A Highly Efficient, Asymmetric Synthesis of Benzothiadiazine-Substituted Tetramic Acids: Potent Inhibitors of Hepatitis C Virus RNA-Dependent RNA Polymerase

Duke M. Fitch,*,[†] Karen A. Evans,[‡] Deping Chai,[†] and Kevin J. Duffy[†]

Departments of Medicinal Chemistry and Discovery Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, Pennsylvania 19426-0989

Duke_M_Fitch@gsk.com

Received September 30, 2005

ORGANIC LETTERS 2005 Vol. 7, No. 24 5521–5524

ABSTRACT

An efficient two-pot, asymmetric synthesis of benzothiadiazine-substituted tetramic acids is reported. Starting from commercially available α -amino acids or esters, reductive amination followed by a novel one-pot amide bond formation/Dieckmann cyclization provided the desired products in high yield and optical purity. An analogous solid-phase approach to the same targets is also presented. These compounds were found to be potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase.

Hepatitis C Virus (HCV) was first characterized in 1989 as the major cause of non-A and non-B hepatitis infections.¹ Currently, it is estimated that HCV infects over 170 million people worldwide and is the leading cause of chronic liver disease and liver transplants.² The HCV RNA-dependent RNA polymerase (RdRp), NS5B, is essential for viral replication and growth.³ It has also been structurally characterized,⁴ and there are no known mammalian RdRps. For these reasons, it represents an excellent target for the development of anti-HCV therapeutic agents.⁵ High-throughput screening of the GlaxoSmithKline proprietary compound collection resulted in the discovery of 1-butyl-3-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1*H*)-quinolinone (1) as a potent HCV polymerase inhibitor.⁶ The biochemical characterization and preliminary investigations into the structure—activity relationships (SAR) of compound 1 have been reported elsewhere.⁷ Concurrent with these investigations, efforts were undertaken to replace structural elements of the original benzothiadiazinylquinolinone lead in order to alter the physical properties of the

[†] Department of Medicinal Chemistry.

[‡] Discovery Research.

⁽¹⁾ Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. *Science* **1989**, *244*, 359–362.

⁽²⁾ Lauer, G. M.; Walker, B. D. New Engl. J. Med. 2001, 345, 41–52.
(3) (a) Behrens, S. E.; Tomie, L.; de Francesco, R. EMBO J. 1999, 15, 12–22. (b) de Francesco, R.; Behrens, S. E.; Tomei, L.; Altamura, S.; Jiricny, J. Methods Enzymol. 1996, 275, 58–67.

^{(4) (}a) Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka, N.; Yatsunami, K.; Miyano, M. *Struct. Fold. Des.* **1999**, *7*, 1417–1426. (b) Bressanelli, S.; Tomei, L.; Roussel, A.; Incitti, I.; Vitale, R. L.; Mathieu, M.; de Francesco, R.; Rey, F. A. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 13034–13039. (c) Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.; Mannarino, A. F.; Weber, P. C. *Nat. Struct. Biol.* **1999**, *6*, 937–943.

⁽⁵⁾ For a recent review of known allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase, see: Condon, S. M.; LaPorte, M. G.; Herbertz, T. *Curr. Med. Chem. Anti-Infective Agents* **2005**, *4*, 99–110.

inhibitors and explore the three-dimensional space of the inhibitor binding site. While several modifications led to inactive compounds, replacement of the quinolinone portion of the inhibitor with a tetramic acid was investigated due to its conservation of what was considered to be an essential hydrogen bonding network along the interior of the molecule.⁷

Figure 1. Benzothiadiazinylquinolinone screening lead.

One of the most prominently employed methodologies in the synthesis of tetramic acids is the Dieckmann cyclization.⁸ Unfortunately, under standard conditions (NaOMe, MeOH, reflux),⁹ racemic products are often obtained. However, investigations by Ley and co-workers demonstrated that such cyclizations can be performed with potassium *t*-butoxide in *tert*butyl alcohol at ambient temperature without racemization.¹⁰

Initial investigations into benzothiadiazine-substituted tetramic acids began with the reductive amination¹¹ of (*S*)phenylalanine methyl ester followed by acylation with benzothiadiazine acid 4^{12} (Scheme 1). Cyclization under the

Ley conditions provided tetramic acid **6a** in good overall yield and high optical purity.¹³ Analogue **6a** demonstrated modest but encouraging activity against NS5B (~3.5 μ M), prompting further investigation.¹⁴

The above synthetic sequence was employed utilizing a variety of α -amino acids in order to rapidly investigate the SAR of this novel inhibitor template (Table 1). Certain trends

became readily apparent, leading to highly potent inhibitors of NS5B. First, the *S* configuration was greatly preferred over the *R* configuration (e.g., **6g** vs **6h**). Second, inhibitor potency improved with an increase in steric bulk proximal to the stereocenter ($R^1 = t$ -Bu $\sim c$ -Hex > i-Pr > Ph > Me > H). Third, spirocyclic derivatives offered no obvious potency advantage (e.g., **6e**). Importantly, addition of a small substituent to the R^2 position of inhibitor **6g** provided a compound of roughly equal potency (**6i**, $R^2 =$ Me), obviating the risk of racemization.

Given the success of the above solution-phase synthesis of benzothiadiazine-substituted tetramic acids, an analogous solid-phase approach was investigated employing Wang resin

(10) Ley, S. V.; Smith, S. C.; Woodward, P. R. *Tetrahedron* **1992**, 48, 1145–1174.

(11) Ramanjulu, J. M.; Joullié, M. M. Synth. Commun. 1996, 26, 1379–1384.

(12) Acid **4** was prepared by hydrolysis (see Supporting Information for details) of the known ethyl ester: Kovalenko, S. N.; Chernykh, V. P.; Shkarlat, A. E.; Ukrainets, I. V.; Gridasov, V. I.; Rudnev, S. A. *Chem. Heterocycl. Compd. (Engl. Transl.)* **1998**, *34*, 791–795.

(13) Optical purity was determined by chiral HPLC analysis (Chiralpak AD column, 0.1% trifluoroacetic acid in ethanol, 1 mL/min, $T_r(S) = 13.8$ min, $T_r(R) = 25.9$ min). Analysis of a sample of **6a** stored for >1 month at ambient temperature showed no sign of racemization.

(14) A scintillation–proximity assay (SPA) using N-terminal-truncated Δ 21-NS5B was employed for the determination of IC₅₀ values. See refs 6 and 7 for details.

⁽⁶⁾ Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-Goerke, J.; Darcy, M. G.; Shaw, A. N.; Gu, B.; Silverman, C.; Gates, A. T.; Nonnemacher, M. R.; Earnshaw, D. L.; Casper, D. J.; Kaura, A.; Baker, A.; Greenwood, C.; Gutshall, L. L.; Maley, D.; DelVecchio, A.; Macarron, R.; Hofmann, G. A.; Alnoah, Z.; Cheng, H. Y.; Chan, G.; Khandekar, S.; Keenan, R. M.; Sarisky, R. T. J. Biol. Chem. **2002**, *277*, 38322–38327.

⁽⁷⁾ Tedesco, R.; Shaw, A. N.; Bambal, R.; Chai, D.; Concha, N. O.; Darcy, M. G.; Dhanak, D.; Fitch, D. M.; Gates, A.; Gerhardt, W. G.; Halegoua, D. L.; Han, C.; Hofmann, G. A.; Johnston, V. K.; Kaura, A.; Liu, N.; Keenan, R. M.; Lin-Goerke, J.; Sarisky, R. T.; Wiggall, K. J.; Zimmerman, M. N.; Duffy, K. J. *J. Med. Chem.* submitted.

⁽⁸⁾ For a review of tetramic acids, see: Royles, B. J. L. Chem. Rev. **1995**, *95*, 1981–2001.

⁽⁹⁾ Lacey, R. N. J. Chem. Soc. 1954, 850-854.

(Scheme 2).¹⁵ Following significant optimization, two separate 96-membered arrays ($12 R^1 \times 8 R^3$ and $4 R^1 \times 24 R^3$)

were prepared,¹⁶ allowing for rapid parallel exploration of two different positions on the inhibitor template.¹⁷ Analysis of the SAR obtained from the first array revealed that *N*-benzyl substitution ($\mathbb{R}^3 = \mathbb{P}h$) provided equivalent potency to *N*-isoamyl substitution. Subsequently, the second array demonstrated that further substitution of the *N*-benzyl moiety resulted in attenuated activity. Additionally, *N*-3,3-dimethylbutyl substitution was often found to be superior to other substituents.

An attempt to further optimize the synthetic sequence through a more convergent approach is shown in Scheme 3. Under unoptimized conditions, α -amino ester **3a** and 2-aminobenzenesulfonamide were iteratively coupled to malonic acid in the presence of DCC. Subjecting malonamide derivative **7** to the mildly basic conditions employed in the synthesis of benzothiadiazine acid **4**¹² resulted exclusively in cyclization to tetramic acid derivative **8**. While limited further attempts to cyclodehydrate **8** to provide the benzothiadiazine were unsuccessful, the formation of **8** under such mild conditions prompted a reinvestigation of the conditions for the Dieckmann cyclization.

Acylation of α -amino ester **3a** with benzothiadiazine acid **4** under the standard conditions followed by in situ addition of triethylamine resulted in clean, rapid cyclization to tetramic acid derivative **6a** (eq 1).¹⁸ This very mild one-pot amide bond formation/Dieckmann cyclization provided optically pure product¹³ in high yield and obviated the need for an aqueous workup, allowing for an operationally simplified procedure.

The mild conditions employed in the one-pot amide bond formation/Dieckmann cyclization allowed a variety of functionality to be incorporated into the inhibitor template (Table 2). Phenols, aromatic and saturated heterocycles, and steri-

compound	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	% yield
10a	<i>t</i> -Bu	Н	CH ₂ t-Bu	н	85
10b	<i>t</i> -Bu	н	CH ₂ t-Bu	OH	83
10c	i-Pr	Me	$\mathrm{CH}_2i ext{-}\mathrm{Pr}$	OH	71
10d	$-(CH_2)_2NBoc(CH_2)_2-$		$\mathrm{CH}_2i ext{-}\mathrm{Pr}$	Η	79
10e	$MePyrrole^{a}$	Н	Ph	Η	88
10f	2-Pyr^a	Н	Ph	Η	72
10g	3-Pyr^a	Н	Ph	Η	81
10h	4-Pyr^a	Н	Ph	Η	79
10i	2-Pyr^a	н	Ph	OH	92
10j	$2\text{-}\mathrm{Pyr}^a$	Me	Ph	OH	93

^a Racemic started material was employed.

cally hindered substrates all provided the desired derivatives in high yield.

Further modification of the resultant benzothiadiazinesubstituted tetramic acids allowed for the incorporation of

⁽¹⁵⁾ For prior solid-phase approaches to the synthesis of tetramic acids, see: (a) Matthews, J.; Rivero, R. A. J. Org. Chem. 1998, 63, 4808-4810.
(b) Romoff, T. T.; Ma, L.; Wang, Y.; Campbell, D. A. Synlett 1998, 1341-1342. (c) Kulkarni, B. A.; Ganesan, A. Tetrahedron Lett. 1998, 39, 4369-4372.

key functionality, discovered in the course of optimizing the original benzothiadiazinylquinolinone screening lead,¹⁹ to augment inhibitor binding to NS5B. For example, alkylation of phenol **10b** with chloroacetamide (eq 2) provided oxyacetamide **11** in excellent yield. Excitingly, compound **11** inhibited the HCV polymerase, NS5B, with an IC_{50} value below the 5 nM limit of detection in our biochemical assay.

An attempt was made to extend the one-pot amide bond formation/Dieckmann cyclization methodology to the amino variant of the tetramic acid in order to modulate the physical properties of the inhibitors (Scheme 4). A Strecker reaction involving pivalaldehyde and isoamylamine provided α -amino nitrile **12**.²⁰ Acylation with benzothiadiazine acid **4** under the standard conditions followed by in situ addition of triethylamine provided the desired aminotetramic acid **13**. Although the rate of cyclization was significantly retarded relative to that of the analogous tetramic acid **6**,²¹ a good overall yield was obtained for the two-pot sequence. Interest-

(19) Details of the optimization of the benzothiadiazine portion of inhibitor ${\bf 1}$ will be reported in due course.

(20) For a review of asymmetric variants of the Strecker reaction, see: Gröger, H. Chem. Rev. 2003, 103, 2795-2827.

ingly, aminotetramic acid derivative 13 was found to be inactive against NS5B.

In conclusion, we have described a novel series of benzothiadiazine-substituted tetramic acids as potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Rapid optimization of the original lead structure resulted in the identification of a compound that inhibited the HCV polymerase, NS5B, with an IC₅₀ value below the 5 nM limit of detection in our biochemical assay. During the course of these investigations, an efficient one-pot amide bond formation/Dieckmann cyclization method was developed, providing the desired products in high yield and optical purity.

Acknowledgment. Dr. Robert T. Sarisky and Juili Lin-Goerke are gratefully acknowledged for the generation of the IC_{50} data. The authors wish to thank Dr. Arun C. Kaura for the chiral HPLC analysis of compound **6a**.

Supporting Information Available: Experimental procedures and characterization data for all new compounds synthesized. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052371W

⁽¹⁶⁾ Details of the solid-phase approach will be reported in a separate publication: Evans, K. A.; Chai, D.; Graybill, T. L.; Sarisky, R. T.; Lin-Goerke, J.; Johnson, V. K.; Burton, G.; Rivero, R. A. Manuscript in preparation.

⁽¹⁷⁾ For certain analogues, a subsequent deprotection step was required. See ref 16 and Supporting Information for details.

⁽¹⁸⁾ Cyclization was generally complete after 1.5 h at ambient temperature.

⁽²¹⁾ Cyclization was incomplete after stirring overnight at ambient temperature with an 18% yield of the uncyclized intermediate obtained in addition to the desire product **13**.