Tetrahedron 68 (2012) 9085-9089

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Ligand-free Ag(I)-catalyzed carboxylative coupling of terminal alkynes, chloride compounds, and CO_2

Xiao Zhang, Wen-Zhen Zhang*, Ling-Long Shi, Chuang Zhu, Jiao-Lai Jiang, Xiao-Bing Lu*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China

ARTICLE INFO

Article history: Received 23 April 2012 Received in revised form 10 August 2012 Accepted 17 August 2012 Available online 24 August 2012

Keywords: Silver Carbon dioxide Carboxylative coupling Terminal alkyne Chloride compounds

ABSTRACT

Simple silver(I) slats were found to be highly efficient and selective catalyst for carboxylative coupling of aryl- or alkyl-substituted terminal alkynes, CO₂, and various allylic, propargylic or benzylic chlorides to exclusively yield functionalized 2-alkynoates. The activity is about 300 times that of the previously reported *N*-heterocyclic carbene copper(I) catalytic system. The ligand-free silver(I) catalytic system showed the wide generality of substrates involving both functionalized terminal alkynes and chloride compounds.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The utilization of CO₂ in the production of high value-added chemicals has received much attention over the past decade. This is a consequence of CO₂ being an abundant, inexpensive and nontoxic renewable carbon resource.¹ In the present strategies for homogeneous transformation of CO₂, especially in the carboxylation of various nucleophiles^{2–7} or relatively C–H bonds⁸ with CO₂ to yield synthetically important carboxylic acids and derivatives,⁹ relatively high loading of transition-metal catalysts bearing appropriate ligands were frequently used to overcome the limitation from the thermodynamically and kinetically stable CO₂ and maximize synthetic efficiency. In view of the cost and availability for the potential applications, the development of simple catalytic systems for CO₂ transformation, which particularly show increased activity and selectivity at lower catalyst loadings, is thus of paramount importance.

Catalytic carboxylation of terminal alkynes with CO₂ attracted considerable interest and is emerging as a powerful tool in the straightforward synthesis of functionalized propiolic acids and 2-alkynoates,^{10–16} which are versatile synthetic intermediates of natural products and other bioactive compounds.¹⁷ Inoue and co-workers reported copper(I)- or silver(I)-catalyzed carboxylative

coupling reaction of terminal alkynes, alkyl bromides and CO₂ at 100 °C.¹⁰ However, this methodology sometimes suffered from the major formation of direct coupling or dialkyl carbonate byproducts. In 2008, Anastas and co-workers disclosed silver(I)catalyzed reaction of phenylacetylene, CO₂, and 3-bromo-1phenyl-1-propyne, affording arylnaphthalene lactones in poor to moderate vield.¹¹ (4.7-Diphenvl-1.10-phenanthroline) bis[tris(4fluorophenyl)phosphine]–copper(I) nitrate catalyst developed by Goossen and co-workers¹² and *N*-heterocyclic carbene copper(I) catalysts employed by Zhang and co-workers¹³ were proven to exhibit promising activity in catalyzing the direct carboxylation of a wide range of terminal alkynes with CO₂ to provide the corresponding propiolic acids in good yield. More recently, Kondo and co-workers reported a CuI/PEt₃ catalyzed carboxylative coupling reaction of terminal alkynes, CO₂, and alkyl bromides or iodides, providing a variety of functionalized alkyl 2-alkynoates under ambient conditions.14

In 2010, we developed a novel Cu(I)-catalyzed carboxylative coupling reaction of terminal alkynes, allylic chlorides, and CO₂,¹⁵ wherein 10 mol % loading of *N*-heterocyclic carbene copper(I) catalyst (IPr)CuCl (IPr=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) was turned out to effectively suppress the non-carboxylative direct coupling reaction (Scheme 1, B).¹⁸ A variety of carboxylative coupling (Scheme 1, A) products, functionalized allylic 2-alkynoates were straightforwardly obtained in good yield with high selectivity. Recently, we disclosed that only 1 mol % loading of Agl could efficiently catalyze the direct carboxylation of terminal alkynes under ligand-free conditions, affording functionalized

^{*} Corresponding authors. Tel.: +86 411 8498 5257; fax: +86 411 8498 5256; e-mail addresses: zhangwz@dlut.edu.cn (W.-Z. Zhang), lxb-1999@163.com (X.-B. Lu).

^{0040-4020/\$ –} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.08.053

propiolic acids in high yield.¹⁶ With this success in hand, we envisioned whether the simple silver(I) catalytic system could also serve as highly active and selective catalyst for the above-mentioned carboxylative coupling reaction. Herein, we report highly selective and efficient carboxylative coupling of terminal alkynes, various chloride compounds, and CO₂ catalyzed by low loading of simple silver(I) salt under ligand-free conditions to exclusively afford functionalized 2-alkynoates.¹⁹

Scheme 1. Carboxylative coupling (A) and direct coupling (B) of terminal alkynes and halides.

2. Results and discussion

The activity of the Ag(I)-based catalyst was initially tested by the carboxylative coupling reaction of phenylacetylene (**1a**), cinnamyl chloride (**2a**), and CO₂ (Table 1). It was delightedly found that the catalytic system used in the previous direct carboxylation reaction

Table 1

Ag(l)-catalyzed carboxylative coupling of phenylacetylene, cinnamyl chloride, and $\mathrm{CO_2}^\mathrm{a}$

Entry	Cat. (mol%)	Base	Yield ^b (%)
1 ^c	(IPr)CuCl (10)	K ₂ CO ₃	91
2	AgI (1)	Cs_2CO_3	84
3	AgI (0.1)	Cs_2CO_3	91
4	AgI (0.05)	Cs_2CO_3	70
5	_	Cs_2CO_3	11
6	AgI (0.1)	_	4
7	AgI (0.1)	K ₂ CO ₃	74
8	AgI (0.1)	KO ^t Bu	16
9	AgF (0.1)	Cs_2CO_3	81
10	AgCl (0.1)	Cs_2CO_3	80
11	AgBr (0.1)	Cs_2CO_3	83
12	AgOAc (0.1)	Cs_2CO_3	86
13	AgNO ₃ (0.1)	Cs_2CO_3	77
14	Ag ₂ CO ₃ (0.1)	Cs ₂ CO ₃	88
15	AgBF ₄ (0.1)	Cs_2CO_3	94
16	$AgPF_{6}(0.1)$	Cs_2CO_3	77
17 ^d	AgI (0.1)	Cs_2CO_3	84
18 ^e	AgI (0.1)	Cs ₂ CO ₃	78
19 ^f	AgI (0.1)	Cs ₂ CO ₃	80
20 ^g	AgI (0.1)	Cs ₂ CO ₃	_

^a Reaction condition: **1a** (2 mmol), **2a** (3 mmol), base (3 mmol), 20 mL of DMF, 1.5 MPa, 24 h, 60 °C.

^c See Ref. 15.

^d 50 °C.

^e 16 h. ^f 0.5 MPa.

^g In the absence of CO₂.

(1 mol % of AgI as catalyst and Cs₂CO₃ as base) gave 84% yield of carboxylative coupling product cinnamyl phenylpropiolate (**3a**) (Table 1, entry 2). Notably, the decreased loading (0.1 mol %) of AgI catalyst led to the increased yield, which could be comparable to the result from 10 mol % of (IPr)CuCl catalytic system (Table 1, entries 1 and 3). Furthermore, simple kinetic studies of the two catalyst systems by monitoring the reaction with LC revealed that the activity of AgI/Cs₂CO₃ catalyst system was about 300 times that of our previously reported (IPr)CuCl/K₂CO₃ system (Fig. 1). Importantly, no direct coupling by-product was detected even in complete conversion and only carboxylative coupling product was formed exclusively. Those results imply that the insertion of CO₂ into silver(I) acetylide species proceeds significantly faster than that of CO₂ to the sp-hybridized carbon–copper(IPr) bond (Scheme 1).

Fig. 1. Plot of yield versus time for the carboxylative coupling reaction catalyzed by (IPr)CuCl and Agl. Yields were determined by LC.

The control experiment showed that extremely low yield of **3a** was obtained in the absence of AgI or Cs_2CO_3 , testifying the vital roles of catalyst and base in this catalytic system (Table 1, entries 5 and 6). Using K_2CO_3 as base gave moderate yield (Table 1, entry 7), while KO^rBu was proven to be unsuitable base to the reaction (Table 1, entry 8). Other simple silver(I) salts were also tested as catalyst and the silver counter-ions had an evident effect on their catalytic activities (Table 1, entries 9–16). The superior catalytic activity of AgI could be presumably ascribed to its good solubility in DMF. AgBF₄ was more efficient in catalyzing this reaction (Table 1, entry 15). Because of the highly hygroscopic nature of AgBF₄, AgI was still used in our subsequent investigations.

When the reaction was conducted under 0.5 MPa of CO₂, decreased yield of carboxylative coupling product was obtained, although the direct coupling by-product was also not observed (Table 1, entry 19). No carboxylative coupling product was formed in the absence of CO₂, which clearly demonstrated that the CO₂ unit in **3a** came from gaseous CO₂ rather than the base (Table 1, entry 20), similar to the previously reported (IPr)CuCl system.

Even the carboxylative coupling reaction could be smoothly carried out using very low loading of catalyst, the Agl still could be recycled in this catalytic system. No obvious decrease in catalytic efficiency was observed for Agl catalyst after four times recycle (see Supplementary data).

Under the optimized reaction condition, the kinetics of the carboxylative coupling reaction of phenylacetylene, cinnamyl chloride, and CO₂ was also studied. The dependence of the initial rate on phenylacetylene, cinnamyl chloride concentration, and CO₂ pressure was evaluated, respectively, by monitoring the formation of product

^b Isolated yield.

using LC (see Supplementary data). The rate exhibited a saturation rate dependence on the cinnamyl chloride concentration and CO₂ pressure, and first-order dependence on phenylacetylene concentration, which might suggest that deprotonation of terminal alkyne to form silver(I) acetylide is the rate limiting step (Scheme 1, a).

Once it was established that low loading of AgI and Cs₂CO₃ as base was highly selective and efficient catalytic system for the carboxylative coupling of phenylacetylene, cinnamyl chloride, and CO₂, the functional group compatibility was then investigated under the optimized condition. As shown in Table 2, a wide range of aryl- and alkyl-substituted terminal alkynes successfully underwent the carboxylative coupling reaction with cinnamyl chloride and CO₂ to afford the corresponding cinnamyl 2-alkynoates exclusively in the presence of 0.1 mol% loading of AgI. Various functional groups including aryl-OMe, -F, -Cl, -Br, -CF₃, cyclopropane, and cyclopentane were tolerated (Table 2, entries 4–9, 14, and 15). The chloride group in 5-chloro-1-pentyne proved to be inert toward this catalytic system at 60 °C (Table 2, entry 12).

Table 2

Ag(I)-catalyzed carboxylative coupling of terminal alkynes, cinnamyl chloride, and CO_2^a

Entry	R	Yield ^b (%)
1	Ph	91 (3a)
2	4-MeC ₆ H ₄	91 (3b)
3	$4^{-t}BuC_6H_4$	92 (3c)
4	4-MeOC ₆ H ₄	85 (3d)
5	$4 - (n - C_5 H_{11}) C_6 H_4$	83 (3e)
6	$4-FC_6H_4$	82 (3f)
7	$2-ClC_6H_4$	74 (3g)
8	4-BrC ₆ H ₄	80 (3h)
9	$4-CF_3C_6H_4$	89 (3i)
10	n-Hexyl	74 (3j)
11	n-Octyl	86 (3k)
12	3-Chloropropyl	77 (3I)
13	2-Phenylethyl	81 (3m)
14	Cyclopropyl	71 (3n)
15	Cyclopentyl	75 (3o)
16	Cyclohexylmethyl	60 (3p)

^a Reaction condition: 1 (2 mmol), 2a (3 mmol), Cs₂CO₃ (3 mmol), 20 mL of DMF, 1.5 MPa, 24 h, 60 °C.

^b Isolated vield.

Furthermore, the low loading of silver(I) catalytic system also showed broad substrate scope for chloride compounds (Table 3). Besides cinnamyl chloride, alkyl-substituted allylic chlorides, propargylic chlorides proved applicable for the carboxylative coupling reaction (Table 3, entries 1–6). A series of benzylic chlorides bearing methyl, methoxyl, fluorine, bromine, nitryl, and vinyl substituents could also serve as reactive carboxylative coupling partners (Table 3, entries 7–15). α -Chloro carbonyl compounds were also found to be suitable substrates (Table 3, entries 16 and 17). When *n*-hexyl chloride was used as a carboxylative partner, only 25% yield of carboxylative coupling product *n*-hexyl phenylpropiolate (4s) was obtained (Table 3, entry 18). When the same reaction was conducted at elevated temperature (100 °C), the yield of 4s increased to 77% (Table 3, entry 19).

3. Conclusion

In summary, we have successfully developed a simple ligandfree silver(I) catalytic system for the carboxylative coupling of

Table 3

Ag(I)-catalyzed carboxylative coupling of phenylacetylene, chloride compounds, and CO₂^a

$$\begin{array}{c} \mathsf{Ph} \underbrace{\longrightarrow}_{1a} \mathsf{H} \\ \mathsf{f}_{a} \mathsf{H} \\ \mathsf{CO}_{2} \\ \mathsf{H} \\ \mathsf{CO}_{2} \\ \mathsf{Ph} \\ \mathsf{F}_{2} \mathsf{Cl} \end{array} \mathsf{Cl} \\ \mathsf{CO}_{2} \mathsf{Cl} \\ \mathsf{Ph} \underbrace{\mathsf{CS}_{2}\mathsf{CO}_{3} (1.5 \text{ equiv})}_{\mathsf{DMF}, 60 \ ^{\circ}\mathsf{C}, 24 \text{ h}} \mathsf{Ph} \underbrace{\mathsf{Ph}}_{\mathsf{R}} \\ \mathsf{Ph} \\$$

Entry	R	Yield ^b (%)
1	Vinyl	47 (4b)
2	Isocrotyl	90 (4c)
3	Isopropenyl	83 (4d)
4	2-Chlorovinyl	87 (4e)
5	Heptynyl	80 (4f)
6	Phenylethynyl	60 (4g)
7	Ph	85 (4h)
8	$2-MeC_6H_4$	79 (4i)
9	4-MeOC ₆ H ₄	70 (4 j)
10	$4-FC_6H_4$	80 (4k)
11	$2-FC_6H_4$	77 (4 1)
12	$4-BrC_6H_4$	77 (4m)
13	$4-NO_2C_6H_4$	75 (4n)
14	$2-NO_2C_6H_4$	78 (4o)
15	$4-(CH_2=CH)C_6H_4$	84 (4p)
16	Ethoxycarbonyl	79 (4q)
17	(Diethylamino)carbonyl	76 (4r)
18	n-Pentyl	25 (4s)
19 ^c	<i>n</i> -Pentyl	77 (4s)

^a Reaction condition: 1a (2 mmol), 2 (3 mmol), Cs₂CO₃ (3 mmol), 20 mL of DMF, 1.5 MPa. 24 h. 60 °C.

^b Isolated yield.

^c 100 °C.

aryl- or alkyl-substituted terminal alkynes, CO₂, and various allylic, propargylic or benzylic chlorides to exclusively afford functionalized 2-alkynoates in good yield. Compared with the previously reported *N*-heterocyclic carbene copper(I) catalytic system, the ligand-free silver(I) catalytic system shows greatly enhanced activity and selectivity at much lower catalyst loading.

4. Experimental section

4.1. General information

Unless otherwise statement, all manipulations were performed using standard Schlenk techniques under a dry nitrogen or CO₂ atmosphere. DMF was distilled from CaH₂ at 60 °C under reduced pressure and stored over 4 Å molecular sieves. NMR spectra were recorded on a Bruker Avancell 400M type (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz) spectrometer. Multiplicity abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet. High-resolution mass spectra (HRMS) were recorded on a Q-TOF mass spectrometry (Micromass, Wythenshawe, UK) equipped with Z-spray ionization source. Infrared spectra (IR) were measured using a Nicolet NEXUS FT-IR spectrophotometer. Carbon dioxide (99.999%), commercially available terminal alkynes, chloride compounds, silver(I) salt, and other all reagents were used without further purification.

4.2. Representative experimental procedure for carboxylative coupling reaction

Taking the carboxylative coupling of 4-methylphenylacetylene, cinnamyl chloride (2a), and CO₂ as example: A 70 mL oven dried autoclave containing a stir bar was charged with AgI (0.5 mg, 0.002 mmol) and Cs₂CO₃ (978 mg, 3.0 mmol). 4-Methylpheny lacetylene (232 mg, 2.0 mmol), cinnamyl chloride (458 mg, 3.0 mmol), and 20 mL dry DMF were added with syringe, respectively, after purging the autoclave with CO₂ three times. The sealed autoclave was pressurized to appropriate pressure with CO₂. The reaction mixture was stirred at 60 °C for 24 h, then the autoclave was cooled to room temperature and the remaining CO₂ was vented slowly. The reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed under vacuum. The product (*E*)-cinnamyl 4-methylphenyl propiolate (**3b**) (502 mg, 1.82 mmol, 91% yield) was isolated by column chromatography on silica gel (ethyl acetate/petroleum ether: 1:25).

4.3. Characterization of new compounds

4.3.1. *Cinnamyl 4-pentylphenylpropiolate* (**3e**). ¹H NMR (400 MHz, CDCl₃): δ =7.52 (2H, d, *J*=8.0 Hz), 7.42 (2H, d, *J*=8.0 Hz), 7.32 (2H, t, *J*=8.0 Hz), 7.28 (1H, t, *J*=8.0 Hz), 7.18 (2H, d, *J*=8.0 Hz), 6.73 (1H, d, *J*=16.0 Hz), 6.35 (1H, dt, *J*=16.0, 8.0 Hz), 4.89 (2H, d, *J*=8.0 Hz), 2.62 (2H, t, *J*=7.6 Hz), 1.61 (2H, m), 1.32 (4H, m), 0.89 (3H, t, *J*=6.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =154.1, 146.5, 136.1, 135.3, 133.2, 128.8, 128.7, 128.4, 126.8, 122.3, 116.7, 87.4, 80.3, 66.6, 36.1, 31.5, 30.9, 22.6, 14.1. IR (cm⁻¹) (neat) 2217, 1708. HRMS (ESI, *m/z*) calcd for C₂₃H₂₄O₂Na [M+Na]⁺: 355.1674, found: 355.1684.

4.3.2. Cinnamyl 2-chlorophenylpropiolate (**3g**). ¹H NMR (400 MHz, CDCl₃): δ =7.61 (1H, d, *J*=8.0 Hz), 7.45–7.27 (8H, m), 6.74 (1H, d, *J*=16.0 Hz), 6.35 (1H, dt, *J*=16.0, 8.0 Hz), 4.92 (2H, d, *J*=4.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =153.7, 137.5, 136.1, 135.6, 134.9, 131.8, 129.8, 128.8, 128.4, 126.9, 126.8, 122.2, 120.0, 84.9, 82.9, 66.9. IR (cm⁻¹) (neat) 2224, 1707. HRMS (ESI, *m/z*) calcd for C₁₈H₁₃O₂NaCl [M+Na]⁺: 319.0502, found: 319.0510.

4.3.3. *Cinnamyl* 4-*bromophenylpropiolate* (**3h**). ¹H NMR (400 MHz, CDCl₃): δ =7.51–7.26 (9H, m), 6.71 (1H, d, *J*=15.6 Hz), 6.32 (1H, dt, *J*=16.0, 6.4 Hz), 4.88 (2H, d, *J*=6.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =153.7, 136.0, 135.6, 134.4, 132.1, 128.8, 126.9, 122.1, 118.6, 85.5, 81.6, 66.8. IR (cm⁻¹) (neat) 2213, 1693. HRMS (ESI, *m/z*) calcd for C₁₈H₁₃O₂NaBr [M+Na]⁺: 362.9997, found: 362.9998.

4.3.4. *Cinnamyl hept-2-ynoate* (**3k**). ¹H NMR (400 MHz, CDCl₃): δ =7.36–7.23 (5H, m), 6.65 (1H, d, *J*=16.0 Hz), 6.26 (1H, dt, *J*=16.0, 8.0 Hz), 4.78 (2H, d, *J*=4.0 Hz), 2.30 (2H, t, *J*=8.0 Hz), 1.59–1.51 (2H, m), 1.38–1.25 (10H, m), 0.85 (3H, t, *J*=8.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =153.8, 136.0, 135.1, 128.8, 128.4, 126.7, 122.2, 90.1, 73.0, 66.2, 31.8, 29.1, 29.0, 28.9, 27.5, 22.6, 18.7, 14.1. IR (cm⁻¹) (neat) 2234, 1712. HRMS (ESI, *m/z*) calcd for C₂₀H₂₆O₂Na [M+Na]⁺: 321.1831, found: 321.1839.

4.3.5. *Cinnamyl 5-phenyl-2-pentynoate* (**3m**). ¹H NMR (400 MHz, CDCl₃): δ =7.37–7.17 (10H, m), 6.65 (1H, d, *J*=16.0 Hz), 6.26 (1H, dt, *J*=16.0, 8.0 Hz), 4.78 (2H, d, *J*=4.0 Hz), 2.86 (2H, t, *J*=8.0 Hz), 2.59 (2H, t, *J*=8.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =153.5, 139.6, 136.1, 135.1, 128.7, 128.6, 128.4, 128.3, 126.8, 126.7, 122.2, 89.0, 73.6, 66.3 33.9, 20.9. IR (cm⁻¹) (neat) 2233, 1708. HRMS (ESI, *m/z*) calcd for C₂₀H₁₈O₂Na [M+Na]⁺: 313.1204, found: 313.1205.

4.3.6. *Cinnamyl* 3-*cyclopentyl-2-propynoate* (**30**). ¹H NMR (400 MHz, CDCl₃): δ =7.38–7.25 (5H, m), 6.66 (1H, d, *J*=16.0 Hz), 6.28 (1H, dt, *J*=16.0, 8.0 Hz), 4.79 (2H, d, *J*=8.0 Hz), 2.81–2.74 (1H, m), 2.00–1.59 (8H, m). ¹³C NMR (100 MHz, CDCl₃): δ =154.0, 136.2, 135.3, 128.7, 128.3, 126.8, 122.4, 94.2, 72.7, 66.4, 33.2, 29.9, 25.4. IR (cm⁻¹) (neat) 2228, 1708. HRMS (ESI, *m/z*) calcd for C₁₇H₁₈O₂Na [M+Na]⁺: 277.1204, found: 277.1202.

4.3.7. Benzyl phenylpropiolate (**4h**). ¹H NMR (400 MHz, CDCl₃): δ =7.54 (2H, d, *J*=7.2 Hz), 7.41–7.31 (8H, m), 5.24 (2H, s). ¹³C NMR

(100 MHz, CDCl₃): δ =154.0, 134.9, 133.0, 130.8, 128.8, 128.7, 128.6, 119.5, 86.8, 80.6, 67.8. IR (cm⁻¹) (neat) 2220, 1708. HRMS (ESI, *m*/*z*) calcd for C₁₆H₁₂O₂Na [M+Na]⁺: 259.0735, found: 259.0727.

4.3.8. 4-Methoxybenzyl phenylpropiolate (**4***j*). ¹H NMR (400 MHz, CDCl₃): δ =7.54 (2H, d, *J*=7.6 Hz), 7.43–7.32 (5H, m), 6.80 (2H, d, *J*=8.0 Hz), 5.19 (2H, s), 3.79 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ =160.0, 154.0, 133.0, 130.7, 130.6, 128.6, 127.1, 119.6, 114.1, 86.5, 80.7, 67.6, 55.3. IR (cm⁻¹) (neat) 2218, 1709. HRMS (ESI, *m/z*) calcd for C₁₇H₁₄O₃Na [M+Na]⁺: 289.0841, found: 289.0836.

4.3.9. 4-Fluorobenzyl phenylpropiolate (**4k**). ¹H NMR (400 MHz, CD₃OD): δ =7.57–7.04 (9H, m), 5.22 (2H, s). ¹³C NMR (100 MHz, CD₃OD): δ =164.2, 161.7, 153.9, 133.1, 130.9, 130.8, 128.7, 119.5, 115.8, 115.6, 87.0, 80.5. IR (cm⁻¹) (neat) 2221, 1710. HRMS (ESI, *m/z*) calcd for C₁₆H₁₁FO₂Na [M+Na]⁺: 277.0641, found: 277.0649.

4.3.10. 2-Fluorobenzyl phenylpropiolate (**4l**). ¹H NMR (400 MHz, CDCl₃): δ =7.56 (2H, d, *J*=7.7 Hz), 7.46–7.06 (7H, m), 5.32 (2H, s). ¹³C NMR (100 MHz, CDCl₃): δ =162.4, 159.9, 153.8, 133.1, 130.9, 128.7, 124.4, 119.5, 115.8, 115.6, 87.0, 80.4, 61.6. IR (cm⁻¹) (neat) 2220, 1710. HRMS (ESI, *m/z*) calcd for C₁₆H₁₁FO₂Na [M+Na]⁺: 277.0641, found: 277.0643.

4.3.11. 4-Nitrobenzyl phenylpropiolate (**4n**). ¹H NMR (400 MHz, CDCl₃): δ =8.22 (2H, d, *J*=8.8 Hz), 7.58–7.34 (7H, m), 5.32 (2H, s). ¹³C NMR (100 MHz, CDCl₃): δ =153.5, 147.9, 142.1, 133.1, 131.0, 128.7, 128.6, 124, 119.2, 87.8, 80.0, 66.0. IR (cm⁻¹) (neat) 2219, 1709. HRMS (ESI, *m/z*) calcd for C₁₆H₁₁NO₄Na [M+Na]⁺: 304.0586, found: 304.0588.

4.3.12. 2-Nitrobenzyl phenylpropiolate (**40**). ¹H NMR (400 MHz, CDCl₃): δ =8.16 (1H, d, *J*=8.0 Hz), 7.71–7.39 (8H, m), 5.69 (2H, s). ¹³C NMR (100 MHz, CDCl₃): δ =153.4, 147.3, 134.1, 133.2, 131.4, 131.0, 129.1, 128.7, 125.3, 119.3, 87.6, 80.1, 64.2. IR (cm⁻¹) (neat) 2223,1715. HRMS (ESI, *m/z*) calcd for C₁₆H₁₁NO₄Na [M+Na]⁺: 304.0586, found: 304.0596.

4.3.13. 4-Vinylbenzyl phenylpropiolate (**4p**). ¹H NMR (400 MHz, CDCl₃): δ =7.57–7.32 (9H, m), 6.67 (1H, dd, *J*=17.6, 10.8 Hz), 5.76 (1H, d, *J*=17.6 Hz), 5.26 (1H, d, *J*=10.8 Hz), 5.23 (2H, s). ¹³C NMR (100 MHz, CDCl₃): δ =153.9, 138.0, 136.3, 134.4, 133.1, 130.8, 129.0, 128.6, 126.5, 119.5, 114.6, 86.8, 80.6, 67.5. IR (cm⁻¹) (neat) 2219, 1708. HRMS (ESI, *m/z*) calcd for C₁₈H₁₄O₂Na [M+Na]⁺: 285.0891, found: 285.0881.

4.3.14. *n*-Hexyl phenylpropiolate (**4s**). ¹H NMR (400 MHz, CDCl₃): δ =7.59–7.36 (5H, m), 4.23 (2H, t, *J*=6.8 Hz), 1.73–1.69 (2H, m), 1.34–1.31 (6H, m), 0.90 (3H, t, *J*=7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ =154.2, 132.9, 130.6, 128.5, 119.7, 86.0, 80.8, 66.2, 31.4, 28.4, 25.5, 22.5, 14.0. IR (cm⁻¹) (neat) 2221, 1710. HRMS (ESI, *m/z*) calcd for C₁₅H₁₈O₂Na [M+Na]⁺: 253.1204, found: 253.1203.

Acknowledgements

We thank the National Natural Science Foundation of China (21172026, U1162101), the National Basic Research Program of China (973 Program: 2009CB825300) and the Fundamental Research Funds for the Central Universities (DUT12LK47) for financial support.

Supplementary data

Reuse of AgI catalyst, kinetic studies, and copies of NMR spectra. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2012.08.053.

References and notes

- For reviews, see: (a) Louie, J. Curr. Org. Chem. 2005, 9, 605; (b) Mori, M. Eur. J. Org. Chem. 2007, 4981; (c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365; (d) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975; (e) Correa, A.; Martin, R. Angew. Chem., Int. Ed. 2009, 48, 6201; (f) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347; (g) Behr, A.; Henze, G. Green Chem. 2011, 13, 25; (h) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435; (i) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510; (j) Lu, X.-B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462; (k) Zhang, W.-Z.; Lu, X.-B. Chin. J. Catal. 2012, 33, 745.
- For the carboxylation of organotin reagents with CO₂, see: (a) Shi, M.; Nicholas, K. M. J. Am. Chem. Soc. 1997, 119, 5057; (b) Franks, R. J.; Nicholas, K. M. Organometallics 2000, 19, 1458; (c) Johansson, R.; Wendt, O. F. Dalton Trans. 2007, 488; (d) Wu, J.-G.; Hazari, N. Chem. Commun. 2011, 1069; (e) Mita, T.; Sugawara, M.; Hasegawa, H.; Sato, Y. J. Org. Chem. 2012, 77, 2159.
- For the carboxylation of organoboron reagent with CO₂, see: (a) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2006**, 128, 8706; (b) Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett. **2008**, 10, 2697; (c) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. **2008**, 47, 5792; (d) Ohimiya, H.; Tanabe, M.; Sawamura, M. Org. Lett. **2011**, 13, 1086; (e) Ohishi, T.; Zhang, L.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. **2011**, 50, 8114; (f) Riss, P. J.; Lu, S.; Telu, S.; Aigbirhio, F. I.; Pike, V. W. Angew. Chem., Int. Ed. **2012**, 51, 2598.
- For the carboxylation of organozinc reagents with CO₂, see: (a) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. **2008**, *10*, 2681; (b) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. **2008**, *130*, 7826; (c) Kobayashi, K.; Kondo, Y. Org. Lett. **2009**, *11*, 2035.
- For the direct carboxylation of electrophile with CO₂, see: Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.
- 6. For the hydrocarboxylation of unsaturated compounds with CO₂, see: (a) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2008**, *130*, 15254; (b) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. **2008**, *130*, 14936; (c) Li, S.; Yuan, W.; Ma, S. Angew. Chem., Int. Ed. **2011**, *50*, 2578; (d) Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. **2011**, *50*, 523; (e) North, M. Angew. Chem., Int. Ed. **2010**, *48*, 4104; (f) Zhang, Y.; Riduan, S. N. Angew. Chem., Int. Ed. **2011**, *50*, 6210.
- For the transition-metal-free incorporation of CO₂, see: (a) Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. **2006**, *128*, 11040; (b) Zhou, H.; Zhang, W.-Z.; Liu, C.-H.; Qu, J.-P.; Lu, X.-B. J. Org. Chem. **2008**, *73*, 8039; (c) Flowers, B. J.; Gautreau-Service, R.; Jessop, P. G. Adv. Synth. Catal. **2008**, *350*, 2947; (d) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. **2009**, *48*,

3322; (e) Kayaki, Y.; Yamamoto, M.; Ikariya, T. *Angew. Chem., Int. Ed.* **2009**, *48*, 4194; (f) Chen, G.; Fu, C.; Ma, S. *Org. Lett.* **2009**, *11*, 2900; (g) Chen, G.; Fu, C.; Ma, S. *Org. Biomol. Chem.* **2011**, *9*, 105; (h) Vechorkin, O.; Hirt, N.; Hu, X. *Org. Lett.* **2010**, *12*, 3567; (i) Minakata, S.; Sasaki, I.; Ide, T. *Angew. Chem., Int. Ed.* **2010**, *49*, 1309.

- For the carboxylation of C-H bond with CO₂, see: (a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. **2010**, 132, 8858; (b) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. **2010**, 49, 8670; (c) Boogaerts, I. I. F.; Fortman, G. C.; Catherine, M. R. L.; Nolan, S. P. Angew. Chem., Int. Ed. **2010**, 49, 8674; (d) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2011**, 133, 1251; (e) Dalton, D. M.; Rovis, T. Nat. Chem. **2010**, 2, 710; (f) Boogaerts, I. I. F.; Nolan, S. P. Chem. **2011**, 3021; (g) Ackermann, L. Angew. Chem., Int. Ed. **2011**, 50, 3842.
- 9. Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
- 10. Fukue, Y.; Oi, S.; Inoue, Y. J. Chem. Soc., Chem. Commun. 1994, 2091.
- 11. Eghbali, N.; Eddy, J.; Anastas, P. T. J. Org. Chem. 2008, 73, 6932.
- Goossen, L. J.; Rodriguez, N.; Manjolinho, F.; Lange, P. P. Adv. Synth. Catal. 2010, 352, 2913.
- (a) Yu, D.; Zhang, Y. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20184; (b) Yu, D.; Zhang, Y. Green Chem. 2011, 13, 1275.
- Inamoto, K.; Asano, N.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Org. Biomol. Chem. 2012, 10, 1514.
- 15. Zhang, W.-Z.; Li, W.-J.; Zhang, X.; Zhou, H.; Lu, X.-B. Org. Lett. 2010, 21, 4748.
- 16. Zhang, X.; Zhang, W.-Z.; Ren, X.; Zhang, L.-L.; Lu, X.-B. Org. Lett. 2011, 13, 2402.
- For use of 2-alkynoates as synthetic intermediates, see: (a) Ma, S.; Lu, X. J. Org. Chem. 1993, 58, 1245; (b) Zhang, Q; Lu, X; Han, X. J. Org. Chem. 2001, 66, 7676; (c) Rayabarapu, D. K.; Tunge, J. A. J. Am. Chem. Soc. 2005, 127, 13510; (d) Yin, G.; Liu, G. Angew. Chem., Int. Ed. 2008, 47, 5442; (e) Pi, S.-F.; Tang, B.-X.; Li, J.-H.; Liu, Y.-L.; Liang, Y. Org. Lett. 2009, 11, 2309; (f) Luo, T.; Schreiber, S. L. J. Am. Chem. Soc. 2009, 131, 5667; (g) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452; (h) Welsch, T.; Tran, H.-A.; Witulski, B. Org. Lett. 2010, 12, 5644; (i) Jacobsen, M. J.; Funder, E. D.; Cramer, J. R.; Gothelf, K. V. Org. Lett. 2011, 13, 3418.
- For direct coupling of terminal alkynes and allylic or benzylic halides, see: (a) Grushin, V. V.; Alper, H. J. Org. Chem. **1992**, 57, 218; (b) Larsen, C. H.; Anderson, K. W.; Tundel, R. E.; Buchwald, S. L. Synlett **2006**, 2941; (c) Bieber, L. W.; da Silva, M. F. Tetrahedron Lett. **2007**, 48, 7088; (d) Davies, K. A.; Abel, R. C.; Wulff, J. E. J. Org. Chem. **2009**, 74, 3997.
- For Ag(1)-catalyzed carboxylation of terminal alkynes with CO₂, also see: (a) Arndt, M.; Risto, E.; Krause, T.; Goossen, L. J. *ChemCatChem* **2012**, *4*, 484; (b) Yu, D.; Tan, M. X.; Zhang, Y. *Adv. Synth. Catal.* **2012**, *354*, 969.