Reaction Mechanisms

Diversity in Gold-Catalyzed Formal Cycloadditions of Ynamides with Azidoalkenes or 2*H*-Azirines: [3+2] versus [4+3] Cycloadditions

Samir Kundlik Pawar, Rajkumar Lalji Sahani, and Rai-Shung Liu*^[a]

Abstract: Gold-catalyzed cycloadditions of ynamides with azidoalkenes or 2*H*-azirines give [3+2] or [4+3] formal cycloadducts of three classes. Cycloadditions of ynamides with 2*H*-azirine species afford pyrrole products with two regioselectivities when the C_B-substituted 2*H*-azirine is replaced

Introduction

Metal-catalyzed cycloadditions are powerful tools to construct carbo- or heterocyclic frameworks.^[1] Organic azides are valuable precursors to generate nitrenes in catalytic cycloadditions to access azacyclic compounds.^[2] Related azidoalkenes commonly serve as three-atom motifs for several catalytic [3+2] cycloaddition reactions.^[3] At elevated temperatures, azidoalkenes (I) undergo a loss of N₂ to form stable 2*H*-azirines (II).^[4,5] Azidoalkenes and 2H-azirines, accordingly, are likely to give the same products under thermal activation. Chiba et al. reported rhodium-/copper-catalyzed [4+2] formal cycloadditions of 1azidostyrene with internal alkynes to form isoquinoline derivatives [Eq (1)].^[6] Xiao et al. reported metal-free, light-induced [3+2] formal cycloadditions of 2H-azirines with alkynes to yield functionalized pyrrole products through the cleavage of a C-C bond of the 2H-azirines [Eq. (2); EWG = electron-withdrawing group).^[7] Immediately prior to completion of this work, Huang and co-workers reported gold-catalyzed [3+2] formal cycloadditions of 2H-azirines with ynamides to form pyrrole derivatives [Eq. (3)];^[8] gold carbenes (III) were postulated as reaction intermediates. The work of Huang and co-workers does not reflect the diversity of reactions that can generate products of three types, as depicted in Equations (3)-(5). With the use of azidoalkenes, the reactions produce the same compounds as those described in Huang's work [Eq. (3)], but the reaction regioselectivity is completely different for those 2H-azirines with a C_{β} -substituted ester [Eq. (4)]. Particularly notable are the novel [4+3] formal cycloadditions between azidoalkenes and arenynamides with an electron-rich aryl group [Eq. (5)].

 [a] S. K. Pawar,⁺ R. L. Sahani,⁺ Prof. Dr. R.-S. Liu Department of Chemistry, National Tsing-Hua University Hsinchu 30013 (Taiwan)
 E-mail: rsliu@mx.nthu.edu.tw

[⁺] These authors contributed equally to this work.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201500694.

Chem. Eur. J. 2015, 21, 10843-10850

Wiley Online Library

from an alkyl (or hydrogen) with an ester group. For ynamides substituted with an electron-rich phenyl group, their reactions with azidoalkenes proceed through novel [4+3] cycloadditions to deliver 1*H*-benzo[*d*]azepine products instead.

Notably, pyrroles and 1*H*-benzo[*d*]azepines in Equations (4) and (5) involve cleavage of the C_{α} =N bond of 2*H*-azirine, whereas the pyrrole products in Equation (3) arise from cleavage of the C_{β} -N bond of 2*H*-azirine. The occurrence of these diverse products enables precise elucidation of the reaction mechanism, which excludes the intermediacy of gold carbenes (III) because of improper rationalization of the resulting products in Equations (4) and (5).^[9,10]

Previous work:

This work:

Results and Discussion

We first examined the reactions of cyclopropyl-substituted ynamide **1a** with 1-azidostyrene **2a** over LAuCl/AgNTf₂ (L = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or (tBu)₂(o-biphenyl)P) in CH₂Cl₂ or nitromethane at 28 °C, but no desired pyrrole product **3a** formed in a detectable amount. Table 1, entry 1, depicts the reaction conditions with P(tBu)₂(o-

yield (Table 2, entry 12). We also tested the reaction on 1,2-disubstituted azidovinyl species 2e, resulting in pyrrole species 3n in 63% yield (Table 2, entry 13). Among these products, we performed XRD on representative species 3c to elucidate its structure.^[12]

We tested the reaction on (*E*)ethyl 3-azidobut-2-enoate (**5** a), which gave products in a complicated mixture in hot DCE or MeNO₂ for either IPrAuCl/AgNTf₂ or PPh₃AuCl/AgNTf₂ [Eq. (6)] because azide species **5** a did not convert into 2*H*-azirine **5** a' at

biphenyl)AuCl/AgNTf₂ in MeNO₂ at 80 °C (11 h); desired cycloadduct **3a** and 2,5-diphenylpyrazine **4**'^[11] were obtained in 65 and 12% yield, respectively. Compound **4**' arose from a dehydrogenative dimerization of species **2a** under the reaction conditions. The use of PPh₃AuCl/AgNTf₂ and AuCl₃ afforded the desired cycloadduct **3a** in diminished yields, that is, 60 and 52%, respectively (Table 1, entries 2 and 3). To our delight, the use of IPrAuCl/AgNTf₂ in hot nitromethane increased the yield of desired **3a** to 84% (Table 1, entry 4). Changing the silver source to IPrAuCl/AgSbF₆ slightly decreased the yield of cycloadduct **3a** to 75% (Table 1, entry 5). Commonly used DCE appeared to be less efficient than nitromethane, giving **3a** in 72% yield (Table 1, entry 6). AgNTf₂ alone was catalytically inactive, instead 1-azidostyrene **2a** was transformed into 2*H*-azirine **4**", whereas ynamide **1a** remained intact (Table 1, entry 7).

We expanded the scope of the reaction by using diverse ynamides 1 with various azidoalkenes 2 to access pyrrole compounds 3 (Table 2). The reactions of phenyl-substituted ynamides 1 b-d (X = H, Me, and Cl) with (1-azidovinyl)benzene (2 a) and IPrAuCl/AgNTf₂ (5 mol%) in hot nitromethane (80 °C, 11-13 h) gave desired cycloadducts 3b-d in 62-68% yield (Table 2, entries 1-3). The reaction was extended to thienylsubstituted ynamide 1e to afford desired 3e in 62% yield (Table 2, entry 4). The reaction was compatible with 2-en-1-ynamide 1 f, yielding pyrrole derivative 3 f in 62% (Table 2, entry 5). For unsubstituted and alkyl-substituted ynamides 1 g and 1h, their gold-catalyzed cycloadditions with 2a produced desired products 3g and 3h in 67 and 39% yield, respectively (Table 2, entries 6 and 7). Such [3+2] formal cycloadditions were extended to ynamides 1i and 1j, with different sulfonamides, giving desired 3i and 3j in 66 and 67% yield, respectively (Table 2, entries 8 and 9). The results in Table 2, entries 10 and 11, show the compatibility of this reaction with various vinylazides 2b and 2c, which have different 4-phenyl substituents (4-XC₆H₄, X=OMe and Cl), giving expected pyrrole products 3k and 3l in 52 and 56% yield, respectively. For n-butyl-substituted vinyl azide 2d, its reaction with 2-cyclopropyl-1-ynamide 1 a afforded pyrrole species 3 m in 66%

elevated temperatures. In contrast, the use of 2*H*-azirine **5** a' with these two catalysts enabled the efficient production of cycloadducts **6a** in 82 and 90% yield with IPrAuCl/AgNTf₂ or PPh₃AuCl/AgNTf₂, respectively [Eq. (7)]. Herein, the regioselectivity of this cycloaddition involves cleavage of the C_a=N bond of 2*H*-azirine, which is distinct from those instances in Table 2 and Equation (3), which involve the cleavage of a single C_β-N bond.

The results in Table 3 show the substrate scope of the reaction. Herein, ynamides 1 were treated with ethyl 2*H*-azirine-2-carboxylates 5 (1.2 equiv) and AuClPPh₃/AgNTf₂ (5 mol%) in DCE (28 °C) for 3–11 h, producing cycloadducts **6b–i** in reasonable yields (74–86%). We first tested the reactions on phenyl-substituted ynamides **1b**, **1k**, and **1l** (X=H, OMe, and CF₃), affording desired **6b–d** in 75–86% yield. These cyclo-

additions were applicable to thienyl-substituted ynamide **1** e, which yielded pyrrole derivative **6e** in 82% (Table 3, entry 4). These cycloadditions proceeded well with alkenyl- and alkylsubstituted ynamides **1 f** and **1 m**; the corresponding products **6 f** and **6 g** were obtained in 74 and 82% yield, respectively (Table 3, entries 5 and 6). The results in Table 3, entries 7 and 8, show the compatibility of such cycloadditions with ethyl 2*H*-azirine-2-carboxylates **5 b** and **5 c**, which gave the corresponding products **6 h** and **6 i** in satisfactory yields (Table 3, entries 7 and 8). XRD of cycloadduct **6 b** was undertaken to verify its proposed structure.^[12]

Surprisingly, new [4+3] formal cycloadditions occur with those ynamides with $R^1 = Me$ or OMe at their *meta*-phenyl positions, as exemplified by species 7 a-f (Table 4); the conditions are the same as those outlined in Table 2. We tested the catalytic reactions of 2a with arenynamides 7a and 7b ($R^1 = Me$), which contained two distinct sulfonamides, yielding 1H-benzo[d]azepine derivatives 8a and 8b in 47 and 48%, respectively; competing pyrrole species 9a and 9b were produced in 23 and 24% yield, respectively. The [4+3] formal cycloadducts 8c and 8d were produced in satisfactory yields (74 and 60%, respectively) from 2a and arenynamides 7c and 7d, which contained 3,5- and 3,4-dimethylphenyl groups (Table 4, entries 3 and 4). Such cycloaddition reactions were compatible with various 1-azidostyrenes 2a-c (Ar=4-XC₆H₄; X=H, Cl, and OMe) that reacted with arenynamide **7e** ($R^1 = OMe$) to form [4+3] formal cycloadducts 8e-g in 59-72% yields (Table 4, entries 5-7). This [4+3] cycloaddition can be extended to arenynamide 7 f, which contains a 3,4-dimethoxyphenyl group, giving the expected cycloadduct 8h in 78% yield (Table 4, entry 8). The formal cycloaddition of 7 e with 2 e afforded the corresponding

cycloadduct **8i** in 42% yield, together with pyrrole species **9i** in 29% yield (Table 4, entry 9). For 3-thienyl-substituted ynamide **7g**, its reaction with **2a** gave [4+3] cycloadduct **8j** efficiently (72%; Table 4, entry 10). Among these [4+3] cyclo-adducts, we undertook XRD analysis of compounds **8a** and **8j** to confirm their 3*H*-azepine frameworks.^[12]

We conducted experiments to confirm that 2*H*-azirine **4**" was produced in 91% yield by heating **2a** in hot nitromethane (80°C, 8 h); species **4**" thereby underwent dimerization to form 2,5-diphenylpyrazine **4**' selectively [Eq. (8)].^[11] We observed such a pyrazine derivative **4**' during catalyst screening experiments (see Table 1). Particularly notable was the use of 2*H*-azirine **4**", which reacted with cyclopropyl- and 3-thienyl-substituted ynamides **1a** and **7g** to yield desired [3+2] and [4+3] cycloadducts **3a** and **8j** selectively [Eqs. (9) and (10)]. We postulate that these cycloadditions might proceed through an initial transformation of **2a** into **4**", which is an active intermediate in this catalytic system.

We postulate the reaction mechanism in Scheme 1 to rationalize the resulting three types of cycloadducts. These products begin with the addition of 2*H*-aziridines on gold π -alkyne **A** to yield common intermediates **B**. Because the 2*H*-aziridine ring of species **B** also has an iminium character, we accordingly

Chom	Fur I	2015	21	10843	10850
Chem.	Lui. J.	2013,	21,	10045-	10030

Scheme 1. Proposed mechanisms for diverse products.

postulate phenyl attack of those ynamides with an electronrich group ($R^1 = 3-XC_6H_4$) at their azirine rings, ultimately giving desired product **8e** (X = OMe). For other ynamides and 2*H*aziridines (X = H, CO_2Et), their corresponding intermediates **B** undergo a 1,2-hydrogen shift to form new intermediates **C**. In the case of 2*H*-aziridines with X = H, species **D** undergoes intramolecular cyclization through alkene attack at the less hindered **C**H= carbon of the aziridine ring, yielding pyrrole product **3a**. For 2*H*-aziridines with an ester moiety, the corresponding intermediate **E** prefers a Michael-type reaction, in which the =**C**HPh carbon is attacked by this tethered alkene, further yielding pyrrole products **6h**.

Our mechanism opposes the intermediacy of gold carbenes that are postulated by Huang et al.^[8] because they cannot rationalize products **6h** and **8e**. As depicted in Equation (11), gold-driven ring opening of an azirinium ring of species **B** is expected to give gold carbene **F**, which undergoes an aza-Nazarov cyclization^[13] to give pyrrole products with different structures from our resulting product **6h** (R¹ = cyclopropyl). Similarly, although the electron-rich benzene group of gold carbenes **G** can attack at the **C**H₂=CPh carbon, the resulting seven-membered product is expected to have a structure distinct from our observed product **8e** [X = OMe; Eq. (12)]. Accordingly, the intermediacy of gold carbenes is unlikely to occur here.

Conclusion

Diverse chemoselectivity of gold-catalyzed cycloadditions of ynamides with azidoalkenes or 2*H*-azirines was described. Our control experiments indicated that the initial azidoalkenes were thermally converted into 2*H*-azirines to activate the reactions. Formal cycloadditions of ynamides with 2*H*-aziridines

afforded [3+2] pyrrole products with two distinct regioselectivities, depending on the substituents of the 2*H*-azirines. For ynamides substituted with an electron-rich phenyl group, their reactions with azidoalkenes proceeded through novel [4+3] cycloadditions^[14] to deliver 1*H*-beno[*d*]azepine products instead. The presence of such diverse cycloadducts provides precise information on the mechanism of cycloaddition; thus excluding gold carbenes as reaction intermediates.

Experimental Section

General

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware by using standard syringe, cannula, and septa apparatus. THF and hexane were dried with sodium benzophenone and distilled before use. CH_2CI_2 , DCE, and toluene were dried over CaH_2 and distilled before use. Nitromethane was dried over activated 4 Å MS. Et_3N and CH_3NO_2 were stored over 4 Å MS prior to use. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on Varian 400 MHz, Varian 500 MHz, Bruker 400 MHz, and Bruker 600 MHz spectrometers by using CDCl₃, CD_2CI_2 , and C_6D_6 as internal standards.

Standard procedure for synthesis of 3 a

A solution of **1a** (100 mg, 0.58 mmol) and **2a** (109 mg, 0.75 mmol) in nitromethane (1.5 mL) at 28 °C was added to a solution of [1,3-bis(diisopropylphenyl)imidazol-2-ylidene]AuCl (17.9 mg, 0.03 mmol), silver bis(trifluoromethanesulfonyl)imide (11.2 mg, 0.03 mmol), and powdered 4 Å MS (20 mg) in nitromethane (0.5 mL). The resulting solution was stirred at 80 °C for 12 h before it was filtered through a short Celite pad, concentrated, and eluted through a column of silica gel (10% ethyl acetate/hexane, R_f =0.3 in 25% ethyl acetate/hexane system) to afford compound **3a** (141 mg, 0.48 mmol, 84%) as a pale yellow solid.

Standard procedure for synthesis of 6a

A solution of **1a** (100 mg, 0.58 mmol) and **5a**' (88 mg, 0.69 mmol) in DCE (2.0 mL) at 28 °C was added to a solution of PPh₃AuCl (14.3 mg, 5 mol%), silver bis(trifluoromethanesulfonyl)imide (11.2 mg, 5 mol%), and powdered 4 Å MS (20 mg) in DCE (0.5 mL). The resulting solution was stirred at RT for 8 h before it was filtered through a short Celite pad, concentrated, and eluted through a column of silica gel (20% ethyl acetate/hexane system) to afford compound **6a** (156 mg, 0.52 mmol, 90%) as a white solid.

Standard procedure for synthesis of 8a

A solution of **7a** (100 mg, 0.45 mmol) and **2a** (85 mg, 0.58 mmol) in nitromethane (1.5 mL) at 28 °C was added to a solution of [1,3-bis(diisopropylphenyl)imidazol-2-ylidene]AuCl (13.9 mg, 5 mol%), silver bis(trifluoromethanesulfonyl)imide (8.7 mg, 5 mol%), and powdered 4 Å MS (20 mg) in nitromethane (0.5 mL). The resulting solution was stirred at 80 °C for 16 h before it was filtered through a short Celite pad, concentrated, and eluted through a column of silica gel (8% ethyl acetate/hexane, R_f =0.3 in 20% ethyl acetate/hexane system) to afford compound **8a** (72 mg, 0.21 mmol, 47%) as a white solid and **9a** (35 mg, 0.10 mmol, 23%) as a colorless viscous liquid.

Compound 3 a: Pale yellow solid (141 mg, 84%); m.p. 195–196 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.51$ (s, 1 H), 7.39–7.38 (m, 2 H), 7.32– 7.29 (m, 2 H), 7.19–7.17 (m, 1 H), 6.97 (d, J = 3.0 Hz, 1 H), 3.38 (s, 3 H), 3.02 (s, 3 H), 1.65–1.61 (m, 1 H), 0.91–0.88 (m, 2 H), 0.66– 0.63 ppm (m, 2 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 131.9$, 130.0, 128.8, 126.6, 125.2, 123.8, 122.6, 101.9, 38.4, 37.6, 7.7, 6.8 ppm; HRMS: m/z calcd for $C_{15}H_{18}N_2O_2S$: 290.1089; found: 290.1100.

Compound 3b: Pale yellow solid (106 mg, 68%); m.p. 178–179 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.89$ (s, 1 H), 7.52–7.51 (m, 2 H), 7.48– 7.47 (m, 2 H), 7.40–7.38 (m, 2 H), 7.37–7.34 (m, 2 H), 7.28–7.22 (m, 2 H), 6.61 (d, J = 3.1 Hz, 1 H), 3.34 (s, 3 H), 2.74 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 134.4$, 131.6, 130.9, 128.9, 128.7, 127.0, 126.9, 126.7, 124.0, 121.4, 105.2, 38.8, 38.6 ppm (one aromatic quaternary carbon merged); HRMS: m/z calcd for $C_{18}H_{18}N_2O_2S$: 326.1089; found: 326.1090.

Compound 3 c: White solid (99 mg, 65%); m.p. 186–187 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.75 (s, 1 H), 7.48–7.47 (m, 2 H), 7.41– 7.40 (m, 2 H), 7.37–7.35 (m, 2 H), 7.25–7.23 (m, 1 H), 7.22–7.19 (m, 2 H), 6.59 (d, *J* = 3.1 Hz, 1 H), 3.33 (s, 3 H), 2.75 (s, 3 H), 2.36 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 136.4, 131.7, 131.4, 130.8, 129.4, 128.9, 127.0, 126.9, 124.0, 123.9, 121.4, 105.3, 38.7, 38.6, 21.1 ppm; HRMS: *m/z* calcd for C₁₉H₂₀N₂O₂S: 340.1245; found: 340.1251.

Compound 3d: Pale yellow solid (91.8 mg, 62%); m.p. 203–204 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.88 (s, 1 H), 7.47–7.44 (m, 4 H), 7.37– 7.35 (m, 4 H), 7.26–7.23 (m, 1 H), 6.57 (d, *J*=3.1 Hz, 1 H), 3.33 (s, 3 H), 2.77 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 132.8, 132.4, 131.4, 131.2, 128.9, 128.1, 127.2, 124.1, 124.0, 120.2, 104.9, 38.9, 38.5 ppm (two aromatic CH merged); HRMS: *m/z* calcd for C₁₈H₁₇ClN₂O₂S: 360.0699; found: 360.0695.

Compound 3e: Pale yellow solid (95.7 mg, 62%); m.p. 155–156 °C; ¹H NMR (600 MHz, CDCl₃): δ = 9.04 (s, 1 H), 7.48–7.46 (m, 2 H), 7.36– 7.33 (m, 2 H), 7.25–7.21 (m, 2 H), 7.17–7.16 (dd, *J* = 1.1, 3.5 Hz, 1 H), 7.06–7.05 (m, 1 H), 6.61 (d, *J* = 3.1 Hz, 1 H), 3.36 (s, 3 H), 2.91 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 135.9, 131.4, 131.2, 128.8, 127.3, 127.1, 124.1, 123.6, 123.5, 123.3, 115.7, 104.5, 39.0, 38.3 ppm; HRMS: *m/z* calcd for C₁₆H₁₆N₂O₂S₂: 332.0653; found: 332.0650.

Compound 3 f: Pale yellow solid (85.3 mg, 62%); m.p. 196–197 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.69$ (s, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.50–7.48 (m, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.25–7.22 (m, 5H), 7.16– 7.14 (m, 1H), 7.01–7.00 (m, 2H), 6.59 (d, J = 2.9 Hz, 1H), 6.55 (d, J =16.1 Hz, 1H), 5.78 (d, J = 16.1 Hz, 1H), 3.34 (s, 3H), 2.20 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 144.3$, 137.5, 134.6, 131.6, 131.0, 129.7, 128.9, 128.4, 127.8, 126.9, 126.8, 126.7, 125.9, 125.7, 123.9, 119.1, 118.7, 102.0, 39.6, 21.3 ppm; HRMS: *m/z* calcd for C₂₆H₂₄N₂O₂S: 428.1558; found: 428.1555.

Compound 3 g: Pale yellow solid (96 mg, 67%); m.p. 182–183 °C; ¹H NMR (600 MHz, $C_{3}D_{6}O$): $\delta = 10.52$ (s, 1 H), 7.60 (d, J = 8.4 Hz, 2 H), 7.47–7.45 (m, 2 H), 7.41–7.40 (m, 2 H), 7.36–7.34 (m, 4 H), 7.28–7.25 (m, 3 H), 7.12–7.10 (m, 2 H), 6.25–6.24 (m, 1 H), 2.45 ppm (s, 3 H); ¹³C NMR (150 MHz, $C_{3}D_{6}O$): $\delta = 144.9$, 142.4, 137.4, 136.7, 130.3, 129.9, 129.8, 129.3, 128.9, 128.5, 128.1, 126.1, 125.4, 124.9, 114.2, 104.5, 21.5 ppm; HRMS: m/z calcd for $C_{23}H_{20}N_2O_2S$: 388.1245; found: 388.1247.

Compound 3 h: Colorless viscous oil (58.3 mg, 39%); ¹H NMR (600 MHz, CD₂Cl₂): δ = 8.42 (s, 1 H), 7.48–7.46 (m, 2 H), 7.39–7.36 (m,

2 H), 7.27–7.17 (m, 6 H), 6.42 (d, J=3.0 Hz, 1 H), 3.10 (s, 3 H), 2.95 (t, J=7.5 Hz, 2 H), 2.83 (s, 3 H), 2.74 ppm (t, J=7.5 Hz, 2 H); ¹³C NMR (150 MHz, CD₂Cl₂): δ =142.5, 132.5, 130.5, 129.3, 128.9, 128.8, 127.0, 126.4, 125.6, 124.1, 120.9, 106.1, 38.8, 38.0, 37.1, 28.1 ppm; HRMS: m/z calcd for C₂₀H₂₂N₂O₂S: 354.1402; found: 354.1404.

Compound 3i: White solid (94.5 mg, 66%); m.p. 152-153 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.98$ (s, 1 H), 7.54–7.52 (m, 2 H), 7.39–7.16 (m, 13 H), 6.66 (d, J = 3.1 Hz, 1 H), 2.89 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 141.6$, 134.1, 131.6, 131.5, 129.4, 128.9, 128.5, 127.4, 127.1, 126.8, 125.8, 124.1, 123.4, 123.1, 122.3, 105.9, 40.6 ppm; HRMS: m/z calcd for $C_{23}H_{20}N_2O_2S$: 388.1245; found: 388.1250.

Compound 3 j: Pale yellow solid (77.6 mg, 67%); m.p. 157–158 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.71 (s, 1H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.25–7.24 (m, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.11–7.07 (m, 3H), 6.82–6.81 (m, 2H), 6.50 (d, *J* = 3.2 Hz, 1H), 3.16 (s, 3H), 2.38 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 144.0, 134.9, 134.3, 131.8, 129.8, 129.6, 128.9, 128.0, 127.6, 127.2, 126.8, 126.2, 124.3, 123.8, 120.9, 105.6, 38.3, 21.5 ppm; HRMS: *m/z* calcd for C₂₄H₂₂N₂O₂S: 402.1402; found: 402.1410.

Compound 3k: White solid (96.2 mg, 52%); m.p. 135–136°C; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.29$ (s, 1 H), 7.32–7.31 (m, 2 H), 6.87– 6.85 (m, 2 H), 5.85 (d, J = 3.0 Hz, 1 H), 3.79 (s, 3 H), 3.36 (s, 3 H), 3.01 (s, 3 H), 1.61–1.59 (m, 1 H merged with water signal from CDCl₃), 0.89–0.87 (m, 2 H), 0.64–0.62 ppm (m, 2 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 158.6$, 130.1, 125.2, 124.9, 124.6, 122.5, 114.3, 100.9, 55.3, 38.4, 37.6, 7.7, 6.9 ppm; HRMS: m/z calcd for $C_{16}H_{20}N_2O_3S$: 320.1195; found: 320.1197.

Compound 31: Pale yellow solid (105 mg, 56%); m.p. 170–171 °C; ¹H NMR (600 MHz, CD_2Cl_2): $\delta = 8.48$ (s, 1 H), 7.37–7.35 (m, 2 H), 7.33– 7.31 (m, 2 H), 6.02 (d, J = 3.1 Hz, 1 H), 3.37 (s, 3 H), 3.04 (s, 3 H), 1.65– 1.56 (m, 1 H), 0.93–0.90 (m, 2 H), 0.66–0.63 ppm (m, 2 H); ¹³C NMR (150 MHz, CD_2Cl_2): $\delta = 132.4$, 131.0, 129.4, 128.9, 126.4, 125.3, 123.4, 103.0, 38.7, 38.1, 7.9, 7.1 ppm; HRMS: m/z calcd for $C_{15}H_{17}ClN_2O_2S$: 324.0699; found: 324.0693.

Compound 3 m: Brown viscous liquid (103 mg, 66%); ¹H NMR (600 MHz, CDCl₃): δ = 7.87 (s, 1H), 5.36 (d, *J* = 3.0 Hz, 1H), 3.30 (s, 3H), 2.96 (s, 3H), 2.43 (t, *J* = 7.7 Hz, 2H), 1.56–1.49 (m, 3H), 1.34–1.30 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H), 0.82–0.80 (m, 2H), 0.55–0.53 ppm (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ = 131.3, 122.3, 120.8, 101.1, 38.4, 37.4, 31.3, 27.5, 22.4, 13.8, 7.6, 6.8 ppm; HRMS: *m/z* calcd for C₁₃H₂₂N₂O₂S: 270.1402; found: 270.1403.

Compound 3 n: White solid (110 mg, 63%); m.p. 156–157°C; ¹H NMR (600 MHz, CDCl₃): δ = 8.11 (s, 1H), 7.38–7.35 (m, 4H), 7.24– 7.22 (m, 1H), 3.30 (s, 3H), 3.00 (s, 3H), 2.19 (s, 3H), 1.55–1.51 (m, 1H), 0.86–0.83 (m, 2H), 0.63–0.61 ppm (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ = 132.9, 128.6, 126.8, 126.6, 126.4, 124.8, 119.7, 116.3, 38.6, 38.5, 10.7, 6.1, 5.2 ppm; HRMS: *m/z* calcd for C₁₆H₂₀N₂O₂S: 304.1245; found: 304.1246.

Compound 6a: White solid (156 mg, 90%); m.p. 133-136°C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.62$ (brs, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.18 (s, 3H), 3.01 (s, 3H), 2.36 (s, 3H), 1.84–1.80 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 0.84–0.80 (m, 2H), 0.61–0.57 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.4$, 134.2, 122.7, 121.6, 111.5, 59.3,

Chem. Eur. J. 2015, 21, 10843 - 10850

38.9, 38.5, 14.4, 13.7, 7.4, 6.4 ppm; HRMS: m/z calcd for $C_{13}H_{20}N_2O_4S$: 300.1144; found: 300.1140.

Compound 6b: White solid (135 mg, 84%); m.p. 199–203 °C; ¹H NMR (600 MHz, CDCl₃): δ =9.09 (s, 1H), 7.40 (t, J=7.5 Hz, 2H), 7.33 (d, J=7.3 Hz, 1H), 7.24 (d, J=6.5 Hz, 2H), 4.32 (q, J=7.1 Hz, 2H), 3.14 (s, 3H), 2.57 (s, 3H), 2.21 (s, 3H), 1.35 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ =161.0, 133.3, 129.9, 128.6, 127.5, 127.4, 126.2, 122.5, 117.2, 60.3, 38.9, 38.2, 14.5, 11.0 ppm; HRMS: *m/z* calcd for C₁₆H₂₀N₂O₄S: 336.1144; found: 336.1137.

Compound 6c: White solid (115 mg, 75%); m.p. 187–190°C; ¹H NMR (600 MHz, CDCl₃): δ = 8.94 (s, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 4.31 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 3.13 (s, 3H), 2.61 (s, 3H), 2.19 (s, 3H), 1.35 ppm (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 160.9, 159.0, 131.1, 127.4, 126.4, 125.4, 122.1, 117.0, 114.0, 60.2, 55.2, 38.8, 38.3, 14.5, 11.0 ppm; HRMS: *m/z* calcd for C₁₇H₂₂N₂O₅S: 366.1249; found: 366.1247.

Compound 6d: White solid (125 mg, 86%); m.p. 204-207 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.26$ (brs, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.13 (s, 3H), 2.66 (s, 3H), 2.22 (s, 3H), 1.36 ppm (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 160.9$, 137.2, 130.1, 129.6 (q, J(C,F) = 30.0 Hz), 127.5, 125.8, 125.5 (d, $J(C,CF_3) = 3.3$ Hz), 124.0 (d, $J(C,CF_3) = 271.0$ Hz), 121.3, 117.7, 60.5, 38.8, 38.6, 14.4, 11.1 ppm; HRMS: m/z calcd for $C_{17}H_{19}F_3N_2O_4S$: 404.1018; found: 404.1022.

Compound 6e: White solid (130 mg, 82%); m.p. 148–150 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.01 (s, 1 H), 7.29 (dd, *J*=4.96, 1.2 Hz, 1 H), 7.02–6.98 (m, 2 H), 4.10 (q, *J*=7.1 Hz, 2 H), 3.18 (s, 3 H), 2.64 (s, 3 H), 2.44 (s, 3 H), 1.10 ppm (t, *J*=7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 164.6, 134.3, 134.2, 128.0, 126.6, 125.3, 124.5, 113.8, 111.2, 59.3, 39.5, 38.0, 13.9, 13.5 ppm; HRMS: *m/z* calcd for C₁₄H₁₈N₂O₄S₂: 342.0708; found: 342.0703.

Compound 6 f: White solid (114 mg, 74%); m.p. 172-174°C; ¹H NMR (600 MHz, CDCl₃): δ = 8.94 (s, 1 H), 7.57 (d, *J* = 16.7 Hz, 1 H), 7.45 (d, *J* = 7.3 Hz, 2 H), 7.31 (t, *J* = 7.2 Hz, 2 H), 7.23 (d, *J* = 7.0 Hz, 1 H), 6.86 (d, *J* = 16.8 Hz, 1 H), 4.30 (q, *J* = 6.8 Hz, 2 H), 3.32 (s, 3 H), 2.95 (s, 3 H), 2.43 (s, 3 H), 1.36 ppm (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 165.3, 137.8, 134.8, 129.7, 128.6, 127.4, 126.0, 122.4, 120.6, 118.4, 110.0, 59.6, 39.3, 38.0, 14.4, 13.9 ppm; HRMS: *m/z* calcd for C₁₈H₂₂N₂O₄S: 362.1300; found: 362.1304.

Compound 6g: Colorless viscous liquid (137 mg, 82%); ¹H NMR (600 MHz, CDCl₃): δ = 8.77 (s, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 3.24 (s, 3H), 2.93 (s, 3H), 2.36 (t, *J* = 7.8 Hz, 2H), 2.25 (s, 3H), 1.47–1.42 (m, 2H), 1.37–1.31 (m, 5H), 0.92 ppm (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 161.0, 127.1, 126.5, 121.5, 117.3, 60.1, 38.5, 38.0, 32.3, 23.7, 22.9, 14.5, 13.8, 10.7 ppm; HRMS: *m/z* calcd for C₁₄H₂₄N₂O₄S: 316.1457; found: 316.1460.

Compound 6h: Colorless viscous liquid (155 mg, 82%); ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 1H), 4.26 (q, *J*=7.1 Hz, 2H), 3.21 (s, 3H), 2.98 (s, 3H), 2.78 (t, *J*=7.6 Hz, 2H), 1.87–1.80 (m, 1H), 1.65–1.55 (m, 2H), 1.32 (t, *J*=7.2 Hz, 3H), 0.92 (t, *J*=7.3 Hz, 3H), 0.86–0.81 (m, 2H), 0.62–0.59 ppm (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ =165.2, 138.3, 122.9, 121.3, 111.2, 59.3, 38.7, 38.5, 29.7, 22.5, 14.4, 13.8, 7.4, 6.4 ppm; HRMS: *m/z* calcd for C₁₅H₂₄N₂O₄S: 328.1457; found: 328.1457.

Compound 6i: White solid (178 mg, 85%); m.p. 180–184°C; ¹H NMR (400 MHz, CDCl₃): δ = 8.65 (s, 1 H), 7.39 (q, *J* = 7.8 Hz, 2 H), 7.32 (d, *J* = 7.1 Hz, 3 H), 4.15 (q, *J* = 7.1 Hz, 2 H), 3.24 (s, 3 H), 2.98 (s, 3 H), 1.89–1.82 (m, 1 H), 1.14 (t, *J* = 7.1 Hz, 3 H), 0.88–0.84 (m, 2 H), 0.66–0.62 ppm (q, *J* = 5.5 Hz, 2 H); ¹³C NMR (150 MHz, CDCl₃): δ = 165.2, 134.5, 131.8, 128.7, 128.2, 128.0, 125.2, 121.9, 112.5, 59.7, 38.7, 38.5, 13.9, 7.1, 6.3 ppm; HRMS: *m/z* calcd for C₁₈H₂₂N₂O₄S: 362.1300; found: 362.1300.

Compound 8 a: Pale yellow solid (71.7 mg, 47%); m.p. 161–163 °C; ¹H NMR (600 MHz, CDCl₃ at -50 °C): $\delta = 7.38-7.34$ (m, 5H), 7.27 (s, 1H), 7.19 (s, 1H), 7.06 (s, 2H), 4.63 (d, J = 12.7 Hz, 1H), 3.22 (s, 3H), 3.11 (s, 3H), 2.79 (d, J = 12.7 Hz, 1H), 2.38 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl₃ at -50 °C): $\delta = 147.9$, 140.9, 139.6, 133.6, 132.9, 131.8, 131.1, 129.5, 128.9, 128.3, 127.9, 127.7, 127.3, 39.4, 37.9, 35.8, 21.3 ppm; HRMS: m/z calcd for $C_{19}H_{20}N_2O_2S$: 340.1245; found: 340.1250.

Compound 9a: Colorless viscous liquid (35 mg, 23 %); ¹H NMR (600 MHz, CDCl3): $\delta = 8.67$ (s, 1H), 7.49–7.48 (m, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.32–7.30 (m, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.25–7.22 (m, 1H), 7.08 (d, J = 7.4 Hz, 1H), 6.60 (d, J = 3.1 Hz, 1H), 3.34 (s, 3H), 2.74 (s, 3H), 2.38 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl3): $\delta = 138.3$, 134.3, 131.7, 130.8, 128.9, 128.6, 127.9, 127.5, 126.9, 124.1, 124.0, 121.5, 105.4, 38.8, 38.6, 21.6 ppm (one aromatic quaternary carbon merged); HRMS: m/z calcd for $C_{19}H_{20}N_2O_2S$: 340.1245; found: 340.1248.

Compound 8b: Pale yellow solid (67 mg, 48%); m.p. 164–165 °C; ¹H NMR (600 MHz, CDCl₃ at -50 °C): $\delta = 7.67$ (d, J = 8.3 Hz, 2H), 7.35–7.31 (m, 7 H), 7.18 (s, 1 H), 7.00 (s, 2H), 6.67 (s, 1 H), 4.79 (d, J =12.7 Hz, 1 H), 3.09 (s, 3 H), 2.72 (d, J = 12.7 Hz, 1 H), 2.44 (s, 3 H), 2.29 ppm (s, 3 H); ¹³C NMR (150 MHz, CDCl₃ at -50 °C): $\delta = 148.4$, 144.6, 140.9, 139.3, 134.8, 133.6, 132.9, 131.8, 130.5, 129.9, 129.4, 128.5, 128.2, 128.1, 127.5, 127.2, 127.1, 38.5, 36.5, 21.7, 21.2; HRMS: *m/z* calcd for C₂₅H₂₄N₂O₂S: 416.1558; found: 416.1553.

Compound 9b: Pale yellow viscous liquid (33 mg, 24%); ¹H NMR (600 MHz, CDCl₃): δ = 8.92 (s, 1H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.26–7.24 (m, 3H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 6.50 (d, *J* = 3.2 Hz, 1H), 6.30 (s, 1H),3.34 (s, 3H), 2.74 ppm (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 144.1, 137.4, 133.9, 131.4, 129.8, 129.3, 128.8, 127.9, 127.6, 127.3, 126.8, 126.6, 124.2, 123.8, 123.6, 120.0, 105.5, 37.9, 21.6, 21.3 ppm (one aromatic quaternary carbon merged); HRMS: *m/z* calcd for C₂₅H₂₄N₂O₂S: 416.1558; found: 416.1551.

Compound 8c: Pale yellow solid (84 mg, 74%); m.p. 192–194°C; ¹H NMR (600 MHz, CDCl₃ at -50°C): $\delta = 7.24$ (s, 1 H), 7.21–7.19 (m, 2 H), 7.16–7.13 (m, 3 H), 6.96 (s, 1 H), 6.81 (s, 1 H), 4.43 (d, J =12.7 Hz, 1 H), 3.12 (s, 3 H), 3.92 (s, 3 H), 2.85 (d, J = 12.7 Hz, 1 H), 2.25 (s, 3 H), 1.64 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃ at -50°C): $\delta = 151.5$, 142.4, 138.7, 137.3, 136.7, 136.0, 131.6, 131.4, 131.3, 128.5, 127.5, 126.7, 125.7, 39.5, 38.1, 35.5, 22.5, 20.9 ppm; HRMS: *m/z* calcd for C₂₀H₂₂N₂O₂S: 354.1402; found: 354.1404.

Compound 8d: Colorless viscous liquid (89.6 mg, 60%); ¹H NMR (600 MHz, CD₂Cl₂ at -50° C): δ =7.37–7.36 (m, 4H), 7.34–7.31 (m, 1H), 7.23 (s, 1H), 7.13 (s, 1H), 6.90 (s, 1H), 4.46 (d, *J*=12.7 Hz, 1H), 3.23 (s, 3H), 3.16 (s, 3H), 2.72 (d, *J*=12.7 Hz, 1H), 2.27 (s, 3H), 2.12 ppm (s, 3H); ¹³C NMR (150 MHz, CD₂Cl₂ at -50° C): δ =147.6, 141.0, 138.6, 135.3, 133.6, 133.0, 130.5, 129.5, 129.4, 129.2, 128.2,

Chem. Eur. J. 2015, 21, 10843 - 10850

128.1, 127.1, 39.9, 37.2, 35.3, 19.6, 19.5 ppm; HRMS: m/z calcd for $C_{20}H_{22}N_2O_2S$: 354.1402; found: 354.1403.

Compound 9d: Colorless viscous liquid (18 mg, 12%); ¹H NMR (600 MHz, CDCl₃): δ =8.65 (s, 1H), 7.49–7.48 (m, 2H), 7.37 (t, *J*=7.6 Hz, 2H), 7.28–7.23 (m, 3H, merged with CDCl₃ solvent signal), 7.13 (d, *J*=7.8 Hz, 1H), 6.60 (d, *J*=3.0 Hz, 1H), 3.33 (s, 3H), 2.76 (s, 3H), 2.29 (s, 3H), 2.27 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ =136.8, 135.1, 131.8, 131.7, 130.6, 129.9, 128.9, 128.4, 126.9, 124.3, 123.9, 121.4, 105.4, 38.7, 38.6, 19.9, 19.4 ppm (one aromatic quaternary carbon merged); HRMS: *m/z* calcd for C₂₀H₂₂N₂O₂S: 354.1402; found: 354.1402.

Compound 8e: White solid (97 mg, 65%); m.p. 131-132°C; ¹H NMR (600 MHz, CDCl₃ at -50°C): $\delta = 7.37-7.34$ (m, 5H), 7.22 (s, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.88 (d, J = 2.3 Hz, 1H), 6.80 (dd, J = 8.8, 2.3 Hz, 1H), 4.64 (d, J = 12.6 Hz, 1H), 3.83 (s, 3H), 3.21 (s, 3H), 3.07 (s, 3H), 2.81 ppm (d, J = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃ at -50°C): $\delta = 160.5$, 147.6, 140.9, 133.1, 132.6, 130.9, 130.4, 129.5, 128.7, 128.3, 127.3, 113.6, 111.0, 55.4, 38.9, 38.4, 35.9 ppm; HRMS: m/z calcd for $C_{19}H_{20}N_2O_3S$: 356.1195; found: 356.1191.

Compound 8 f: Pale yellow solid (96 mg, 59%); m.p. 167–168 °C; ¹H NMR (600 MHz, CDCl₃ at -50 °C): $\delta = 7.33-7.28$ (m, 4H), 7.18 (s, 1H), 7.04 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 2.5 Hz, 1H), 6.80 (dd, J =2.6, 8.8, Hz, 1H), 4.64 (d, J = 12.6 Hz, 1H), 3.83 (s, 3H), 3.21 (s, 3H), 3.08 (s, 3H), 2.78 ppm (d, J = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃ at -50 °C): $\delta = 160.6$, 147.7, 139.4, 133.2, 133.0, 132.7, 130.7, 130.2, 129.8, 128.4, 128.3, 113.7, 111.2, 55.4, 39.1, 38.3, 35.8 ppm; HRMS: m/z calcd for C₁₉H₁₉ClN₂O₃S: 390.0805; found: 390.0806.

Compound 8g: White solid (116 mg, 72%); m.p. 171–172°C; ¹H NMR (600 MHz, CDCl₃ at -50°C): $\delta = 7.29$ (d, J = 8.5 Hz, 2H), 7.18 (s, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.91–6.88 (m, 3H), 6.81–6.79 (dd, J = 2.6, 8.8, Hz, 1H), 4.63 (d, J = 12.6 Hz, 1H), 3.83 (s, 6H), 3.19 (s, 3H), 3.04 (s, 3H), 2.79 ppm (d, J = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃ at -50°C): $\delta = 160.6$, 158.8, 147.4, 133.5, 133.1, 131.9, 130.6, 130.5, 128.9, 113.6, 113.5, 111.2, 55.4, 55.3, 38.9, 38.5, 35.9 ppm (one aromatic quaternary carbon merged); HRMS: m/z calcd for $C_{20}H_{22}N_2O_4S$: 386.1300; found: 386.1299.

Compound 8h: White solid (112 mg, 78%); m.p. 178–180 °C; ¹H NMR (600 MHz, CDCl₃ at -50 °C): $\delta = 7.42-7.37$ (m, 5H), 7.27 (s, 1 H), 6.89 (s, 1 H), 6.62 (s, 1 H), 4.66 (d, J = 12.7 Hz, 1 H), 3.96 (s, 3 H), 3.67 (s, 3 H), 3.22 (s, 3 H), 3.06 (s, 3 H), 2.73 ppm (d, J = 12.7 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃ at -50 °C): $\delta = 149.9$, 147.3, 147.1, 140.6, 133.0, 130.9, 129.3, 128.3, 128.1, 127.4, 124.4, 110.0, 109.1, 55.9, 55.7, 38.6, 37.7, 35.9 ppm; HRMS: m/z calcd for $C_{20}H_{22}N_2O_4S$: 386.1300; found: 386.1294.

Compound 8i: Colorless viscous liquid (65 mg, 42%); ¹H NMR (600 MHz, CDCl₃ at -50° C): $\delta = 7.36$ (t, J = 7.5 Hz, 2H), 7.30–7.29 (m, 1H), 7.22 (s, 2H), 6.84 (d, J = 2.6 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H), 6.69–6.67 (dd, J = 2.7, 8.8 Hz, 1H),), 4.55 (d, J = 12.4 Hz 1H), 3.78 (s, 3H), 3.17 (s, 3H), 2.99 (s, 3H), 2.89 (d, J = 12.7 Hz, 1H), 2.00 ppm (s, 3H); ¹³C NMR (150 MHz, CDCl₃ at -50° C): $\delta = 159.7$, 146.3, 142.1, 140.1, 132.8, 131.2, 130.9, 130.4, 128.2, 126.7, 126.2, 113.4, 111.2, 55.4, 38.7, 38.5, 35.9, 22.5 ppm; HRMS: m/z calcd for $C_{20}H_{22}N_2O_3$ S: 370.1351; found: 370.1350.

Compound 9i: Colorless viscous liquid (45 mg, 29%); ¹H NMR (600 MHz, CDCl₃): δ = 8.39 (s, 1H), 7.44–7.43 (m, 2H), 7.41–7.38 (m, 2H), 7.32 (t, *J* = 7.9 Hz, 1H), 7.27–7.25 (m, 1H), 6.92–6.89 (m, 1H),

Compound 8j: Pale yellow solid (111 mg, 72%); m.p. 176–177°C; ¹H NMR (600 MHz, CDCl₃ at -50°C): $\delta = 7.59-7.58$ (m, 2H), 7.46 (d, J = 5.1 Hz, 1H), 7.43–7.39 (m, 3H), 7.24 (s, 1H), 6.97 (d, J = 5.1 Hz, 1H), 4.88 (d, J = 13.2 Hz, 1H), 3.21 (s, 3H), 3.09 (s, 3H), 2.49 ppm (d, J = 13.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃ at -50°C): $\delta = 142.7$, 139.7, 137.6, 131.7, 128.9, 128.6, 128.4, 128.2, 128.1, 126.2, 124.6, 39.0, 36.1, 33.9 ppm; HRMS: m/z calcd for C₁₆H₁₆N₂O₂S₂: 332.0655; found: 332.0656.

Acknowledgements

We thank the National Science Council, Taiwan for financial support of this work.

Keywords: cycloaddition · gold · homogeneous catalysis · reaction mechanisms · structure elucidation

- [1] For metal-catalyzed cycloaddition reactions, see selected reviews:
 a) P. A. Wender, V. A. Verma, T. H. Paxton, Acc. Chem. Res. 2008, 41, 40–49; b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49–92; c) P. A. Inglesby, P. A. Evans, Chem. Soc. Rev. 2010, 39, 2791–2805; d) S. M. A. Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269–2281; e) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211; f) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075–1094; g) C. Aissa in Comprehensive Organic Synthesis, 2nd ed. (Eds.: P. Knochel, G. A. Molander), Elsevier, Amsterdam, 2014, pp. 1738–1771; h) J. L. Mascareńas, G. F. Lopez in Comprehensive Organic Synthesis, 2nd ed. (Eds.: P. Knochel, G. A. Molander), Elsevier, Amsterdam, 2014, pp. 595–655.
- [2] a) The Chemistry of the Azido Group (Ed.: S. Patai), Wiley, New York, 1971; b) The Chemistry of Halides, Pseudo-halides and Azides, Supplement D, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester, 1983; c) Chemistry of Halides, Pseudo-Halides and Azides, Part 1 (Ed.: S. Patai), Wiley, Chichester, 1995; d) Azides and Nitrenes: Reactivity and Utility (Ed.: E. F. V. Scriven), Academic Press, New York, 1984; e) S. Bräse, C. Gil, K. Knepper, V. Zimmerman, Angew. Chem. Int. Ed. 2005, 44, 5188-5240; Angew. Chem. 2005, 117, 5320-5374.
- [3] a) S. Chiba, Synlett 2012, 21-44; b) Y. F. Wang, S. Chiba, J. Am. Chem. Soc. 2009, 131, 12570-12572; c) Y. F. Wang, K. K. Toh, S. Chiba, Org. Lett. 2008, 10, 5019-5022; d) N. S. Y. Loy, A. Singh, X. Xu, C.-M. Park, Angew. Chem. Int. Ed. 2013, 52, 2212-2216; Angew. Chem. 2013, 125, 2268-2272; e) N. S. Y. Loy, S. Kim, C.-M. Park, Org. Lett. 2015, 17, 395-397; f) Y.-F. Wang, K. K. Toh, E. P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 6411-6421.
- [4] a) E. C. Taylor, R. O. Kan, W. W. Paudler, J. Am. Chem. Soc. 1961, 83, 4484–4485; b) X. Zhu, Y. F. Wang, S. Chiba, Chem. Asian J. 2014, 9, 2458–2462.
- [5] a) A. Sjöholm Timén, E. Risberg, P. Somfai, *Tetrahedron Lett.* 2003, 44, 5339–5341; b) B. C. G. Soderberg, *Curr. Org. Chem.* 2000, 4, 727–764; c) D. Knittel, *Synthesis* 1985, 186-188.
- [6] Y. F. Wang, K. K. Toh, J. Y. Lee, S. Chiba, Angew. Chem. Int. Ed. 2011, 50, 5927–5931; Angew. Chem. 2011, 123, 6049–6053.
- [7] J. Xuan, X. D. Xia, T. T. Zeng, Z. J. Feng, J. R. Chen, L. Q. Lu, W. J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 5653–5656; Angew. Chem. 2014, 126, 5759–5762.
- [8] L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30-33.
- [9] For metal-catalyzed transformations of 2H-azirines into pyrrole products, see selected examples: a) P. F. dos Santos Filho, U. Schuchardt, Angew. Chem. Int. Ed. Engl. 1977, 16, 647–648; Angew. Chem. 1977, 89, 672–673; b) S. Chiba, Y. F. Wang, G. Lapointe, K. Narasaka, Org. Lett. 2008, 10, 313–316; c) A. F. Khlebnikov, M. V. Golovkina, M. S. Novikov,

Chem. Eur. J. 2015, 21, 10843-10850

www.chemeurj.org

10849

D. S. Yufit, Org. Lett. **2012**, *14*, 3768–3771; d) Y. Jiang, W. C. Chan, C.-M. Park, J. Am. Chem. Soc. **2012**, *134*, 4104–4107; e) X. Qi, X. Xu, C.-M. Park, Chem. Commun. **2012**, *48*, 3996–3998; f) T. Li, X. Xin, D. C. Wang, F. Wu, X. Li, B. Wan, Org. Lett. **2014**, *16*, 4806–4809.

- [10] For gold-catalyzed intramolecular cyclizations of 2*H*-azirine with a tethered alkyne, see: A. Prechter, G. Henrion, P. F. Bel, F. Gagosz, Angew. Chem. Int. Ed. **2014**, 53, 4959–4963; Angew. Chem. **2014**, 126, 5059– 5063.
- [11] a) M. Nitta, T. Kobayashi, Chem. Lett. 1983, 1715 1718; b) M. Nitta, T. Kobayashi, Bull. Chem. Soc. Jpn. 1984, 57, 1035 – 1039.
- [12] CCDC-1042641 (3 c), 1044445 (6 b), 1042642 (8 a), and 1042643 (8 j) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [13] a) J. Dieker, R. Frohlich, E.-U. Würthwein, *Eur. J. Org. Chem.* 2006, 5339–5356; b) D. A. Klumpp, Y. Zhang, M. J. O'Connor, P. M. Esteves, L. S. de Limeida, *Org. Lett.* 2007, *9*, 3085–3088.
- [14] For gold-catalyzed [4+3] cycloadditions, see recent examples: a) S. N. Karad, S. Bhunia, R. S. Liu, *Angew. Chem. Int. Ed.* 2012, *51*, 8722–8726; *Angew. Chem.* 2012, *124*, 8852–8856; b) M. Gulas, F. Lopez, J. L. Mascarenas, *Pure Appl. Chem.* 2011, *83*, 495–506; c) P. Mauleón, R. M. Zeldin, A. Z. Gonzalez, F. D. Toste, *J. Am. Chem. Soc.* 2009, *131*, 6348–6349; d) I. Alonso, H. Faustino, F. Lopez, J. L. Mascarenas, *Angew. Chem. Int. Ed.* 2011, *50*, 11496–11500; *Angew. Chem.* 2011, *123*, 11698–11702; e) I. Alonso, B. Trillo, F. Lopez, S. Montserrat, G. Ujaque, L. Castedo, A. Lledos, J. L. Mascarenas, *J. Am. Chem. Soc.* 2009, *131*, 13020–13030; f) T. Wang, J. Zhang, *Chem. Eur. J.* 2011, *17*, 86–90; h) Y. Zhang, F. Liu, L. Zhang, *Chem. Eur. J.* 2010, *16*, 6146–6150.

Received: February 17, 2015 Published online on June 11, 2015