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Summary: Pyrrolizidines, (IS,?%)-I-hydroxypyrrolizidin-3-one and (-)-heliotridane, have been prepared in high 
yieldfrom diazoacetamides of 2-substituted-pyrrolidines by carbon-hydrogen insertion catalyzed by dirhodium(I1) 
tetrakislmethyl 1 -acylimidazolidin-2-one-I(S)-carboxylates]. 

Intramolecular carbon-hydrogen insertion reactions of metal carbenes catalytically generated from diazoacetate 
esters with chiral dirhodium(II) carboxamidates can be achieved with high stereocontrol. With symmetric systems 
such as cycloalkyl diazoacetates, one of four possible isomeric bicyclic dihydro-2(3H)-furanone products is formed,3 
demonstrating exceptional enantio- and diastereocontrol, and similar results have been reported with acyclic systems.4-8 

With unsymmetric systems regiocontrol adds to the complexity of an already stereochemically demanding problem, 
where at least eight isomeric products are possible. To examine the potential of chiral dirhodium(I1) carboxamidates for 
highly selective intramolecular C-H insertion reactions with such complex systems, we have selected conveniently 

accessible chiral %-substituted pyrrolidines as potential precursors to pyrrolizidine bases (Scheme l),gvlo whose natural 

Scheme 1 
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constituents generally have the thermodynamically less stable syn-stereochemistry of 3.9y10 We now report that the 
high diastereoselectivity and regiocontTo1 required for C-H insertion in this synthetic strategy can be achieved with the 
use of catalytic amounts of dirhodium(II) tetrakis[methyl 1-acylimidazolidin-2-one-4(S)-carboxylates] (4). 
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S-6 

The methyl ether of (S)-2-pyrrolidinemethanol @a) was converted into the corresponding diazoacetamide in 
90% yield using succinimidyl diazoacetate. 1 1 Diazo decomposition of Sa in refluxing dichloromethane induced with an 
extensive array of dirhodium(II) as well as selected copper(I) catalysts provided results (eq l), representatives of which 
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am reported in Table 1. Surprisingly little diastereoselection is observed with either achiral dirhodium(II) catalysts or 
even the bis-oxazoline (6) complex of copper(I) triflate, which provides exceptional enantiocontrol in selected 
intermolecular cyclopropanation reactions. l2 Of the chiral dirhodium(II) carboxamidates (4 and 5), there is an obvious 

dependence of diastereoselectivity on catalyst configuration, and with either Rh2(4S-MACIM)4 or Rh2(4S-MPPIM)4 
9a could be formed in high yield and with 94% de. Similar results were obtained with the corresponding benzyl ether 

8b, which was formed from (S)-2-pyrrolidinemethanol in 67% overall yield by a standard sequence of steps (a. 
(Boc)20/I’HF; b. NaH, BnBr, Bu4NI/THP; c. HCl/MeOH). However, in this case C-H insertion also occurred into the 
benzylic position to give 11 whose stereochemistry was determined by NMR methods to be (4R,7S). Once again, 
Rh2(4SMAClM)4 provided the highest level of diastereocontrol and, in addition, regiocontrol was exceptional. 
Neither homochiral prolinatel 3 nor phenylalanate14 dirhodium(I1) catalysts provided any advantage (low yields and 
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Table 1. Catalyst Dependent Diastereoselectivity and Regioselectivity in Carbon-Hydrogen Insertion Reactions of 8 
and lSa 

Catalyst 
yieldb from Sa: 

9a + 10a 9a:lOa 
y ieldb 

9b+lOb+ll 
from 8b: 

9b:lOb:ll 
yieldb 
16-t-17 

from 15: 
16:17 

Rh2(5S-MEPY)4 95 9O:lO 
Rh2(5R-MEPY)4 96 73:27 
Rh2(4SMEOX)4 99 89:ll 
Rh2(4SMACIM)4 88 97:3 
Rh,(ds-~PIh’f)4 97 97:3 

~2(cap>4c 45 63:37 

Rh2(OAc)4 45 53:47 
CuOTf e 55 3862 
CuOTf/S-6 83 50:50 
CuOTf/R-6 91 47:53 

81 90:9: 1 
87 551369 
90 89:11:<1 98 
94 97:3:0 86 
93 96:&O 95 
27 33:23:44 2od 
41 49:35: 16 32d 

30 
57 
55 

71:29 
98:2 
96:4 
29:7 1 
18:82 
20:80 
29:71 
35:65 

aReactions performed in refluxing CH2C12 with 1.0-1.5 mol % catalyst. Diastereomeric ratios were determined by GC 
analyses. height yield of product after chromatography or distillation. Ccap = caprolactamate. dYield by GC in 
reaction mixture. eBenzene complex; with CuPF6, yield of 9a+lOa was 61% (9a:lOa = 36:64). 

selectivities). Insertion products 9a and 9b were readily converted to (lS,8S)-1-hydroxypyrrolizidin-3-one (12, eq 
2), and the overall synthesis of 12 is the most efficient yet reported.15>16. 

The synthesis of (-)-heliotridane (U), which was recently prepared from (+)-carvone in more than ten steps17 
and from (S)-proline in seven steps,18 was accomplished in six steps from 2-oxopyrrolidine-S(S)-methanol 
(Scheme 2) in greater than 45% overall yield. Diastereoselectivity in the key step, catalytic C-H insertion with 15, 
exhibited catalyst dependence that was even more variable than with 8 (Table 1). However, Rh2(4SMACIM)4 and 
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Rh2(4SMPPIM)4 provided exceptional diastereocontrol for the formation of 16. The need for a match of reactant 
configuration with catalyst configuration is seen in comparative results with Rh2(4R-MPPIM)4 (16:17 = 75:25). 

Significantly, with catalysts other than chiral dirhodium(II) carboxamides, a reversal in 16:17 selectivity is 
observed, and 17 is the predominant diastereoisomer from C-H insertion. However, the yields of 16+17 are low with 
these catalysts, multiple products are formed, and the limit in diastereocontrol is that achieved with Rh2(0Ac)4. Also, 
with CuOTflR-6 the 16:17 diastereomer ratio was 35:65 (55% yield) compared to 29:71 (57% yield) with CuOTf/- 
S-6, demonstrating here a lack of dependence of diastereoselectivity on catalyst configuration. Thus, the chiral dirhodi- 
urn@) imidazolidinone catalysts Rh2(4SMACIM)4 and Rh2(4S-MPPIM)4 exhibit remarkable diastereocontrol in 
these C-H insertion reactions that is not matched by other dirhodium(I1) catalysts or by copper(I) catalysts.19 
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