), 5.02-5.09 (m, 2H), 5.15-5.22 (m, 1H), 5.60-5.73 (m, 1H), 5.76 (dd, J= 1.3, 1.3 Hz, 1H), 5.98 (d, J= 7.3 Hz, 1H), 6.19 (dd, J= 1.5, 1.5 Hz, 1H), 7.23-7.28 (m, 2H), 7.32-7.37 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 23.1 (CH₃), 40.5 (CH₂), 49.5 (CH), 118.0 (CH₂), 123.2 (q, J¹_{CF}= 275.5 Hz; CF₃), 124.6 (q, J³_{CF}= 6.0 Hz; CH₂), 126.0 (CH), 126.9 (CH), 129.1 (CH), 130.1 (CH), 132.7 (C), 134.1 (CH), 136.1 (q, J²_{CF}= 34.0 Hz; C), 141.1 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ - 67.0 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₅H₁₆F₃NO [M+H⁺]: 284.1257, found: 284.1253. HPLC (Chiralcel OD-H, 95:5 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 9.52 min, tR(minor) = 8.12 min.

(*S*)-*N*-{1-[3-(3,3,3-Trifluoro-1-propen-2-yl)thiophen-2-yl]-3-buten-1-yl}acetamide (**6f**'). Flash chromatography of the crude reaction product [*n*-hexane-EtOAc (2:1)] afforded **6f**' as colorless oil (80%, 190 mg). $[\alpha]_D^{25} = -28.7$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300

MHz) δ 7.18 (d, J=5.2 Hz, 1H), 6.93 (dd, J= 5.2, 1.1 Hz, 1H), 6.26 (d, J= 6.9 Hz, 1H), 6.09 (dd, J= 1.5, 1.3 Hz, 1H), 5.77 (dd, J= 1.5, 1.3 Hz, 1H), 5.59-5.73 (m, 1H), 5.4 (q, J=7.5 Hz, 1H), 5.11-5.03 (m, 2H), 2.62-2.44 (m, 2H), 1.02 (s, 3H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 22.9 (CH₃), 41.6 (CH₂), 47.7 (CH), 118.5 (CH₂), 122.8 (q, J¹_{CF}= 275.5 Hz; CF₃), 123.2 (CH), 123.9 (q, J³_{CF}= 5.5 Hz, CH₂), 128.1 (CH), 131.0 (C), 132.8 (q, J²_{CF}= 32.9 Hz, C), 133.2 (CH), 145.1 (C), 169.1 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -67.2 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₃H₁₄F₃NOS [M+H⁺]: 290.0821, found: 290.0831. HPLC (Chiralcel OD-H, 95:5 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 9.00 min, tR(minor) = 8.14 min.

(S)-N-(1-{2-[3,3-Difluoro-3-(phenylsulfonyl)} -1-propen-2-yl]phenyl}-3-buten-1-yl) acetamide (6k). Flash chromatography of the crude reaction product [n-hexane-EtOAc (1:1)] afforded 6k as colorless oil (72%, 90 mg). [α]_D²⁵ = - 14.5 (c 1.0; CHCl₃). 1 H NMR (CDCl₃, 300 MHz) δ 1.90 (s, 3H), 2.49-2.54 (m, 2H), 5.02-5.19 (m, 3H), 5.61-5.74 (m, 2H), 6.06 (br, 1H), 6.41 (br, 1H), 7.27-7.42 (m, 3H), 7.47-7.49 (m, 1H), 7.57-7.62 (m, 2H), 7.71-7.77 (m, 1H), 7.99 (d, J= 7.8 Hz, 2H) ppm. 13 C NMR (CDCl₃, 75.5 MHz) δ 23.2 (CH₃), 31.5 (CH₂), 40.6 (CH₂), 50.0 (CH), 117.9 (CH₂), 120.5 (t, J¹_{CF}=172.8 Hz; CF₂), 125.8 (CH), 127.0 (CH), 129.1 (CH), 129.2 (CH), 130.7 (C), 130.9 (CH), 132.9 (C), 133.6 (C), 134.2 (CH), 135.2 (CH), 141.2 (C), 169.0 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -99.7 (s, 1F; CFF), -93.1 (s, 1F; CFF) ppm. HRMS (EI) calcd. for C₂₁H₂₂F₂NO₃S [M+H⁺]: 406.1288, found: 406.1284.

General procedure for the RCM reaction. To a solution of the corresponding homoallylamine 5i,j or 6a-h,k,a',f' (0.4 mmol, 1.0 equiv) in toluene (for R'= R_F) or CH₂Cl₂ (for R'= CH₃, CO₂Et) (8 mL, 0.05M), 2nd generation Grubbs catalyst [Ru-II] (0.02 mmol, 5 mol%) (for 6a-f,k) or 2nd generation Hoveyda-Grubbs catalyst [Ru-III] (0.02 mmol, 5 mol%) (for 5i,j and 6a',f') was added. The reaction mixture was stirred

approximately 4 hours at 100 °C (for compounds 6) or room temperature (for compounds 5). After that time, the reaction mixture was concentrated under vacuum and purified by means of flash chromatography on silica gel.

tert-Butyl (S)-[4-(trifluoromethyl)-1,2-dihydronaphthalen-1-yl]carbamate (7a). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 7a as a white solid (67%, 80 mg). [α]_D²⁵ = - 16.3 (c 1.0; CHCl₃). Mp 39-41 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.45 (s, 9H), 2.66 (br, 2H), 4.79-4.94 (m, 2H), 6.64-6.67 (m, 1H), 7.32-7.35 (m, 2H), 7.37-7.40 (m, 1H), 7.45-7.47 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.5 (3CH₃), 29.6 (CH₂), 47.2 (CH), 79.8 (C), 123.3 (q, J¹_{CF}= 273.1 Hz; CF₃), 124.6 (CH), 127.4 (2C), 127.6 (CH), 128.3 (CH), 129.6 (q, J³_{CF}= 5.8 Hz; CH), 125.6 (C), 135.3 (C), 154.9 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -64.3 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₆H₁₈F₃NO₂ [M+H⁺]: 314.1362, found: 314.1347. HPLC (Chiralcel OD-H, 99.5:0.5 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 17.92 min, tR(minor) = 16.40 min.

Tert-butyl (S)-[7-chloro-4-(trifluoromethyl)-1,2-dihydronaphthalen-1-yl]carbamate (7b). Flash chromatography of the crude reaction product [n-hexane- Et₂O (20:1)] afforded 7b as a white solid (74%, 75 mg). [α]_D²⁵ = - 3.43 (c 1.0; CHCl₃). Mp 85-87 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.46 (s, 9H), 2.60-2.65 (m, 2H), 4.80-4.92 (m, 2H), 6.64-6.68 (m, 2H), 7.27-7.31 (m, 1H), 7.36 (d, J= 1.8 Hz, 1H), 7.39 (d, J= 2.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 29.5 (CH₂), 47.1 (CH), 80.1 (C), 123.1 (q, J¹_{CF}= 277.8 Hz, CF₃), 125.9 (CH), 127.4 (CH), 127.7 (C), 128.3 (CH), 129.9 (q, J³_{CF}= 5.0 Hz, CH), 134.7 (C), 137.4 (C), 154.9 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -64.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₆H₁₇ClF₃NO₂ [M+H⁺]: 348.0973, found: 348.0975. HPLC (Chiralcel OD-H, 99:1 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 13.45 min, tR(minor) = 11.37 min.

Tert-butyl (S)-[6-fluoro-4-(trifluoromethyl)-1,2-dihydronaphthalen-1-yl]carbamate (7c). Flash chromatography of the crude reaction product [n-hexane-Et₂O (20:1)] afforded 7c as a colorless oil (66%, 60 mg). $[\alpha]_D^{25} = -16.2$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.44 (s, 9H), 2.57-2.74 (m, 2H), 4.76-4.91 (m, 2H), 6.72 (t, J=3.3Hz, 2H), 7.01 (ddd, J=10.8, 8.4, 2.7 Hz, 1H), 7.15-7.19 (m, 1H), 7.40 (dd, J=8.4, 5.7 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.3 (3CH₃), 29.8 (CH₂), 46.5 (CH), 79.9 (C), 111.8 (d, J^3_{CF} = 2.2 Hz; CH), 112.2 (CH), 115.4 (CH), 115.7 (CH), 123.0 (q, J^1_{CF} = 277.8 Hz; CF_3), 127.9 (q, J^2_{CF} = 24.5 Hz, C), 129.2 (q, J^3_{CF} = 7.6 Hz, C), 131.0 (C), 154.8 (C), 162.4 (d, J^{1}_{CF} = 241.6 Hz; CF) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -64.6 (s, 3F; CF_3), -113.2 (dd, $J^1 = -15.2$ Hz, $J^2 = -9.0$ Hz, 1F; CF) ppm. HRMS (EI) calcd. for $C_{16}H_{17}F_4NO_2$ [M+H⁺]: 332.1312, found: 332.1310. HPLC (Chiralcel OD-H, 99:1 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 12.44 min, tR(minor) = 11.69 min. Tert-butyl (S)-[8-(trifluoromethyl)-5,6-dihydronaphtho[2,3-d][1,3]dioxol-<math>5-yl]carbamate (7d). Flash chromatography of the crude reaction product [n-hexane-Et₂O (5:1)] afforded **7d** as colorless oil (80%, 58 mg). $[\alpha]_D^{25} = -2.05$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.44 (s, 9H), 2.54-2.68 (m, 2H), 4.62-4.64 (m, 1H), 4.77 (s, 1H), 5.97 (s, 2H), 6.53-6.56 (m, 1H), 6.89 (s, 1H), 6.96 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.4 (3CH₃), 29.6 (CH₂), 47.3 (CH), 79.8 (CH), 101.4 (CH₂), 105.4 (CH), 108.5 (C), 123.3 (q, J^{1}_{CF} = 277.8 Hz; CF_{3}), 127.5 (q, J^{3}_{CF} = 5.7 Hz; CH), 128.0 (C), 128.4 (C), 130.1 (C), 147.5 (C), 147.6 (C), 154.8 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -63.9 (s, 3F; CF_3) ppm. HRMS (EI) calcd. for $C_{17}H_{19}F_3NO_4$ [M+H⁺]: 358.1261, found: 358.1259. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 12.93 min, tR(minor) = 9.66 min.Tert-butyl (S)-[7-methoxy-4-(trifluoromethyl)-1,2-dihydronaphthalen-1-yl] carbamate

(7e). Flash chromatography of the crude reaction product [n-hexane-Et₂O (7:1)]

afforded **7e** as a white solid (77%, 53 mg). $[\alpha]_D^{25} = -5.44$ (c 1.0; CHCl₃). Mp 80-82 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.45 (s, 9H), 2.61 (br, 2H), 3.83 (s, 3H), 4.78-4.86 (m, 2H), 6.49-6.52 (m, 1H), 6.84 (dd, J=8.7, 2.7 Hz, 1H), 6.94 (d, J=2.7 Hz, 1H), 7.40 (dd, $J=8.7, 1.8 \text{ Hz}, 1\text{H}) \text{ ppm.}^{13}\text{C NMR (CDCl}_3, 75.5 \text{ MHz}) \delta 28.4 (3CH_3), 29.6 (CH_2), 47.6$ (CH), 55.4 (OCH₃), 79.8 (C), 79.8 (C), 113.3 (2CH), 120.3 (C), 123.4 (q, J^{1}_{CF} = 273.0 Hz; CF_3), 126.1 (CH), 126.7 (C), 128.2 (d, J^2_{CF} = 29.8 Hz; C), 137.4 (C), 154.9 (C), 159.9 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -63.9 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₇H₂₀F₃NO₃ [M+H⁺]: 344.1468, found: 344.1460. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 10.54 min, tR(minor) = 7.88 min. *Tert-butyl* (S)-[4-(trifluoromethyl)-6,7-dihydrobenzo[b]thiophen-7-yl]carbamate (7f). Flash chromatography of the crude reaction product [n-hexane-Et₂O (12:1)] afforded 7f as a yellow solid (68%, 99 mg). $[\alpha]_D^{25} = -35.4$ (c 1.0; CHCl₃). Mp 81-83 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.44 (s, 9H), 2.74-2.84 (m, 2H), 4.90 (br, 1H), 5.17-5.94 (m, 1H), 6.38-6.42 (m, 1H), 7.06 (dd, J= 5.4, 1.8 Hz, 1H), 7.24 (d, J= 5.1 Hz, 1H), ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.7 (3CH₃), 31.5 (CH₂), 44.1 (CH), 80.0 (C), 117.6 (C), 121.2 (C), 124.3 (CH), 125.3 (CH), 125.5 (CH), 129.3 (C), 137.5 (C), 154.5 (C) ppm. 19 F NMR (CDCl₃, 282.4 MHz) δ -66.6 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for $C_{14}H_{16}F_{3}NO_{2}S$ [M+H⁺]: 320.0927, found: 320.0922. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 8.08 min, tR(minor) = 7.04 min. Tert-butvl [(5S,6S)-6-methyl-8-(trifluoromethyl)-5,6-dihydronaphtho[2,3-d][1,3] dioxol-5-yl]carbamate (7g). Flash chromatography of the crude reaction product [nhexane-Et₂O (20:1)] afforded **7g** as a white solid (42%, 30 mg). $[\alpha]_D^{25} = -32.5$ (c 1.0; CHCl₃). Mp 135-137 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.2 (d, J= 7.2 Hz, 3H), 1.44 (s, 9H), 2.74 (s, 1H), 4.62-4.64 (m, 1H), 4.77 (s, 1H), 5.97 (s, 2H), 6.28-6.29 (m, 1H), 6.89 (s, 1H), 6.96 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 14.2 (CH₃), 28.3 (3CH₃), 32.2 (*C*H), 51.5 (*C*H), 79.7 (*C*), 101.4 (*C*H₂), 105.3 (*C*H), 108.6 (*C*H), 120.6 (*C*), 123.3 (q, J^{1}_{CF} = 277.8 Hz; *C*F₃), 127.7 (q, J^{2}_{CF} = 29.6 Hz; *C*), 131.2 (*C*), 133.8 (q, J^{3}_{CF} = 8.2 Hz; *C*H), 147.5 (*C*), 147.7 (*C*), 155.3 (*C*) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -64.3 (s, 3F; *CF*₃) ppm. HRMS (EI) calcd. for C₁₈H₂₀F₃NO₄ [M+H⁺]: 372.1417, found: 372.1402. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 9.49 min, tR(minor) = 7.44 min.

(S)-N-[4-(Trifluoromethyl)-1,2-dihydronaphthalen-1-yl]acetamide (7a'). Flash chromatography of the crude reaction product [n-hexane-EtOAc (2:1)] afforded 7a' as colorless oil (42%, 54 mg). [α] $_{\rm D}^{25}$ = - 2.0 (c 1.0; CHCl $_{\rm 3}$). 1 H NMR (CDCl $_{\rm 3}$, 300 MHz) δ 1.96 (s, 3H), 2.58-2.79 (m, 2H), 5.19-5.25 (m, 1H), 5.71 (br, 1H), 6.64-6.68 (m, 1H), 7.32-7.39 (m, 3H), 7.48-7.51 (m, 1H) ppm. 13 C NMR (CDCl $_{\rm 3}$, 75.5 MHz) δ 23.4 (CH $_{\rm 3}$), 29.2 (CH $_{\rm 2}$), 45.8 (CH), 123.5 (q, $J^{1}_{\rm CF}$ = 271.1 Hz; CF $_{\rm 3}$), 124.7 (q, $J^{4}_{\rm CF}$ = 2.2 Hz; CH), 127.4 (C), 128.1 (CH), 128.6 (CH), 129.1 (CH), 129.7 (q, $J^{3}_{\rm CF}$ = 6.2 Hz; CH), 134.6 (C), 169.2 (C) ppm. 19 F NMR (CDCl $_{\rm 3}$, 282.4 MHz) δ -64.3 (s, 3F; CF $_{\rm 3}$) ppm. HRMS (EI) calcd. for C $_{\rm 13}$ H $_{\rm 12}$ F $_{\rm 3}$ NO [M+H $^{+}$]: 256.0944, found: 256.0956. HPLC (Chiralcel OD-H, 95:5 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 19.70 min, tR(minor) = 15.40 min.

(S)-N-[4-(Trifluoromethyl)-6,7-dihydrobenzo[b]thiophen-7-yl]acetamide (7f'). Flash chromatography of the crude reaction product [n-hexane-EtOAc (4:1)] afforded 7f' as a white solid (44%, 65 mg). $[\alpha]_D^{25} = -6.5$ (c 1.0; CHCl₃). Mp 133-135 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.94 (s, 3H), 2.74-2.78 (m, 2H), 5.33-5.40 (m, 1H), 5.96 (d, J= 9.3 Hz, 1H), 6.39-6.42 (m, 1H), 7.08 (dd, J= 5.1, 1.8 Hz, 1H), 7.26 (d, J= 5.1 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 23.1 (CH₃), 30.7 (CH₂), 42.1 (CH), 122.5 (q, J¹_{CF}= 268.4 Hz; CF₃), 123.9 (CH), 124.7 (C), 125.1 (q, J³_{CF}= 4.4 Hz; CH), 125.2 (CH), 126.1 (q, J²_{CF}= 32.4 Hz; C), 129.6 (C), 136.6 (C), 169.1 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4

MHz) δ -66.5 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for C₁₁H₁₀F₃NOS [M+H⁺]: 262.0508, found: 262.0505. HPLC (Chiralcel OD-H, 95:5 hexane/iPrOH, 1 mL min⁻¹, 240 nm) tR(major) = 20.20 min, tR(minor) = 18.17 min.

Tert-Butyl (S)-[4-(perfluoroethyl)-1,2-dihydronaphthalen-1-yl]carbamate (7h). Flash chromatography of the crude reaction product [n-hexane-Et₂O (15:1)] afforded 7h as colorless oil (80%, 20 mg). [α]_D²⁵ = - 15.8 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.46 (s, 9H), 2.64-2.66 (m, 2H), 4.74-4.77 (m, 1H), 4.85-4.92 (m, 1H), 6.68 (t, J= 6.03 Hz, 1H), 7.30-7.33 (m, 2H), 7.38-7.41 (m, 1H), 7.50-7.53 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 28.4 (3CH₃), 29.9 (CH₂), 47.4 (CH), 79.9 (C), 113.5-121.6 (C₂F₅), 125.4 (CH), 127.4 (CH), 127.9 (C), 128.2 (CH), 128.9 (CH), 133.3 (t, J³_{CF}= 10.0 Hz; CH), 135.7 (C), 154.9 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -111.2 (q, J= 285 Hz, 2F; CF₂), -83.3 (s, 3F; CF₃) ppm. HRMS (EI) calcd. for NaC₁₇H₁₈F₅NO₂ [M+Na⁺]: 386.1150, found: 386.1138. HPLC (Chiralpak IC, 98:2 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 8.20 min, tR(minor) = 7.37 min.

(R_S)-2-Methyl-N-[(S)-4-methyl-1,2-dihydronaphthalen-1-yl]propane-2-sulfinamide (7i). Flash chromatography of the crude reaction product [n-hexane-EtOAc (2:1)] afforded 7i as a colorless oil (72%, 25 mg). [α]_D²⁵ = -6.8 (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 1.14 (s, 9H), 2.04 (s, 3H), 2.50-2.71 (m, 2H), 3.36 (d, J= 9.0 Hz, 1H), 4.37-4.44 (m, 1H), 5.78 (br, 1H), 7.20-7.34 (m, 4H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 19.1 (CH₃), 22.6 (3CH₃), 32.6 (CH₂), 55.0 (CH), 56.1 (C), 122.1 (CH), 123.4 (CH), 126.7 (CH), 127.2 (CH), 127.9 (CH), 132.2 (C), 134.9 (C), 135.9 (C) ppm. HRMS (EI) calcd. for C₁₅H₂₁NOS [M+H⁺]: 264.1417, found: 264.1412.

 (R_S) -Ethyl(4S)-4-[(tert-butylsulfinyl)amino]-3,4-dihydronaphthalene-1-carboxylate (7j). Flash chromatography of the crude reaction product [n-hexane-EtOAc (1:1)] afforded 7j as a colorless oil (87%, 15 mg). [α] $_D^{25} = -4.2$ (c 1.0; CHCl₃). ¹H NMR (CDCl₃, 300

MHz) δ 1.18 (s, 9H), 1.40 (t, J= 7.0 Hz, 3H), 2.78-2.83 (m, 2H), 3.34 (d, J= 9.2 Hz, 1H), 4.32 (q, J= 7.0 Hz, 2H), 4.44-4.51 (m, 1H), 7.07-7.10 (m, 1H), 7.29-7.40 (m, 3H), 7.89 (d, J= 7.5 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 14.2 (CH₃), 22.6 (3CH₃), 32.6 (CH₂), 54.1 (CH), 56.3 (C), 60.8 (CH₂), 126.7 (CH), 126.9 (CH), 128.1 (CH), 128.2 (CH), 130.0 (C), 130.7 (C), 135.6 (CH), 135.8 (C), 165.9 (C) ppm. HRMS (EI) calcd. for C₁₇H₂₃NO₃S [M+H⁺]: 322.1471, found: 322.1473.

(S)-N-{4-[Difluoro(phenylsulfonyl)methyl]-1,2-dihydronaphthalen-1-yl}acetamide (7k). Flash chromatography of the crude reaction product [n-hexane-EtOAc (3:1)] afforded 7k as a white solid (40%, 15 mg). [α]_D²⁵ = - 7.45(c 1.0; CHCl₃). Mp 70-72 °C. ¹H NMR (CDCl₃, 300 MHz) δ 1.94 (s, 3H), 2.57-2.63 (m, 1H), 2.79-2.86 (m, 1H), 5.19 (m, 1H), 6.13 (d, J= 8.1 Hz, 1H), 6.75-6.77 (m, 1H), 7.32-7.35 (m, 3H), 7.63-7.81 (m, 4H), 7.99-8.02 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) δ 23.3 (CH₃), 29.9 (CH₂), 46.2 (CH), 122.3 (t, J¹_{CF}= 288.4 Hz; CF₂), 126.1 (t, J²_{CF}= 19.4 Hz; C) 126.3-126.4 (C+CH), 127.8 (CH), 128.4 (CH), 129.1 (CH), 129.3 (2CH), 130.7 (2CH), 132.9 (C), 135.1 (CH), 135.3 (CH), 136.5 (t, J³_{CF}= 10.0 Hz; C), 169.4 (C) ppm. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ - 96.3 (dd, J= 229.0, 5.1 Hz; CFF), 99.2 (d, J= 228.7Hz; CFF) ppm. HRMS (EI) calcd. for C₁₉H₁₈F₂NO₃S [M+H⁺]: 378.0970, found: 378.0955. HPLC (Chiralcel ODH, 80:20 hexane/iPrOH, 1 mL min-1, 240 nm) tR(major) = 9.73 min, tR(minor) = 8.45 min.

ASSOCIATED CONTENT

Supporting Information

¹H, ¹³C and ¹⁹F NMR spectra for all new compounds, ¹H for known products, and HPLC chromatograms. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: santos.fustero@uv.es

*E-mail: raquel.roman@uv.es

Author Contributions

All authors contributed equally to this manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the Spanish MINECO (CTQ2013-43310) and Generalitat Valenciana (PROMETEOII/2014/073) for their financial support. D. S. expresses his thanks to the Ministerio de Educacion, Cultura y Deportes for a predoctoral fellowship. The authors also thank Javier Torres for experimental contribution.

REFERENCES

- (1) (a) Ojima, I. *J. Org. Chem.* **2013**, *78*, 6358; (b) Kirk, K. L. *Org. Process Res. Dev.* **2008**, *12*, 305; (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320; (d) Muller, K.; Faeh, C.; Diederich, F. *Science* **2007**, *317*, 1881; (e) Isanbor, C.; O'Hagan, D. *J. Fluorine Chem.* **2006**, *127*, 303; (f) Wang, J.; Sáchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* **2014**, *114*, 2432.
- (2) (a) Kirsch, P. *Modern Fluoroorganic Chemistry*: Synthesis Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2013; (b) Begue, J. P.; Bonnet-Delpon, D. *Bioorganic and Medicinal Chemistry of Fluorine*; Wiley-Interscience: Hoboken, NJ, 2008; (c) Uneyama, K. *Organofluorine Chemistry*; Blackwell: Oxford, UK, 2006.

- (3) For recent general reviews on asymmetric allylation, see: (a) Yus, M.; González-Gómez, J. C; Foubelo, F. *Chem. Rev.* **2011**, *111*, 7774. (b) Ding, H.; Friestad, G. K. *Synthesis* **2005**, 2815. (c) Kennedy, J. W. J.; Hall, D. G. *Angew. Chem., Int. Ed.* **2003**, 42, 4732. (d) Ramadhar, T. R.; Batey, R. A. *Synthesis* **2011**, 1321. (e) Ramachandran, P. V.; Burhardt, T. E. *Pure Appl. Chem.* **2006**, 78, 1397. (f) Hernandez, E.; Canales, E.; Gonzalez, E.; Soderquist, J. A. *Pure Appl. Chem.* **2006**, 78, 1389.
 - (4) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. **2010**, 110, 3600.
- (5) (a) Maier, M. E. *Angew. Chem., Int. Ed.* **2000**, *39*, 2073. (b) Blanchard, N.; Eustache, J. *Synthesis of Natural Products Containing Medium-size Carbocycles by Ring-closing Alkene Metathesis*. In *Metathesis in Natural Product Synthesis*; Cossy, J., Arseniyadis, S., Meyer, C., Eds.; Wiley-VCH: Weinheim, 2010; chapter 1.
- (6) (a) Fustero, S.; Román, R.; Asensio, A.; Maestro, M. A.; Aceña, J. L.; Simón-Fuentes A. *Eur. J. Org. Chem.* **2013**, 7164. (b) Fustero, S.; Lázaro, R.; Herrera, L.; Rodríguez, E.; Mateu, N.; Barrio, P. *Org. Lett.* **2013**, *15*, 3770. (c) Lázaro, R.; Román, R.; Sedgwick, D. M.; Haufe, G.; Barrio, P.; Fustero, S. *Org. Lett.* **2016**, *18*, 948.
- (7) For early reports on DOS, see: (a) Burke, M. D.; Schreiber, S. L. Angew. Chem.
 Int. Ed. 2004, 43, 46. (b) Schereiber, S. L. Science. 2000, 287, 1964.
- (8) For recent reviews on DOS, see: (a) Collins, S.; Barlett, S.; Nie, F.; Sore, H. F.; Spring, D. R. *Synthesis* **2016**, *48*, 1457. (b) Serba, C.; Winssinger, N. *Eur. J. Org. Chem.* **2013**, 4195. (c) MacLellan, P.; Nelson, A. *Chem. Commun.* **2013**, *49*, 2383. (d) O'Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. *Chem. Soc. Rev.*, **2012**, *41*, 4444.
- (9) (a) Barrio, P.; Ibañez, I.; Herrera, L.; Román, R.; Catalán, S.; Fustero, S. *Chem. Eur. J.* **2015**, *21*, 11579. (b) Fustero, S.; Lázaro, R.; Aiguabella, N.; Riera, A.; Simón-Fuentes, A.; Barrio, P. *Org. Lett.* **2014**, *16*, 1224. (c) Fustero, S.; Ibañez, I.; Barrio, P.; Maestro, M. A.; Catalán, S. *Org. Lett.* **2013**, *15*, 832.

- (10) For a complementary study using the corresponding aldehydes, see: (a) Barrio, P.; Rodríguez, E.; Fustero, S. *The Chemical Record* **2016**, *18*, 2046. (b) Rodríguez, E.; Grayson, M. N.; Asensio, A.; Barrio, P.; Houk, K. N.; Fustero, S. *ACS Cat.* **2016**, *6*, 2506. (c) Fustero, S.; Rodríguez, E.; Lázaro, R.; Herrera, L. Catalán, S.; Barrio, P. *Adv. Synth. Catal.* **2013**, *355*, 1058.
- (11) (a) Archer, S.; Albertson, N. F.; Harris, L. S.; Pierson, A. K.; Bird, J. G. *J. Med. Chem.* **1964**, *7*, 123; (b) Yang, X.; Zhai, H.; Li, Z. *Org. Lett.* **2008**, *10*, 2457.
- (12) (a) Welch, W. M.; Kraska, A. R.; Sarges, R.; Koe, B. K. J. Med. Chem. 1984,
 27, 1508. (b) Quallich, G. J.; Woodall, T. M. Tetrahedron 1992, 48, 10239. (c) Corey,
 E. J.; Gant, T. G. Tetrahedron Lett. 1994, 35, 5373.
 - (13) Xu, H; Lv, M; Tian, X. Current Medicinal Chemistry 2009, 16, 327.
 - (14) Hathaway, B.; Nichols, D. J. Med. Chem. 1982, 25, 535.
- (15) Jiménez-Aquino, A.; Vega, J. A.; Trabanco, A.; Valdés, C. *Adv. Synth. Catal.* **2014**, *356*, 1079.
- (16) (a) Jiang, B.; Xu, Y. *J. Org. Chem.* 1991, 56, 7336. (b) Walkowiak, J.; Martinez,
 d. C. T.; Ameduri, B.; Gouverneur, V. *Synthesis* 2010, 1883. (c) Wan, Z.-K.; Chenail,
 E.; Li, H.-Q.; Kendall, C.; Wang, Y.; Gingras, S. P.; Xiang, J.; Massefski, W. W.;
 Mansour, T. S.; Saiah, E. *J. Org. Chem.* 2011, 76, 7048. (d) Pan, R.-q.; Liu, X.-x.;
 Deng, M-z. *J. Fluorine Chem.* 1999, 95, 167.
- (17) The absolute configuration of the two new stereocenters created was determined to be S, according to a previous report, see references **6b** and **9b**.
- (18) Fustero, S.; Simón-Fuentes, A.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
 - (19) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.

- (20) Due to their instability, HRMS could not be obtained for some of these derivatives.
- (21) Ichikama, J. Heterocycles **2009**, 77, 1285-1296. (b) Jiang, B.; Xu, Y. J. Org. Chem. **1991**, 56, 7336-7340.
 - (22) S. Basak, D. Mal, Tetrahedron 2016, 72, 1758-1772.
- (23) K. Tanaka, M. Katsurada, F. Ohno, Y. Shiga, M. Oda, *J. Org. Chem.* **2000**, *65*, 432-437.
- (24) S. W. Youn; H. S. Song; J. H. Park, *Org. Lett.* **2014**, *16*, 1028; T. Minami; T. Isonaka; Y. Okada; J. Ichikawa, *J. Org. Chem.* **1993**, *58*, 7009-7015.