

Bioorganic & Medicinal Chemistry Letters 9 (1999) 2385-2390

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

## SYNTHESIS AND BIOLOGICAL EVALUATION OF NOVEL 1β-METHYLCARBAPENEMS HAVING A NEW MOIETY AT C-2

Yong Koo Kang,<sup>a</sup> Kye Jung Shin,<sup>a</sup> Kyung Ho Yoo,<sup>a</sup> Kyung Jae Seo,<sup>a</sup> Seung Yong Park,<sup>b</sup> Dong Jin Kim,<sup>a</sup>\* and Sang Woo Park<sup>a</sup>\*

<sup>a</sup>Medicinal Chemistry Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea <sup>b</sup>Korea Research Institute of Chemical Technology, P. O. Box 107, Yusung, Daejeon 305-606, Korea

Received 24 May 1999; accepted 8 July 1999

Abstract: The synthesis and biological activity of the novel series of  $1\beta$ -methylcarbapenems **1a-f**, bearing a variety of 3'', 4''-disubstituted pyrrolidinamides as substituents at C-2, are described. Of these carbapenems, diol **1a** showed the most potent and well balanced antibacterial activity against Gram-positive and Gramnegative. **1a** was also evaluated for pharmacokinetics and *in vivo* therapeutic efficacy in systemic infections. © 1999 Elsevier Science Ltd. All rights reserved.

Carbapenems such as imipenem, panipenem, and meropenem are the most potent  $\beta$ -lactam antibiotics which have a broad spectrum of antibacterial activity against both Gram-positive and Gram-negative organisms.<sup>1</sup> Although their activities against resistant Gram-positive bacteria such as methicillin-resistant *Staphylococcus aureus* (MRSA) are relatively weak, a number of carbapenem antibiotics are currently in huge clinical trial because of their potent antibacterial activity and safety.<sup>2</sup> Meropenem<sup>3</sup> is stable to renal DHP-I<sup>4.5</sup> due to the improved chemical and metabolic stability and it has recently been approved for clinical use in some countries. In recent years, 1 $\beta$ -methylcarbapenems such as BO-2727<sup>6</sup>, S-4661<sup>7</sup>, ZD-4423<sup>8</sup>, ER-35786<sup>9</sup>, and FR-21818<sup>10</sup>, which have a pyrrolidine-3-yithio group at C-2 in the carbapenem skeleton, have been reported to possess a potent and broad spectrum of antibacterial activity.

Thus, our early efforts<sup>11,12</sup> have been directed toward the synthesis of new 1 $\beta$ -methylcarbapenems derivatized at C-2 side chain with improved properties including antibacterial activity. We are particularly interested in this pyrrolidine-3-ylthio group and focused on the introduction of 3'',4''-disubstituted pyrrolidinamide group at C-5' position of pyrrolidine.

Herein, we wish to report the synthesis of the novel  $1\beta$ -methylcarbapenems **1a-f** having a new moiety at C-2 and biological evaluation including pharmacokinetics and *in vivo* efficacy.



## Chemistry

Thiol derivatives **8a-b** having a 3',4'-disubstituted pyrrolidine moiety were prepared by the sequence of reactions shown in Scheme 1.



Scheme 1. Reagents and reaction conditions: (i) BnNH<sub>2</sub>, xylene, reflux (Dean Stark), 3h; (ii) BF<sub>3</sub>.Et<sub>2</sub>O, diglyme, NaBH<sub>4</sub>, 70°C, 2h, 6N HCI, NaF, 100°C, 30min, 5N NaOH; (iii) 10% Pd-C/H<sub>2</sub>, 45*psi*, THF; (iv) (3S,5S)-3-acetylthio-5-carboxy-1-*p*-nitrobenzyloxycarbonylpyrrolidine (6), DCC, THF, rt, 3h; (v) 2N NaOH, MeOH, rt, 30min

Optically active (3R,4R)- and (3S,4S)-N-benzyl imines **3a-b** were prepared starting from L- and D-tartaric acids **2a-b**, respectively.<sup>13</sup> **3a** was then reduced with boron trifluoride diethyl etherate and sodium borohydride in diglyme<sup>13</sup> and subsequently debenzylated to give dihydroxypyrrolidine **5a**. Treatment of **5a** with N-protected 3-thioacetyl proline **6**, which was prepared from *trans*-4-hydroxy-L-proline by the known procedures reported by Sunagawa<sup>3,14</sup>, afforded thioacetate **7a**<sup>15</sup> by standard procedure. **7a** was converted to the desired thiol **8a** by deacetylation under basic condition, applicable for the coupling with carbapenem enolphosphate **18**. The thiol **8b** having (3'R,4'R)-configuration was prepared from D-tartaric acid **2b** in similar manner.

On the other hand, thiols **8c-d** with inversion of configuration at C-3 of pyrrolidine were prepared from protected proline **9** according to Scheme 2. For this end, **9** was treated twice by Mitsunobu reaction<sup>16</sup>. Inversion of hydroxyl group of (3R)-**9** using Mitsunobu condition with formic acid followed by hydrolysis of the resulting formate (3S)-**10** gave the alcohol (3S)-**11** in excellent yield. In order to re-invert the configuration at C-3 of (3S)-**11**, treatment of **11** with thiolacetic acid under Mitsunobu condition gave thioacetyl proline (3R)-**12**, which upon deprotecting with trifluoroacetic acid provided (3R)-**13**. Coupling and deacetylation were carried out by using procedures analogous to those described above to afford the corresponding thiols **8c-d**, respectively.



Scheme 2. Reagents and reaction conditions: (i) PPh<sub>3</sub>, DEAD, HCOOH, THF; (ii) 1N NaOH, EtOH, 0°C, 30min; (iii) PPh<sub>3</sub>, DEAD, AcSH, THF; (iv) TFA, anisole, rt, 30min; (v) **5a-b**, DCC, THF, rt, 3h; (vi) 2N NaOH, MeOH, rt, 30min

For the formation of carbamate and ester groups at C-3',4' of pyrrolidine, thioacetate 7a was employed as the precursor (Scheme 3).



Scheme 3. Reagents and reaction conditions: (i) Cl<sub>3</sub>CCONCO, cat. Bu<sub>2</sub>Sn(OAc)<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt, 5-6h, Al<sub>2</sub>O<sub>3</sub>; (ii) 2N NaOH, MeOH, rt, 30min; (iii) Ac<sub>2</sub>O, DMAP, pyridine, CH<sub>2</sub>Cl<sub>2</sub>, rt, 5-6h

Treatment of 7a with trichloroacetyl isocyanate in the presence of dibutyltindiacetate and then aluminum oxide led to the carbamate  $14^{15}$ , which was deacetylated under basic condition to afford the desired thiol 15. For the preparation of ester compound 17, 7a was reacted with acetic anhydride.  $16^{15}$  was then converted to the thiol 17 by saponification with aqueous 2N NaOH.

Reaction of carbapenem enolphosphate  $18^{17}$  with thiol derivatives **8a-d**,15,17 afforded the protected  $1\beta$ methylcarbapenems **19a-f**, respectively (Scheme 4). Hydrogenolysis of **19a-f** over 10% Pd-C and purification by column chromatography on Diaion HP-20 provided the corresponding carbapenems **1a-f**<sup>18</sup> as an amorphous solid by lyophilization, respectively.



Scheme 4. Reagents and reaction conditions: (i) DIPEA, CH<sub>3</sub>CN, 0°C; (ii) 10% Pd-C/H<sub>2</sub>, 45psi, THF/distilled H2O (1:1), Diaion HP-20

## **Biological Properties**

Table 1 shows the antibacterial activity and stability to porcine renal DHP-I of the novel carbapenems prepared above, together with those of imipenem and meropenem as reference compounds.

| Organism                     | MIC (µg/mL) <sup>a</sup> |       |       |       |       |       |                  |       |  |  |
|------------------------------|--------------------------|-------|-------|-------|-------|-------|------------------|-------|--|--|
| Organishi                    | <u>1a</u>                | 1b    | 1c    | 1d    | 1e    | 1f    | IPM <sup>b</sup> | MEM   |  |  |
| S. pyogens 77A               | 0.007                    | 0.007 | 0.025 | 0.013 | 0.025 | 0.007 | 0.004            | 0.002 |  |  |
| S. faecium MD 8b             | 6.25                     | 6.25  | 25    | 12.5  | 6.25  | 6.25  | 1.563            | 12.5  |  |  |
| S. aureus SG 511             | 0.098                    | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.013            | 0.098 |  |  |
| E. coli 078                  | 0.013                    | 0.013 | 0.098 | 0.098 | 0.025 | 0.025 | 0.098            | 0.013 |  |  |
| E. coli 1507E                | 0.025                    | 0.025 | 0.098 | 0.195 | 0.025 | 0.025 | 0.195            | 0.025 |  |  |
| P. aeruginosa 1592E          | 0.195                    | 0.098 | 100   | 100   | 0.781 | 1.563 | 0.781            | 0.195 |  |  |
| P. aeruginosa 1771M          | 0.098                    | 0.098 | 0.781 | 0.391 | 0.391 | 0.195 | 0.195            | 0.049 |  |  |
| S. typhymurium               | 0.049                    | 0.049 | 0.195 | 0.391 | 0.049 | 0.049 | 0.781            | 0.025 |  |  |
| K. aerogenes 1522E           | 0.049                    | 0.049 | 0.195 | 0.195 | 0.049 | 0.049 | 0.391            | 0.049 |  |  |
| E. cloacae 1321E             | 0.013                    | 0.013 | 0.195 | 0.195 | 0.025 | 0.013 | 0.195            | 0.025 |  |  |
| DHP-I stability <sup>d</sup> | 0.63                     | 0.50  | NT    | NT    | 0.53  | 0.66  | 0.19             | 1.00  |  |  |

<sup>b</sup>IPM=imipenem.

° MEM=meropenem.

<sup>d</sup> Relative  $t_{1/2}$  of hydrolysis to meropenem by partially purified porcine renal DHP-I.

° Not tested.

> All the compounds displayed potent antibacterial activity against the target organisms. In our series, the promising compounds were unsubstituted diols 1a and 1b. The diols 1a-b exhibited excellent antibacterial activities against a wide range of both Gram-positive and Gram-negative bacteria including Pseudomonas aeruginosa. They showed potent activity similar to meropenem, but their stabilities to DHP-I were slightly poorer than meropenem. According to expectation, there appeared to be significant difference in potency

between **1a-b** and **1c-d**, which are diasteromers at C-3' of pyrrolidine ring. Namely, **1c-d** with 3'Rconfiguration exhibited 2-4 fold inferior activity against Gram-positives and very poor activity against Gramnegatives compared to diasteromer **1a-b**.<sup>19</sup> The carbamate **1e** and the ester **1f** displayed similar activity each other but reduced activity compared to the unsubstituted diol compounds **1a-b**. They showed similar or slightly inferior activities to meropenem against most of Gram-positive and Gram-negative bacteria. And also the compound **1a** possessed highly effective *in vitro* potency against respiratory tract pathogens, especially such as *S. aureus* 241, *S. pneumoniae* PN020, *K. pneumoniae* 2011E, *H. influenzae*, and *M. catarrhalis* 25240. **1a** exhibited potent activity as much as meropenem and several fold better than cefpirome against those  $\beta$ -lactam resistant strains.<sup>20</sup>

The selected carbapenem **1a** was evaluated for pharmacokinetic and *in vivo* therapeutic efficacy in systemic infections in mice. The pharmacokinetics of **1a** was compared with meropenem in mice and the results were listed in Table 2. Profiles of **1a** were almost equal to those of meropenem. Based on good bioavailability and potent antibacterial activity, **1a** showed excellent *in vivo* therapeutic efficacy in systemic infections caused by *E. coli*, *S. aureus*, *S. pyogens*, and *P. aeruginosa* in mice (Table 3). Especially, therapeutic efficacy of **1a** was approximately 5 fold better than that of meropenem against *S. aureus*.

| Table 2           |                              |              | Table 3                                                       |                    |                    |  |  |  |
|-------------------|------------------------------|--------------|---------------------------------------------------------------|--------------------|--------------------|--|--|--|
| Pharmacokinetic p | arameters <sup>a</sup> of 1a |              | In vivo protective effects <sup>a,b</sup> of 1a and Meropenem |                    |                    |  |  |  |
|                   | 1a                           | Meropenem    |                                                               | 1 <b>a</b>         | Meropenem          |  |  |  |
| Cmax (µg/mL)      | 16.58 ± 0.21                 | 15.57 ± 2.01 | E. coli 078                                                   | 0.94 (0.38 - 2.35) | 0.65 (0.37 - 1.13) |  |  |  |
| Tmax (hr)         | 0.17                         | 0.17         | S. aureus Y-80-1953                                           | 218(0.98 - 4.83)   | 111(590 - 205)     |  |  |  |
| $t_{1/2}(hr)$     | 0.25 ± 0.05                  | 0.27 ± 0.01  | <u> </u>                                                      |                    |                    |  |  |  |
| AUC (µg.h/mL)     | 6.83 ± 0.50                  | 6.86 ± 0.39  | S. pyogens 77A                                                | 4.79 (2.9 – 8.0)   | 4.55 (1.5 - 13.9)  |  |  |  |
| AUC (hr)          | 0 -                          | 4 hr         | P. aeruginosa 1771M                                           | 3.93 (2.29 - 7.07) | 4.26 (1.94 - 9.37) |  |  |  |
| AUC (hr)          | 0 -                          | 4 hr         | P. aeruginosa 1771M                                           | 3.93 (2.29 - 7.07) | 4.26 (1.94 – 9.37) |  |  |  |

 $^{\rm a}$  at a single subcutaneous administration of 40 mg/kg in mice (n=4).

<sup>a</sup> at a single subcutaneous administration in mice. <sup>b</sup>PD<sub>50</sub> (mg/kg), parenthesis: 95% confidence limits.

1 D<sub>50</sub> (mg/kg), parentifesis. 95% confidence minis.

Acknowledgment: We are grateful to the Ministry of Science and Technology (MOST) of Korea for financial support.

## **References and Notes**

- 1. Coulton, S.; Hunt, E. In Progress in Medicinal Chemistry; Ellis, G. P.; Luscombe, D. K., Ed.; Elsevier, 1996; Vol. 33, pp 99-145.
- 2. Berks, A. H. Tetrahedron 1996, 52, 331.
- 3. Sunagawa, M.; Matsumura, H.; Inoue, T.; Fukasawa, M.; Kata, M. J. Antibiot. 1990, 43, 519.
- 4. Kropp, H.; Sundelof, J. G.; Hajdu, R.; Kahan, F. M. Antimicrob. Agents Chemother. 1982, 22, 62.
- 5. Birnbaum, J.; Kahan, F. M.; Kropp, H.; MacDonald, J. S. Am. J. Med. 1985, 78, 3.
- 6. Yamaji, E.; Watanabe, T.; Nakayama, I. Abstracts of Papers, H141, 35<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, Sanfrancisco, CA, Sep 17-20, 1995.
- 7. Arakawa, S.; Kamidono, S.; Inamatsu, T.; Shimada, J. Abstracts of Papers, F218, 37<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Sep 28-Oct 1, 1997.
- Pelak, B. A.; Gerckens, L. S.; Scott, P. M.; Gill, C.; Pacholok, C.; Lynch, L.; Dorso, K.; Kohler, J.; Shungu, D.; Rosen, H.; Kroppe, H. Abstracts of Papers, F119, 36<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, Sep 15-18, 1996.

- Sato, N.; Sasho, M.; Kamada, A.; Suzuki, T.; Ashizawa, K.; Sugiyama, I. Abstracts of Papers, F151, 35<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, Sanfrancisco, CA, Sep 17-20, 1995.
- Tawara, S.; Matsumoto, S.; Matsumoto, Y.; Ishiguro, K.; Maki, K.; Sasaki, K.; Matsuda, K. Abstracts of Papers, F145, 35<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, Sanfrancisco, CA, Sep 17-20, 1995.
- 11. Hwang, S. H.; Shin, K. J.; Kang, Y. K.; Kim, D. J.; Kim, D. C.; Yoo, K. H.; Park, S. W.; Lee, K. J. Arch. Pharm. Pharm. Med. Chem. 1998, 331, 139.
- 12. Shin, K. J.; Yoo, K. H.; Kim, D. J.; Park, S. W.; Ko, B. S.; Lee, S. J.; Huh, J. D.; Park, S. Y. Bioorg. Med. Chem. Lett. 1998, 8, 1607.
- 13. Nagel, U.; Kinzel, E.; Andrade, J.; Prescher, G. Chem. Ber. 1986, 119. 3326.
- 14. Sunagawa, M.; Matsumura, H.; Inoue, T.; Fukasawa, M.; Kata, M. J. Antibiot. 1991, 44, 459.
- 15. **7a:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.92-2.02 (m, 1H), 2.33 (s, 3H), 2.62-2.78 (m, 1H), 3.35-3.52 (m, 3H), 3.61-3.82 (m, 2H), 3.85-3.97 (m, 1H), 4.08-4.17 (m, 3H), 4.51-4.55 (m, 1H), 5.12-5.21 (m, 2H), 7.48 (d, 2H), 8.18 (d, 2H). **7b:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.89-2.01 (m, 1H), 2.34 (s, 3H), 2.58-2.77 (m, 1H), 3.32-3.49 (m, 3H), 3.62-3.78 (m, 2H), 3.84-3.95 (m, 1H), 4.10-4.16 (m, 3H), 4.50-4.56 (m, 1H), 5.12-5.20 (m, 2H), 7.38 (d, 2H), 8.20 (d, 2H). **7c:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.14-2.28 (m, 1H), 2.38-2.46 (m, 1H), 2.32 (s, 3H), 3.36-3.56 (m, 2H), 3.61-3.82 (m, 1H), 3.96-4.25 (m, 1H), 4.52-4.66 (m, 1H), 5.17 (q, 2H), 7.50 (d, 2H), 8.22 (d, 2H). **7d:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.15-2.25 (m, 1H), 2.37-2.44 (m, 1H), 2.34 (s, 3H), 3.34-3.48 (m, 2H), 3.58-3.80 (m, 1H), 3.92-4.42 (m, 1H), 4.48-4.66 (m, 1H), 5.18 (q, 2H), 7.52 (d, 2H), 8.23 (d, 2H). **14:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.62-1.82 (m, 1H), 3.84-4.02 (m, 1H), 4.59 (t, 1H), 5.18 (q, 2H), 6.62-6.82 (m, 2H), 7.62 (d, 2H), 8.24 (d, 2H). **16:** <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.92-2.08 (m, 1H), 2.08 (s, 6H), 2.34 (s, 3H), 2.64-2.78 (m, 1H), 2.46 (t, 1H), 3.56-3.84 (m, 4H), 3.83-4.06 (m, 3H), 4.04-4.18 (m, 1H), 4.50 (t, 1H), 5.21 (q, 2H), 7.46 (d, 2H), 8.22 (d, 2H).
- 16. Volante, R. P. Tetrahedron Lett. 1981, 22, 3119.
- 17. Shih, D. H.; Baker, F.; Cama, L.; Christensen, B. G. Heterocycles 1984, 21, 29.
- 18. 1a: <sup>1</sup>H NMR (D<sub>2</sub>O) δ 1.22 (d, 3H, J=7.1 Hz, β-methyl), 1.31 (d, 3H, J=6.4 Hz, CH<sub>3</sub>CHOH), 2.04-2.08 (m, 1H), 3.07-311 (m, 1H), 3.36-3.41 (m, 1H), 3.42-3.52 (m, 2H), 3.54-3.64 (m, 2H), 3.77-3.83 (m, 3H), 4.05-4.10 (m, 1H), 4.24-4.35 (m, 4H); FABHRMS m/z Calcd for C19H27N3O7S (M+H)<sup>+</sup> 442.1570, Found 442.1646. 1b: <sup>1</sup>H NMR (D<sub>2</sub>O) δ 1.26 (d, 3H, J=7.2 Hz, β-methyl), 1.34 (d, 3H, J=6.3 Hz, CH<sub>3</sub>CHOH), 1.88-2.02 (m, 1H), 2.98-3.14 (m, 1H), 3.36-3.56 (m, 3H), 3.57-3.81 (m, 3H), 3.87-3.96 (m, 1H), 3.98-4.10 (m, 1H), 4.22-4.42 (m, 4H), 4.43-4.53 (m, 2H); FABHRMS *m/z* Calcd for C<sub>19</sub>H<sub>27</sub>N<sub>3</sub>O<sub>7</sub>S (M+H)<sup>+</sup> 442.1570, Found 442.1630. 1c: 'H NMR (D<sub>2</sub>O) δ 1.23 (d, 3H, J=7.1 Hz, β-methyl), 1.30 (d, 3H, J=6.4 Hz, CH<sub>3</sub> CHOH), 2.38-2.50 (m, 1H), 2.51-2.63 (m, 1H), 3.33-3.50 (m, 1H), 3.43-3.56 (m, 3H), 3.53-3.68 (m, 1H), 3.73-3.81 (m, 2H), 3.81-3.92 (m, 1H), 4.12-4.18 (m, 1H), 4.26-4.34 (m, 4H). 1d: <sup>1</sup>H NMR (D<sub>2</sub>O) δ 1.28 (d, 3H, J=7.1 Hz, β-methyl), 1.34 (d, 3H, J=6.5 Hz, CH<sub>3</sub>CHOH), 2.43-2.58 (m, 1H), 2.58-2.72 (m, 1H), 3.42-3.64 (m, 3H), 3.64-3.83 (m, 3H), 3.86-4.04 (m, 3H), 4.21-4.46 (m, 5H). 1e: <sup>1</sup>H NMR (D<sub>2</sub>O) δ 1.23 (d, 3H, J=7.1 Hz, β-methyl), 1.31 (d, 3H, J=6.4 Hz, CH<sub>3</sub>CHOH), 1.99-2.07 (m, 1H), 3.03-3.12 (m, 1H), 3.37-3.50 (m, 3H), 3.67-3.81 (m, 1H), 4.28 (d, 2H), 4.61-4.75 (m, 1H); FABHRMS m/z Calcd for C<sub>21</sub>H<sub>20</sub>N<sub>5</sub>O<sub>9</sub>S  $(M+H)^+$  528.1686, Found 528.1755. 1f: <sup>1</sup>H NMR (D<sub>2</sub>O)  $\delta$  1.25 (d, 3H, J=7.1 Hz,  $\beta$ -methyl), 1.33 (d, 3H, J=6.3 Hz, CH<sub>3</sub>CHOH), 1.98-2.11 (m, 1H), 2.14 (s, 6H), 3.04-3.18 (m, 1H), 3.38-3.50 (m, 3H), 3.56-3.87 (m, 4H), 3.91-4.04 (m, 1H), 4.05-4.10 (m, 1H), 4.28 (d, 2H), 4.45-4.50 (m, 1H), 4.62-4.71 (m, 1H).
- 19. Iso, Y.; Irie, T.; Iwaki, T.; Kii, M.; Sendo, Y.; Motokawa, K.; Nishitani, Y. J. Antibiot. 1996, 49, 478.
- MIC (µg/mL) data. S. aureus 241: 16 (1a), 64 (Cefp), 16 (MPM); S. pneumoniae PN020: 1 (1a), 1 (Cefp), 0.25 (MPM); K. pneumoniae 2011E: 0.031 (1a), 0.25 (Cefp), 0.031 (MPM); H. influenzae: 0.25 (1a), 0.25 (Cefp), 0.13 (MPM); M. catarrhalis 25240: ≤0.008 (1a), 0.031 (Cefp), ≤0.008 (MPM).