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Summary of main observation and conclusion A Cu(OAc)2/DDQ/DTBP/Py system catalyzed oxidative dehydrogenative silylation-alkenation tandem 
reaction of readily available alkyl aromatic compounds with silanes was established. A variety of functionalized alkenyl organosilicon compounds 
were provided in good to high yields with a total β-(E) selectivity. The control experiments revealed that the transformation might proceed 
through a radical pathway. 

 

 
Background and Originality Content 

Organosilicon compounds have been used as versatile 
building blocks in the preparation of organic molecules and 
functional materials.[1] Among them, alkenylsilanes are an 
important class of organosilicon compounds, which are 
particularly valuable intermediates in synthetic organic 
chemistry.[2] They are compatible with kinds of organic 
transformations and they are usually low toxic and easy to 
handle.[3] Because of the structural importance of this motif, its 
synthetic methods have been studied widely (Scheme 1). Among 
all the synthetic routes to the alkenylsilanes, transition metal 
catalyzed hydrosilylation of alkynes has become the most 
developed route in the past half century. A variety of transition 
metal catalysts have been successfully applied for the related 
transformations including Rh, Pt, Ru, Pd, Au, Ir, Mn and et al.[4] 
The radical based C−Si bond construction reactions of alkynes 
with silanes is also an important class of reactions for the 
preparation of vinylsilanes, started since even earlier times.[5] On 
the other hand, compared to these alkynes started methods, 
several oxidative C−H silylation of alkenes have been reported 
recently using transition metal catalysts such as Rh, Pt, Ru, Pd, Cu, 
Fe and et al.[6] In addition, a few functional group transformations 
of substituted alkenes have been reported to generate 
alkenylsilanes very recently. For examples, α,β-unsaturated 
carboxylic acid, β-nitroalkenes, vinyliodonium salts, alkenyl 
sulfones, and alkenyl sulfides have been used as available 
substrates for this protocol.[7] 

Silyl-substituted styrene derivatives are extremely useful 
intermediates in modern organic chemistry, which are usually 
delivered by above mentioned methods from phenylacetylenes or 
styrenes.4-7 Phenylacetylene is generally produced from styrene 
through bromination and the following twice 
dehydrobromination.[8] Styrene is a very important compound in 
chemical industry.[9] Direct dehydrogenation of ethylbenzene (EB) 

to styrene accounts for 85% of commercial production. EB is a 
frequently used reagent in the chemical industry and incredibly 
cheap organic solvent in chemistry lab. It is one of the most 
widely manufactured alkyl aromatic compounds in the world and 
is readily available from biorenewable sources.[10] 

As the upstream material of phenylacetylene and styrene, EB 
is much cheaper and easier to get than phenylacetylene and 
styrene. Therefore, efficient construction of complex 
silyl-substituted styrenes by simple reactions using readily 
available EB derivatives is of apparent significance. Therefore, we 
report herein a new and efficient methodology for the highly 
stereo- and regio-selective oxidative dehydrogenative 
silylation-alkenation tandem reaction of alkyl aromatic 
compounds with silanes using the Cu(OAc)2/DDQ/DTBP/Py 
catalyst system (Scheme 1). 

Scheme 1. Synthesis methods of vinylsilanes 
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Results and Discussion 
Tris-(trimethylsilyl)silane [(Me3Si)SiH, TTMSS] has been used 

in many radical involved transformations. It’s commercially 
available and environmentally compatible, which are also stable 
under oxidative conditions. As shown in Scheme 2, our primary 
investigation in this study focused on the reaction of EB (1a) with 
TTMSS (2a), in the presence of metal catalyst and chemical 
oxidants. Cu(OAc)2 was found as the most effective catalyst which 
provided the vinylsilane product 3aa in 37% isolated yield 
(Scheme 2, entry 1). The addition of organic or inorganic bases 
usually increased the efficiency of the reaction (Scheme 2, entries 
2−5). To our delight, the yield increased markedly to 61% when 
the transformation was conducted with one equivalent of 
pyridine as additive (Scheme 2, entry 5). Rescreening of metal 
salts revealed that Cu(OAc)2 was still the best choice (Scheme 2, 
entries 6−14). Notably, the use of CuCl gave the same results as 
CuCl2, thus demonstrating that both Cu(II) and Cu(I) catalyst 
precursors were able to facilitate this transformation (Scheme 2, 
entries 6−7). It is possible that the conversion between Cu(II) and 
Cu(I) species might occur during this reaction process.11 
Increasing or decreasing the amount of Cu(OAc)2 led to slightly 
lower yields (Scheme 2, entries 15−16). Next, we tested the 
influence of the oxidant system. DDQ/DTBP gave the best results 
(Scheme 2, entries 17−22). The effect of temperature was also 
investigated and 120 °C was found to be optimal (Scheme 2, 
entries 23−24). The efficiency of the reaction decreased under air 
or O2 atmosphere (Scheme 2, entries 25−26). Control experiments 

revealed that copper salt and two oxidants were all crucial for this 
transformation (Scheme 2, entries 27−29). When 3 equiv of EB in 
toluene was used instead of EB as solvent, the desired product 
3aa was obtained in 32% yield.  

Scheme 2. Screening of Reaction Conditionsa 
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[a] Reaction Conditions: 1a (12 mmol), 2a (0.2 mmol), oxidant 1 (0.6 mmol), 
oxidant 2 (0.6 mmol), base (0.2 mmol), 24 h. [b] Isolated Yields. [c] E/Z > 20:1. 

Having found suitable conditions, the substrates scope of the 
copper-catalyzed oxidative dehydrogenative silylation-alkenation 
reaction of alkyl aromatic compounds with silanes was 
investigated as shown in Scheme 3. Firstly, the effect of different 
electron-donating and electron-withdrawing substituents in the 
para position of the aromatic ring of EB was investigated. Various 
functional groups were tolerated under the optimal conditions, 
affording the corresponding products 3ba and 3ea−3ha in good 
yields. 1-ethyl-4-nitrobenzene gave no desired product under the 
reaction conditions. Substituents in the meta and ortho position 
of the aromatic ring of EB were also tolerated, and the products 
3ca and 3da were obtained in satisfactory yields. Next, other alkyl 
aromatic compounds lacking substituents on the aromatic ring 
(1i−1l), such as alkyl naphthalenes and diphenylethane, were all 
smoothly converted to the corresponding vinylsilane products 
(3ia−3la) in good to high yields. Heteroaryl such as ethyl 
thiophene also allowed the transformation to give the 
corresponding product 3ka in 56% yield. Furthermore, 
isopropylbenzene (IPB, cumene), which is also one of the 
cheapest and most readily available organic solvents in chemistry 
lab, were converted to the corresponding vinylsilane products 
3ma in gratifying yield. Substituted IPBs 1n and 1o were also 
suitable substrates for this transformation. It is worth to mention 
that the condensed ring compound dihydro indene 1p can react 
well with 2a to deliver the corresponding product 3pa in high 
yields. In addition, the scope of different silanes was evaluated 
and the expected products 3ab−3ae were isolated in good to 
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moderate yields. Propyl benzene gave no desired product under 
the reaction conditions.   

Scheme 3. Oxidative dehydrogenative silylation-alkenation reaction of 
alkyl aromatics with silanesa,b 
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[a] Reaction Conditions: 1 (12 mmol), 2 (0.2 mmol), Cu(OAc)2 (10 mol %), 
DDQ (0.6 mmol), DTBP (0.6 mmol), Pyridine (0.2 mmol), Ar, 24 h, 120 oC. [b] 
Isolated Yields. 

 
As shown in Scheme 4, we also explored this method on the 

gram scale level to show the consistency of this protocol. Under 
the standard reaction conditions, EB and TTMSS were taken as the 
starting materials and the product 3aa was observed in 54 % 
yield. 
Scheme 4. Scalability of the reaction to the multi-gram scale.  
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Scheme 5. Control Experiments 
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To probe the possible mechanism of this tandem 

silylation-alkenation reaction, some control experiments were 
carried out. Firstly, when 3.0 equiv of radical scavenger such as 
TEMPO or BHT was added to the reaction, no product 3aa was 
obtained, which suggests the possibility of a radical pathway. And 
as shown in Scheme 2 (entries 25 & 26), the efficiency of the 
reaction decreased under air or O2 atmosphere. These results also 
point to radical process. Next, we tried to confirm the formation 
of oxygen radical intermediate E, silicon radical intermediate D 
and carbon radical intermediate B. To this end, the template 
reaction between 1a and 2a was conducted under the standard 
reaction conditions and radical trapping agent TEMPO (3.0 equiv) 
was added after 5 hours (Scheme 5). To our delight, the TEMPO 
adducts TEMPO-E, TEMPO-D, and TEMPO-B could all be detected 
by HRMS in this test. The signal of styrene can be detected in this 
HRMS test too. 

Scheme 6. Proposed mechanism 
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Based on above control experimental results and precedent 

literatures, a tentative reaction mechanism is proposed in Scheme 
6. EB was first oxidized to generate styrene A in the presence of 
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DDQ. Then, the single electron transfer between DTBP and Cu(I) 
species occurs to generate t-butoxy radical E, which then 
abstracts a H atom from the starting silane 2a and affords the Si 
radical D. Subsequently, the Si radical D adds to the double bond 
of A to give a radical adduct B. Radical intermediate B was then 
oxidized by Cu(II) species to deliver carbocation intermediate C. 
Finally, β-elimination of carbocation C was promoted by base 
(tBuO- or pyridine) to give the product 3aa. 

Conclusions 
In summary, we have developed a novel and practical tandem 

oxidative dehydrogenative silylation-alkenation reaction from 
easily available alkyl aromatic compounds and silanes for the 
efficient synthesis of silyl-substituted styrene derivatives by the 
use of a catalytic system combined by simple copper salt, oxidants 
and base. This transformation is highly efficient with the 
construction of one C−Si bond and removal of four H atoms. 
Further studies expanding the synthetic application of raw 
chemical materials such as alkyl aromatic compounds to high 
value-added intermediates are currently underway. 

Experimental 
To a 10 ml Schlenk tube with a magnetic stirring bar, Cu(OAc)2 

(3.6 mg, 0.02 mmol, 10 mol%), and DDQ (136.2 mg, 0.6 mmol, 3 
equiv) were added successively. Then the tube is evacuated 
briefly under high vacuum and charged with argon through using 
standard Schlenk techniques; this process is repeated three times. 
Then alkyl aromatics 1 ( 12 mmol, 60 equiv) was added. The 
resulting reaction mixture was performed at 120 oC for 4 hours. 
Silanes 2 (0.2 mmol), DTBP (110.5 µL, 0.6 mmol, 3 equiv) and 
Pyridine (16.1 µL, 0.2 mmol, 1 equiv) were added. The solution 
under argon was stirred at 120 oC for 20 hours. After the reaction 
was completed, the reaction mixture was concentrated under 
reduced pressure, and the residue was purified by column 
chromatography to afford the desired compounds 3 (petroleum 
ether as the eluent). 
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