Halide-Ion Diadducts of Perhalogenated Cyclopenta- and Cyclohexasilanes

Julian Teichmann,^[a] Benedikt Köstler,^[a] Jan Tillmann,^[a] Maximilian Moxter,^[a] Robin Kupec,^[a] Michael Bolte,^[a] Hans-Wolfram Lerner,^{*[a]} and Matthias Wagner^{*[a]}

Dedicated to Prof. Alexander C. Filippou on the Occasion of his 60th Birthday

Abstract. The halosilicates(II) $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ and $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ were prepared by mere addition of the appropriate halide salt to the corresponding disilane Si_2X_6 (X = Br, I). In the first case, the Br₃Si-substituted derivative [nBu₄N]₂[Si₇Br₁₄·2Br] formed as a second product. We have been able to obtain single crystals of [Ph₄P]₂[Si₇Br₁₄·2Br] by switching the Br⁻ salt from [nBu₄N]Br to [Ph₄P]Br. All three compounds, [nBu₄N]₂[Si₆Br₁₂·2Br] (monoclinic, $P2_1/c$, $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ (triclinic, $P\overline{1}$), and $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$ (triclinic, $P\bar{1}$) were structurally characterized by X-ray crystallography and found to form "inverse sandwich complexes", in which two X^- ions are located above and below a planarized Si₆ ring. The free periodated cyclohexasilane Si₆I₁₂ is accessible from [nBu₄N]₂[Si₆Cl₁₂·2Cl] and BI₃ (1:5 molar ratio; CH₂Cl₂) via a decomplexation/halide-exchange cascade. Si₆I₁₂ (monoclinic, C2/c) adopts a

Introduction

Perhalogenated oligosilanes are of great technological importance, because they find use in the synthesis of silicon-containing polymers and also as precursor molecules for the deposition of amorphous or crystalline silicon.^[1] A deeper understanding of the intrinsic properties of perhalogenated oligosilanes can best be gained by investigating samples of monodisperse, cyclic species to avoid spurious chain-length and endgroup effects. The classical route to cyclic oligosilanes $Si_n X_{2n}$ (n = 4, 5, 6; X = Cl, Br, I) proceeds via phenyl/halogen exchange on Si_nPh_{2n} using HX in the presence of AlX₃.^[2-5] The required perphenylated cyclosilanes are typically prepared through Wurtz-type coupling of Ph2SiCl2 with alkali metals.^[6,7] However, the coupling reaction is not size-selective and mixtures of Si₄Ph₈, Si₅Ph₁₀ (main product), and Si₆Ph₁₂ are usually obtained, which poses problems with regard to product separation and reduces the product yields.^[6–8]

- * Prof. Dr. M. Wagner
- E-Mail: matthias.wagner@chemie.uni-frankfurt.de

 [a] Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt, Germany

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/zaac.201800145 or from the author. puckered chair conformation in the solid state. The cyclopentasilane diadduct $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]$ forms at -78 °C from Si_5Cl_{10} and 2 equiv. of $[nBu_4P]_2[I_10\cdot 2Cl]$ in CH_2Cl_2 . An X-ray analysis of $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$ (monoclinic, C2/c) again revealed the structure of an "inverse sandwich complex". Crystalline $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$ is stable at room temperature. However, in CH_2Cl_2 solution the compound quantitatively undergoes ring-expansion reactions to furnish cyclohexasilane derivatives. This behavior is in striking contrast to that of $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$, which persists at room temperature both in solution and the solid state. Competition experiments revealed free Si_5Cl_{10} and Si_6Cl_{12} to have comparable Cl^- affinities, even though the distance between the two apical Cl^- ions in $[Si_5Cl_{10}\cdot 2Cl]^{2-}$ (4.292 Å) is larger by 0.456 Å than that in $[Si_6Cl_{12}\cdot 2Cl]^{2-}$ (3.836 Å).

In 2001, *Boudjouk* et al. reported an alternative synthesis of Si₆Cl₁₂, starting from HSiCl₃ and pedeta in CH₂Cl₂ (40 °C, 48 h; pedeta = 1,1,4,7,7-pentaethyldiethylenetriamine).^[9] The compound was isolated in the form of the chlorosilicate(II) "inverse sandwich complex" [(pedeta)H₂SiCl]₂[Si₆Cl₁₂·2Cl], in which two additional Cl⁻ ions are coordinated in μ^6 modes above and below the planarized Si₆ ring. The chloride diadduct can be converted to parent cyclohexasilane, Si₆H₁₂, by employing LiAlH₄ as the hydride source.^[9,10] Subsequent treatment of Si₆H₁₂ with elemental Cl₂ or Br₂ at low temperatures results in exhaustive H/X exchange to afford Si₆Cl₁₂ or Si₆Br₁₂, respectively.^[2,5,10,11]

Recently, our group has established convenient access to $[Si_6Cl_{12} \cdot 2Cl]^{2-}$ and to its Cl_3Si -substituted congeners $[Si_7Cl_{14} \cdot 2Cl]^{2-}$ and $[Si_8Cl_{16} \cdot 2Cl]^{2-}$ via the chloride-induced disproportionation of Si_2Cl_6 (Scheme 1).^[12–14] We also found ways to liberate the free cyclohexasilane Si_6Cl_{12} from $[Si_6Cl_{12} \cdot 2Cl]^{2-}$ by means of $AlCl_3$.^[15] It turned out that the Lewis acidity of Si_6Cl_{12} is comparable to that of BCl_3 ,^[15] and a number of stable diadducts with Lewis bases (L) other than the Cl^- ion have been reported.^[10,11]

The information gathered so far on $Si_n X_{2n}$ immediately raises the following questions, which are answered in this paper:

(1) Is it possible to prepare also the bromo- and iodosilicates(II) $[Si_6X_{12}\cdot 2X]^{2-}$ (X = Br, I) in ways similar to the synthesis of $[Si_6Cl_{12}\cdot 2Cl]^{2-}$ from $Si_2Cl_6/Cl^{-?}$

1

^{*} Dr. H.-W. Lerner

Fax: +49 69 79829260 E-Mail: lerner@chemie.uni-frankfurt.de

ARTICLE

Scheme 1. (a) Solid-state structures of $[nBu_4N]_2[Si_6Cl_{12} \cdot 2Cl]$ and its Cl_3Si-substituted congeners $[Ph_4P]_2[Si_7Cl_{14} \cdot 2Cl]$ and $[Ph_4P]_2[Si_8Cl_{16} \cdot 2Cl]$ (cations omitted for clarity).^[13] (b) Synthesis of $[Si_6X_{12} \cdot 2X]^{2-}$ through disproportionation of Si_2X_6 (X = Cl, Br, I) with the corresponding X^- ions; in the cases of X = Cl, Br, several X_3Si substituted derivatives are formed in addition to the perhalogenated cyclohexasilanes (i: CH₂Cl₂, room temperature or 80 °C). (c) Solidstate structures of $[nBu_4N]_2[Si_6Br_{12} \cdot 2Br]$, $[Ph_4P]_2[Si_7Br_{14} \cdot 2Br]$, and $[nBu_4P]_2[Si_6I_{12} \cdot 2I]$ (cations omitted for clarity).

(2) Is the stability of chlorosilicates(II) ring-size dependend and can, apart from $[Si_6Cl_{12}\cdot 2Cl]^{2-}$, also the cyclopentasilane diadduct $[Si_5Cl_{10}\cdot 2Cl]^{2-}$ be isolated and fully characterized?

Results and Discussion

Synthesis and Characterization of $[Si_6X_{12}\cdot 2X]^{2-}$, Starting from Si_2X_6/X^- (X = Br, I)

The precursor compounds $Si_2Br_6^{[16]}$ and $Si_2I_6^{[17]}$ were prepared according to literature procedures. From a broad variety of available soluble halide salts, $[nBu_4N]Br$, $[Ph_4P]Br$, or $[nBu_4P]I$ were chosen such as to generate the reaction product with the highest degree of crystallinity.

First, we investigated the reactions of Si₂Br₆ with [*n*Bu₄N]Br and [Ph₄P]Br, respectively. Treatment of Si₂Br₆ with [*n*Bu₄N]Br (8:3 molar ratio; CD₂Cl₂) resulted in an immediate reaction, whereupon the mixture quickly became heterogeneous. A ²⁹Si NMR spectrum showed that the resonance of Si₂Br₆ [δ (²⁹Si) = -35.9 ppm]^[16] had completely vanished. Newly developed signals were assignable to SiBr₄ [δ (²⁹Si) = -90.2; lit: -92.7 ppm^[18]] and the bromosilicates(II) [Si₆Br₁₂•2Br]²⁻ [δ (²⁹Si) = -38.1; lit: -37.4 ppm^[11,19]] and

 $[Si_7Br_{14} \cdot 2Br]^{2-}$ (Scheme 1). $[nBu_4N]_2[Si_6Br_{12} \cdot 2Br]$ could be separated from [nBu₄N]₂[Si₇Br₁₄·2Br] and SiBr₄ by crystallization. [nBu₄N]₂[Si₆Br₁₂·2Br] crystallizes in the monoclinic space group $P2_1/c$ and represents a polymorph of a published structure (the latter sample had been prepared through the addition of [nBu₄N]Br to free Si₆Br₁₂).^[11] In the solid state, [nBu₄N]₂[Si₆Br₁₂·2Br] reveals an essentially planar Si₆ ring (rms deviation: 0.026 Å; average Si-Si bond length = 2.342 Å). Two Br⁻ anions are located above and below the ring centroid (COG) with distances of 2.061 Å and 2.059 Å for COG···Br(1) and COG···Br(2), respectively (Scheme 1; selected bond lengths and angles are listed in the caption of Figure 1S, Supporting Information). The distances of the apical Br(1) and Br(2) ions to the Si atoms within the six-membered ring (average value: 3.12 Å) are shorter than the sum of the van der Waals radii [r_{vdw}(SiBr): 3.95 Å],^[20] but longer than the sum of the covalent radii $[r_{cov}(SiBr): 2.31 \text{ Å}].^{[21]}$

Overall, the structural parameters of our [Si₆Br₁₂·2Br]²⁻ dianion are close to those found in the polymorphic structure (triclinic, $P\bar{1}$).^[11] The main difference between the two polymorphs is that the triclinic structure has just half a Si₆Br₁₂ molecule, one Br⁻ anion and one $[nBu_4N]^+$ cation in the asymmetric unit, whereas the asymmetric unit of the monoclinic polymorph contains one complete Si₆Br₁₂ molecule, two Branions and two [nBu₄N]⁺ cations. In the triclinic polymorph, the planes of all Si₆ rings are exactly coplanar; in the monoclinic structure, half of the ring planes are tilted by 43.9° with respect to the other half. The distance between the Br- anion and the N atom of the $[nBu_4N]^+$ cation is shorter in the triclinic (4.71 Å) than in the monoclinic form (average value: 5.05 Å). In the triclinic form, all four N-C-C-C torsion angles adopt a trans conformation, whereas in the monoclinic form, one of the eight N-C-C-C torsion angles adopts a gauche conformation.

The reaction of Si₂Br₆ with a solution of [Ph₄P]Br in CD₂Cl₂ again led to the bromosilicate(II) anions $[Si_6Br_{12}{\boldsymbol{\cdot}}2Br]^{2-}$ and $[Si_7Br_{14}{\boldsymbol{\cdot}}2Br]^{2-}$ and to $SiBr_4$ as necessary byproduct (Scheme 1). The disilane was quantitatively consumed after 1 h at room temperature (²⁹Si-NMR spectroscopic control). Single crystals of $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$ (triclinic, $P\overline{1}$, Z = 2), grew at room temperature in the NMR tube directly from the reaction solution. The structure of the dianionic moiety [Si₇Br₁₄·2Br]²⁻ is shown in Scheme 1 (selected bond lengths and angles are listed in the caption of Figure 2S, Supporting Information). As was the case for $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br],$ the six-membered ring of [Ph₄P]₂[Si₇Br₁₄·2Br] is by and large planar (rms deviation 0.054 Å). The distances between the two coordinated bromide anions and the ring centroid amount to COG···Br(1) = 2.071 Å and COG···Br(2) = 2.078 Å, which is slightly longer than in the case of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ and likely attributable to the steric demand of the Br₃Si substituent.

Next, we prepared the iodosilicate(II) $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ by heating an equimolar mixture of Si_2I_6 and $[nBu_4P]I$ in CD_2Cl_2 for 20 h to 80 °C (flame-sealed NMR tube; Scheme 1). We applied the elevated temperatures and used the significantly overstoichiometric amount of $[nBu_4P]I$ (cf. Scheme 1) with the

aim to promote a reaction of the poorly soluble Si₂I₆. After cooling to room temperature, colorless single crystals of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ formed (90% yield). In the crystal lattice (triclinic, $P\bar{1}$), $[Si_6I_{12}\cdot 2I]^{2-}$ shows a planar six-membered ring (rms deviation 0.021 Å), located on a crystallographic center of inversion, with an average Si–Si bond length of 2.382 Å. Two Γ anions are coordinated to establish an "inverse sandwich complex" with a COG···I distance of 2.285 Å (Scheme 1; selected bond lengths and angles are listed in the caption of Figure 3S, Supporting Information). Similar to the case of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$, the average distance between the Si atoms and the apical halide ions of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ (3.30 Å) is smaller than the sum of the van der Waals radii $[r_{vdw}(SiI): 4.08 Å]$,^[20] but larger than the sum of the covalent radii $[r_{cov}(SiI): 2.50 Å]$ of Si and I.^[21]

A ²⁹Si NMR spectroscopic investigation of the mother liquor revealed the presence of chlorinated side products, such as SiCl₄, which likely originate from I/Cl-exchange reactions between the iodosilanes and the solvent CD₂Cl₂^[22] (see Figure 7S, Supporting Information, for a ¹³C{¹H} NMR spectrum of the reaction solution showing the resonance of CD₂ICl). This observation is a caveat concerning a possible chloride contamination of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$. Unfortunately, the poor solubility of [nBu₄P]₂[Si₆I₁₂·2I] in all common inert solvents precluded its characterization by solution-state NMR spectroscopy, which would otherwise have been a powerful diagnostic tool to distinguish between SiI₂ and SiICl/SiCl₂ fragments within the sample. The key quality criteria of the X-ray crystal-structure analysis of [nBu₄P]₂[Si₆I₁₂·2I] (i.e., Si-I bond lengths, shapes and sizes of the thermal ellipsoids, residual electron density) gave no indication for significant chloride contamination. To finally resolve the issue, we repeated the synthesis of [nBu₄P]₂[Si₆I₁₂·2I] in 1,2-dichlorobenzene. This time, an NMR spectroscopic investigation of the reaction mixture did not reveal any halide-exchange reaction with the solvent. Again, we obtained single crystals of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$. X-ray diffraction gave precisely the same results as before.

We emphasize at this point that the addition of $[nBu_4N]I$ to Si₆Cl₁₂ in CH₂Cl₂ cleanly affords the I⁻ diadduct $[nBu_4N]_2[Si_6Cl_{12}\cdot 2I]$ with no indication of Cl/I scrambling at the silicon atoms.^[11] It is thus barely surprising that also in the case of the synthesis of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ in CD₂Cl₂ the chlorosilane side products are not converted back to corresponding iodosilanes by the excess amount of $[nBu_4P]I$. On the other hand, when we generated $[SiCl_3]^-$ from the $Si_2Cl_6/[R_4N]Cl$ system^[12,13,15,25] and attempted to trap the anion in situ with BI3, we did not detect any $[Et_4N][I_3B-SiCl_3]$, but rather isolated the $[SiI_3]^-$ adduct [Et₄N][I₃B-SiI₃].^[22] According to quantum-chemical calculations, the quantitative Cl/I exchange between [SiCl₃]⁻ and BI3 is overall strongly exergonic and therefore provides a thermodynamic thrust toward $[I_3B-SiI_3]^-$ formation.^[22]

Given this background, we decided to examine the reaction between $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ and 5 equiv. of BI₃ with the aim to obtain free Si₆I₁₂ in a combined decomplexation/halideexchange process (Scheme 2). In CH₂Cl₂ solution, an immediate reaction occurred between both starting materials already at ambient temperature and the colorless periodated cyclohexasilane (Si_6I_{12}) precipitated from the mixture. The precipitate was allowed to age for 6 d to grow single crystals suitable for X-ray crystallography.

Scheme 2. Synthesis and solid-state structure of the periodated cyclohexasilane $\mathrm{Si}_{6}\mathrm{I}_{12}.$

Not only the I⁻ diadduct $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$, but also the free cyclohexasilane Si_6I_{12} is not sufficiently soluble to record ²⁹Si NMR spectra. An IR spectrum of Si_6I_{12} revealed two characteristic bands at 405 cm⁻¹ (s) and 468 cm⁻¹ (w).^[5] Nevertheless, the above-mentioned caveat regarding the possibility of minor Cl contamination of the iodosilicate(II) also applies to Si_6I_{12} .

The cyclohexasilane Si₆I₁₂ crystallizes in the monoclinic space group C2/c (Scheme 2; selected bond lengths and angles are listed in the caption of Figure 4S, Supporting Information). The molecule is located on a crystallographic center of inversion. The Si₆ ring adopts a regular chair conformation with approximate D_{3d} symmetry. The average dihedral angle between the best planes through four central Si₆-ring atoms and the corresponding flap planes can be taken as a measure of the ring puckering. In the solid-state structure of centrosymmetric Si_6I_{12} , there are three such dihedral angles: Si(2)Si(3)Si(2A) $Si(3A)//Si(2)Si(1)Si(3A) = 42.9^{\circ}, Si(1)Si(2)Si(1A)Si(2A)//$ $Si(2)Si(3)Si(1A) = 43.2^{\circ}$, and Si(1)Si(3A)Si(1A)Si(3)//Si(1) $Si(2)Si(3) = 44.3^{\circ}$. Their average value amounts to 43.5° (cf. Scheme 2 and Figure 4S, Supporting Information). A chair conformation is the intuitive minimum for cyclohexane analogues such as Si_6X_{12} , because it helps to avoid angular strain.

In a series of thorough theoretical studies, a *pseudo*-Jahn-Teller (PJT) effect has been identified as an important factor inducing ring puckering.^[11,23,24] An interaction of the unoccupied MOs of Si₆X₁₂, which are basically composed of $\sigma^*(Si-X)$ orbitals, with electron lone pairs of apically coordinated X^- ions suppresses the PJT distortion, induces a planarization of the Si₆ ring and leads to a stabilizing effect in the "inverse sandwich complexes" [Si₆X₁₂·2X]²⁻.^[11,23,24] The bonding of X^- ions to the six-membered ring in [Si₆X₁₂·2X]²⁻ is not entirely covalent in nature, but also benefits from Coulomb attraction between the positively polarized Si ring atoms and the anionic guests.^[23] It has been computed that, irrespective of the halogen pattern, the degree of covalency in complexes [Si₆X₁₂·2X]²⁻ is approximately 45 %.^[23]

With the molecular structures of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ and Si_6I_{12} at hand, we are now in a position to compare the key structural parameters of the entire series of compounds $[Si_6X_{12}\cdot 2X]^{2-}$ and Si_6X_{12} (X = Cl, Br, I; Table 1 and Table 2). For the diadducts $[Si_6X_{12}\cdot 2X]^{2-}$, computed bond lengths $[B3LYP/6-311++g(d,p)]^{[23]}$ are available in addition to the X-ray crystallographically determined ones. As a general trend,

und allgemeine Chemie

Zeitschrift für anorganische

comparability we only included examples with [<i>n</i> Du ₄ (1)] of [<i>n</i> Du ₄ (1)] councefords. (Note: in this table, <i>A</i> denotes an aplear <i>A</i> for						
	Si–Si (avg) /Å	Si–X (avg) /Å	Si•••X' (avg) /Å	<i>X</i> ••• <i>X</i> ′ (avg) /Å	<i>X′</i> ⋯ <i>X′</i> /Å	
[Si ₆ Cl ₁₂ ·2Cl] ²⁻ calcd. a)	2.372	2.123	3.085	3.729		
$[Si_6Cl_{12} \cdot 2Cl]^{2-} exp. b)$	2.322	2.078	3.010	3.635	3.836	
$[Si_6Br_{12} \cdot 2Br]^{2-}$ calcd. ^{a)}	2.368	2.290	3.090	3.805		
$[Si_6Br_{12} \cdot 2Br]^{2-} exp.$	2.342 ^{b)}	2.251 ^{b)}	3.118 ^{b)}	3.786 ^{b)}	4.119 ^{b)}	
	2.343 ^{c)}	2.247 ^{c)}	3.125 ^{c)}	3.789 ^{c)}	4.136 ^{c)}	
$[Si_6I_{12} \cdot 2I]^{2-}$ calcd. ^{a)}	2.447	2.571	3.429	4.147		
$[Si_6I_{12} \cdot 2I]^{2-}$ exp. ^{b)}	2.382	2.496	3.300	4.018	4.570	

Table 1. Comparison of computed and experimentally determined structural parameters of $[Si_6X_{12} \cdot 2X]^{2-}$ (X = Cl, Br, I). To ensure maximum comparability we only included examples with $[nBu_4N]^+$ or $[nBu_4P]^+$ counterions. Note: In this table, X' denotes an apical X^- ion.

a) *Vedha* et al.^[23] b) Prepared through the halogen-induced disproportionation of Si_2X_6 (this work and reference^[13]). c) Prepared by *Boudjouk* et al. through the addition of 2 equiv. of $[nBu_4N]Br$ to $Si_6Br_{12}^{[11,24]}$.

the calculated Si-Si and Si-X bond lengths are slightly too long (≤ 0.065 Å for Si–Si; 0.045 Å for Si–Cl, ≤ 0.043 Å for Si-Br, 0.075 Å for Si-I), but still agree well with the averaged experimentally determined parameters. Along both series $[Si_6X_{12} \cdot 2X]^{2-}$ and Si_6X_{12} , the nature of the halogen atom has a surprisingly small influence on the Si-Si bond lengths. The coordination of X^- ions to Si₆ X_{12} leads to a slight contraction of the Si–Si bonds in the case of $X^- = Cl^-$ and to an elongation in the case of $X^- = I^-$; Si₆Br₁₂ and [Si₆Br₁₂·2Br]²⁻ possess the same average Si-Si bond length. We hypothesize that these structural changes are necessary to maintain an optimal interaction of the respective Si₆ ring with the small Cl⁻ the medium-sized Br⁻, and the large I⁻ ion. An expansion is evident for the Si-X bonds of the diadducts, likely due to electron donation from the apical X⁻ ions into antibonding $\sigma^*(Si-X)$ orbitals.

Table 2. Comparison of structural parameters of Si_6X_{12} (X = Cl, Br, I).

	Si–Si (avg) /Å	Si–X (avg) /Å	Si–Si–Si (avg) /°	Flap angle (avg) /°
Si ₆ Cl ₁₂ a)	2.342	2.029	112.9	45.4
Si ₆ Br ₁₂ ^{a)}	2.341	2.196	113.2	44.2
Si ₆ I ₁₂ ^{b)}	2.355	2.435	113.5	43.5

a) Prepared through exhaustive H/X exchange on Si₆H₁₂ using X₂^[10].
b) Prepared through decomplexation and exhaustive Cl/I exchange on [Si₆Cl₁₂·2Cl]²⁻ using BI₃.

We finally note that also the Si–Si–Si bond angles and the flap angles of Si_6X_{12} are independent from *X*, thereby pointing toward a similar degree of PJT distortion in all three cyclohexasilanes.

Synthesis and Structural Characterization of [nBu₄P]₂[Si₅Cl₁₀·2Cl]

The Cl⁻-induced disproportionation of Si₂Cl₆, followed by decomplexation of the primary product $[Si_6Cl_{12} \cdot 2Cl]^{2-}$ with AlCl₃, arguably provides the most time- and cost-efficient route for the synthesis of Si₆Cl₁₂.^[15] Unfortunately, until to-date this protocol is restricted to the preparation of cyclohexa-silanes; compounds of other ring sizes have never been iso-lated from the product mixtures. For our investigations of the Cl⁻ diadduct $[Si_5Cl_{10} \cdot 2Cl]^{2-}$, we thus had to rely on Hengge's classical synthesis of Si₅Cl₁₀.^[3]

A solution of the perhalogenated cyclopentasilane in CH₂Cl₂ was added at -78 °C to a solution of [nBu₄P]Cl in the same solvent. The mixture was stored at -72 °C for 7 d to grow colorless single crystals of [nBu₄P]₂[Si₅Cl₁₀•2Cl]•2CH₂Cl₂ in a yield of 76% (monoclinic, C2/c). Similar to $[Si_6Cl_{12} \cdot 2Cl]^{2-}$, the dianion [Si₅Cl₁₀·2Cl]²⁻ forms an "inverse sandwich complex" with a planar Si₅ ring (rms deviation: 0.011 Å) located on a twofold rotation axis (Scheme 3; selected bond lengths and angles are listed in the caption of Figure 5S, Supporting Information). All Si-Si bond lengths fall in the narrow range between 2.340(1) Å and 2.346(1) Å. The average value of 2.344 Å is close to the average Si–Si bond length of the cyclohexasilane diadduct $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ (2.322 Å). The same is true for the average Si-Cl bond lengths in the Si₅ diadduct (2.094 Å) compared to the Si₆ diadduct (2.078 Å). The distance between the two apical Cl⁻ ions, however, is larger by as much as 0.456 Å in [Si₅Cl₁₀·2Cl]²⁻ (4.292 Å) than in the Si₆ analog (3.836 Å). These decisive structural differences likely result from the fact that the void spaces above and below the ring planes are more limited in the case of the fivemembered ring species.

Scheme 3. Synthesis of $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]$ and solid-state structure of the dianion $[Si_5Cl_{10}\cdot 2Cl]^{2-}$. $[nBu_4P]Cl$ was used as Cl^- source.

Most key structural parameters of $[Si_5Cl_{10}\cdot 2Cl]^{2-}$ have been correctly predicted by a recent DFT study.^[26] The most significant deviation between the computed and experimentally determined values is evident for the Cl⁻···Cl⁻ distance (calcd: 4.215 Å vs. exp: 4.292 Å). Nevertheless, also the DFT calculations unequivocally confirm much farther separated Cl⁻ ions in the Si₅ compared to the Si₆ diadduct. To rationalize the planar conformation of the Si₅ ring in $[Si_5Cl_{10}\cdot 2Cl]^{2-}$, the authors offer a similar explanation as previously discussed for the $[Si_6X_{12}\cdot 2X]^{2-}$ diadducts.^[26]

Yet, contrary to the theoretical prediction of "substantial Si_5Cl_{10} ring stabilization due to the exocyclic chlorine", our

experiments suggest a *destabilizing* effect of Cl^- coordination on the Si_5Cl_{10} scaffold:

Even though crystalline [nBu₄P]₂[Si₅Cl₁₀•2Cl]•2CH₂Cl₂ remains unchanged at room temperature, its CH₂Cl₂ solutions persist only at low temperatures. Upon warming to ambient temperature, the complex undergoes rearrangement reactions to afford cyclohexasilane diadducts such as [Si₆Cl₁₂·2Cl]²⁻ and [Si₇Cl₁₄·2Cl]²⁻. In stark contrast, free Si₅Cl₁₀/Si₆Cl₁₂ as well as the complexed cyclohexasilane $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ are stable at room temperature under inert conditions. It is also worth mentioning that room temperature-stable diadducts [Si₅Cl₁₀·2NCR] of Si₅Cl₁₀ with nitrile ligands have been reported (R = p-tolyl, 1-adamantyl).^[27] To assess the affinity of Si₅Cl₁₀ toward Cl⁻ ions, we performed a number of competition experiments at room temperature on an NMR scale (CD_2Cl_2) . While the cyclopentasilane behaves inert to $[nBu_4N][AlCl_4]$, it quantitatively decomposes to numerous unidentified products upon addition of 2 equiv. of $[nBu_4N][BCl_4].$

In agreement with this observation, we succeeded in the clean liberation of Si_5Cl_{10} by adding crystals of $[nBu_4N]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$ to a suspension of 2.5 equiv. of AlCl₃ in CH₂Cl₂ (see also reference^[15] in this context). Attempts to reproduce this reaction using BCl₃ as the Lewis acid failed and furnished complex product mixtures. We therefore conclude that the Cl⁻ affinity of Si₅Cl₁₀ roughly matches that of BCl₃ but is too low to outcompete AlCl₃. It should be noted that Si₅Cl₁₀, like Si₆Cl₁₂,^[15] is a donor-free storage form of dichlorosilylene SiCl₂. Treatment of Si₅Cl₁₀ with strong ligands, such as NMe₂Et or 1,3-bis(2,6-diisopropylphenyl)imid-azol-2-ylidene, in C₆H₆ results in the quantitative formation of the corresponding dichlorosilylene adducts (NMR spectroscopic control). These adducts have already been described in the literature.^[28,29]

We finally prepared a 1:1 mixture of Si₅Cl₁₀ and $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ in CD₂Cl₂ and recorded ²⁹Si NMR spectra of the sample at room temperature. The signal of Si₅Cl₁₀ [δ (²⁹Si) = -2.17; lit.: -1.70 ppm^[27]] had completely vanished. Instead, we observed resonances assignable to SiCl₄, [Si₆Cl₁₂·2Cl]²⁻, [Si₇Cl₁₄·2Cl]^{2-,[13]} and 1,1-[Si₈Cl₁₆·2Cl]^{2-,[13]} together with signals of yet unidentified products. We therefore conclude that Si₅Cl₁₀ rivals Si₆Cl₁₂ in terms of Cl⁻ affinity, because it is apparently capable of abstracting Cl⁻ ions from [Si₆Cl₁₂·2Cl]²⁻ and subsequently undergoes the skeletal rearrangement mentioned above.

Summary and Conclusions

The X⁻ induced disproportionation of Si₂X₆ (X = Cl, Br, I) provides convenient access not only to the "inverse sandwich complex" $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$, but also to its heavier congeners $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ and $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$. In all cases, these halosilicates(II) are colorless, crystalline solids. $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ and $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ persist at room temperature in CH₂Cl₂ solution; $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ is virtually insoluble in all common inert solvents. Irrespective of the nature of X, we found no indication for a destabilizing effect of coordinated X^- ions on the Si₆X₁₂ ring.

The opposite is true for the perchlorinated cyclopentasilane Si_5Cl_{10} : Even though a corresponding Cl^- diadduct $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$ can be prepared and isolated in excellent yields at low temperatures of -78 °C, the compound readily undergoes a ring-expansion reaction to form $[nBu_4P]_2[Si_6Cl_{12}\cdot 2Cl]$ and Cl_3Si -substituted derivatives thereof in CH_2Cl_2 solutions at ambient temperature.

This observation is of immediate relevance for an understanding of the reaction mechanism underlying the synthesis of perchlorinated cyclohexasilanes via the Cl⁻-induced heterolysis of Si₂Cl₆: The exclusive formation of Si₆ rings does not necessarily imply a size selectivity of the actual ring-closure process. It is well conceivable that, besides Si₆ rings, also cyclic Si₅ intermediates are formed, which subsequently undergo a Cl⁻-mediated rearrangement to furnish cyclohexasilane products.

Moreover, we found similar Cl⁻ affinities for Si_5Cl_{10} and Si_6Cl_{12} . The significantly longer distances between the apical Cl⁻ ions and the ring planes in $[Si_5Cl_{10} \cdot 2Cl]^{2-}$ compared to $[Si_6Cl_{12} \cdot 2Cl]^{2-}$ are therefore not indicative of pronounced differences in the interaction between the individual components of the two "inverse sandwich complexes".

Moreover, we developed an efficient decomplexation/halogenexchange protocol, which starts from $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ and BI₃ (5 equiv.) and provides free Si_6I_{12} in excellent yields. This convenient reaction is remarkable, because treatment of $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ with BCl₃ fails to provide free Si_6Cl_{12} .^[15]

In summary, we have expanded the scope of the X^- -induced disproportionation reaction of Si₂ X_6 beyond the scope of chlorosilanes and demonstrated its versatility for generating various useful silicon species.

Experimental Section

General Considerations: All reactions and manipulations were carried out in dry, oxygen-free nitrogen or argon by using standard Schlenk ware or an argon-filled M. Braun glovebox. CH_2Cl_2 and CD_2Cl_2 were dried with CaH_2 and freshly distilled prior to use. C_6H_6 and C_6D_6 were dried with sodium/benzophenone and freshly distilled prior to use. Si_2Br_6 ,^[16] Si_2I_6 ,^[17] and Si_5Cl_{10} ^[3] were prepared according to published procedures. The commercially available ammonium and phosphonium halides, [*nBu*₄P]Cl (*Sigma Aldrich*), [*nBu*₄N]Br (*Sigma Aldrich*), were used as received. AlCl₃ was freshly prepared from aluminum metal and dry HCl gas. The NMR spectra were recorded with Bruker Avance 300 and Avance 500 spectrometers.

Synthesis of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ and $[nBu_4N]_2[Si_7Br_{14}\cdot 2Br]$: An NMR tube was charged with neat solid Si₂Br₆ (0.43 g, 0.80 mmol). A solution of $[nBu_4N]Br$ (0.11 g, 0.34 mmol) in CD₂Cl₂ (0.8 mL) was added at room temperature. After few minutes, the reaction mixture turned brownish and a colorless precipitate formed. The NMR tube was flame-sealed. The ²⁹Si NMR spectrum of the reaction solution revealed resonances assignable to SiBr₄ (-90.2 ppm),^[18] [Si₆Br₁₂·2Br]²⁻ (see below),^[11] and [Si₇Br₁₄·2Br]²⁻ (see below). Single crystals of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ suitable for X-ray crystallography

were harvested after storing the reaction solution for 3 d at room temperature.

 $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$: ²⁹Si NMR (CD₂Cl₂, 59.6 MHz, 298 K): $\delta = -38.1$ ppm (cf. reference^[11,19]).

 $[nBu_4N]_2[Si_7Br_{14}\cdot 2Br]$: ²⁹Si NMR (CD₂Cl₂, 59.6 MHz, 298 K): $\delta = -57.2$ (1 Si, SiBr), -41.7 (2 Si, SiBr₂), -37.6 (1 Si, SiBr₂), -37.4 (2 Si, SiBr₂), -18.1 ppm (1Si, SiBr₃).

Crystallization of $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$: An NMR tube was charged with neat Si₂Br₆ (0.51 g, 0.95 mmol). A solution of $[Ph_4P]Br$ (0.11 g, 0.26 mmol) in CD₂Cl₂ (0.8 mL) was added at room temperature. After few minutes, the reaction mixture turned brownish and a colorless precipitate formed. Single crystals of $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$ suitable for X-ray crystallography were harvested after storing the reaction solution for 3 d at room temperature.

Synthesis of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$: Neat solid Si_2I_6 (0.100 g, 0.122 mmol) was added to a CD_2Cl_2 solution (0.5 mL) of $[nBu_4P]I$ (0.047 g, 0.122 mmol) in an NMR tube at room temperature. Even though most of the Si_2I_6 remained undissolved, the color of the mixture turned yellow. The NMR tube was flame-sealed and heated in a sand bath to 80 °C for 20 h. After cooling to room temperature, colorless crystals of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ had formed. Yield: 0.045 g, 0.018 mmol (90%).

The reaction solution was investigated by ${}^{13}C{}^{1}H$ and ${}^{29}Si$ NMR spectroscopy. The ${}^{13}C{}^{1}H$ NMR spectrum contained signals of $[nBu_4P]^+$ and $CD_2ICI.{}^{(30,31)}$ CD₂ICl likely originates from a Cl/I exchange reaction between CD₂Cl₂ and iodosilanes (cf. reference ${}^{[22]}$). Correspondingly, the ${}^{29}Si$ NMR spectrum showed a resonance assignable to SiCl₄ (-18.9 ppm) ${}^{(13)}$ and two more signals at -20.8 ppm and -21.9 ppm. For comparison, we note that the chemical shift values of $[Si_6Cl_{12}\cdot2Cl]^{2-}$ and $[Si_6Cl_{12}\cdot2I]^{2-}$ are -21.7 ppm ${}^{[13]}$ and -21.9 ppm, ${}^{[11,32]}$ respectively.

NMR spectra of $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ could not be recorded due to the poor solubility of this compound in all common inert solvents. We therefore picked four different crystals of the product and identified all of them as $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$ by X-ray diffraction.

Synthesis of Si₆I₁₂: A brown glass flask was charged with a solution of $[nBu_4N]_2[Si_6Cl_{12}\cdot 2Cl]$ (0.100 g, 0.087 mmol) in CH₂Cl₂ (10 mL). A solution of BI₃ (0.167 g, 0.426 mmol) in CH₂Cl₂ (10 mL) was added dropwise at room temperature. Upon mixing, the solution turned yellow and very small crystals precipitated. After storing the reaction solution for 6 d at room temperature, the crystals had grown to a size suitable for X-ray crystallography. The crystals were isolated by filtration and rinsed with CH₂Cl₂ (4 mL). Yield: 0.107 g, 0.063 mmol (73%). NMR spectra of Si₆I₁₂ could not be recorded due to its poor solubility in all common inert solvents. Instead, four different crystals were picked and each of them identified as Si₆I₁₂ by X-ray diffraction.

Synthesis of $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]$: A solution of Si_5Cl_{10} (0.500 g, 1.01 mmol) in CH₂Cl₂ (3 mL) was added dropwise at -78 °C to a solution of $[nBu_4P]Cl$ (0.596 g, 2.02 mmol) in CH₂Cl₂ (3 mL). Crystals of $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$ suitable for X-ray analysis were harvested after the reaction solution had been stored at -72 °C for 7 d. Yield: 0.958 g, 0.764 mmol (76%).

 $[nBu_4P]_2[Si_5Cl_{10}:2Cl]: {}^{29}Si NMR (CD_2Cl_2, 99.4 MHz, 298 K): \delta = -36.6 ppm.$ *Note*: Due to the instability of the compound at room temperature in solution, the sample must be measured immediately after preparation.

Crystal Structure Determinations of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$, $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$, $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$, Si_6I_{12} , and $[nBu_4P]_2[Si_5Cl_{10}\cdot 2CI]\cdot 2CH_2Cl_2$: Data collections were performed with a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using Mo- K_{α} radiation ($\lambda = 0.71073$ Å) and data were scaled using the frame-scaling procedure in the X-AREA program system.^[33] The structures were solved by direct methods using the program SHELXS and refined against F^2 with full-matrix least-squares techniques using the program SHELXL.^[34] All nonhydrogen atoms were refined anisotropically, whereas the hydrogen atoms were treated with a riding model.

Crystallographic data for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-1824864 ($[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$), CCDC-1824862 ($[nBu_4P]_2[Si_6I_{12}\cdot 2I]$), CCDC-1824865 ($[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$), CCDC-1824863 (Si_6I_{12}), and CCDC-1835244 ($[nBu_4P]_2[Si_5Cl_{10}\cdot 2CI]\cdot 2CH_2Cl_2$) (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).

Supporting Information (see footnote on the first page of this article): ORTEP and crystallographic data of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$, $[Ph_4P]_2[Si_7Br_{14}\cdot 2Br]$, $[nBu_4P]_2[Si_6I_{12}\cdot 2I]$, Si_6I_{12} , and $[nBu_4P]_2[Si_5Cl_{10}\cdot 2Cl]\cdot 2CH_2Cl_2$. ²⁹Si NMR spectrum of the reaction solution of the mixture of $Si_2Br_6/[nBu_4N]Br$ in CD_2Cl_2 . ¹³C{¹H} and ²⁹Si NMR spectra of the solution phase of the reaction mixture $Si_2I_6/[nBu_4P]I$ in CD_2Cl_2 .

Acknowledgements

The authors wish to thank *Prof. Dr. N. Auner* and *Dr. M. Berger* for helpful discussions concerning the preparation of Si₂Br₆ and Si₂I₆.

Keywords: Bromine; Iodine; Silicon, Cyclopentasilane; Cyclohexasilane

References

- [1] J. Teichmann, M. Wagner, Chem. Commun. 2018, 54, 1397–1412.
- [2] E. Hengge, F. Lunzer, Monatsh. Chem. 1976, 107, 371–385.
- [3] E. Hengge, D. Kovar, J. Organomet. Chem. 1977, 125, C29-C32.
- [4] E. Hengge, D. Kovar, Z. Anorg. Allg. Chem. 1979, 458, 163–167.
- [5] E. Hengge, D. Kovar, Angew. Chem. Int. Ed. Engl. 1981, 20, 678.
- [6] A. W. P. Jarvie, H. J. S. Winkler, D. J. Peterson, H. Gilman, J. Am. Chem. Soc. 1961, 83, 1921–1924.
- [7] H. Gilman, G. L. Schwebke, J. Am. Chem. Soc. 1964, 86, 2693– 2699.
- [8] H. J. S. Winkler, A. W. P. Jarvie, D. J. Peterson, H. Gilman, J. Am. Chem. Soc. 1961, 83, 4089–4093.
- [9] S.-B. Choi, B.-K. Kim, P. Boudjouk, D. G. Grier, J. Am. Chem. Soc. 2001, 123, 8117–8118.
- [10] X. Dai, D. L. Schulz, C. W. Braun, A. Ugrinov, P. Boudjouk, Organometallics 2010, 29, 2203–2205.
- [11] X. Dai, S.-B. Choi, C. W. Braun, P. Vaidya, S. Kilina, A. Ugrinov, D. L. Schulz, P. Boudjouk, *Inorg. Chem.* 2011, 50, 4047–4053. Another access to [Si₆Br₁₂·2Br]²⁻ was reported by *Boudjouk* and coworkes through the reaction of SiBr₄ with [(pedeta)H₂SiCl]Cl, which gives [(pedeta)H₂SiBr]₂[Si₆Br₁₂·2Br] (see reference [9]).
- [12] J. Tillmann, F. Meyer-Wegner, A. Nadj, J. Becker-Baldus, T. Sinke, M. Bolte, M. C. Holthausen, M. Wagner, H.-W. Lerner, *Inorg. Chem.* 2012, 51, 8599–8606.

- [13] J. Tillmann, L. Meyer, J. I. Schweizer, M. Bolte, H.-W. Lerner, M. Wagner, M. C. Holthausen, *Chem. Eur. J.* **2014**, *20*, 9234– 9239.
- [14] J. Tillmann, H.-W. Lerner, M. Bolte, Acta Crystallogr., Sect. C Struct. Chem. 2015, 71, 883–888.
- [15] J. Tillmann, M. Moxter, M. Bolte, H.-W. Lerner, M. Wagner, *Inorg. Chem.* 2015, 54, 9611–9618.
- [16] M. Berger, N. Auner, M. Bolte, Acta Crystallogr., Sect. C Struct. Chem. 2014, 70, 1088–1091.
- [17] M. Jansen, B. Friede, Acta Crystallogr., Sect. C Cryst. Struct. Commun. 1996, 52, 1333–1334.
- [18] U. Niemann, H. C. Marsmann, Z. Naturforsch. B 1975, 30, 202– 206.
- [19] In reference [11] the ²⁹Si chemical shift value of $[nBu_4N]_2[Si_6Br_{12}\cdot 2Br]$ is given as 37.4 ppm in the experimental section and as -37.4 ppm in the main text.
- [20] A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
- [21] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, *Dalton Trans.* 2008, 2832–2838.
- [22] J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H.-W. Lerner, S. Grimme, M. Wagner, *Inorg. Chem.* 2017, 56, 8683–8688.
- [23] S. A. Vedha, R. V. Solomon, P. Venuvanalingam, J. Phys. Chem. A 2013, 117, 3529–3538.
- [24] K. Pokhodnya, C. Olson, X. Dai, D. L. Schulz, P. Boudjouk, A. P. Sergeeva, A. I. Boldyrev, J. Chem. Phys. 2011, 134, 014105.

- [25] J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, *Angew. Chem. Int. Ed.* **2015**, *54*, 5429– 5433.
- [26] K. Pokhodnya, K. Anderson, S. Kilina, P. Boudjouk, J. Phys. Chem. A 2017, 121, 3494–3500.
- [27] X. Dai, K. J. Anderson, D. L. Schulz, P. Boudjouk, *Dalton Trans.* 2010, 39, 11188–11192.
- [28] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683–5686. Filippou et al. reported the corresponding SiBr₂ adduct: A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687–5690.
- [29] F. Meyer-Wegner, A. Nadj, M. Bolte, N. Auner, M. Wagner, M. C. Holthausen, H.-W. Lerner, *Chem. Eur. J.* 2011, *17*, 4715–4719.
- [30] G. Adamová, R. L. Gardas, M. Nieuwenhuyzen, A. V. Puga, L. P. N. Rebelo, A. J. Robertson, K. R. Seddon, *Dalton Trans.* 2012, 41, 8316–8332.
- [31] X. Guan, Y. Du, Y.-L. Li, W. M. Kwok, D. L. Phillips, J. Chem. Phys. 2004, 121, 8399–8409.
- [32] In reference [11] the ²⁹Si chemical shift value of [nBu₄N]₂[Si₆Cl₁₂·2I] is given as 21.9 ppm in the experimental section and as -21.9 ppm in the main text.
- [33] Stoe & Cie, X-AREA. Diffractometer control program system, Stoe & Cie, Darmstadt, Germany, 2002.
- [34] G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr. 2008, 64, 112–122.

Received: April 13, 2018 Published online: ■

J. Teichmann, B. Köstler, J. Tillmann, M. Moxter, R. Kupec, M. Bolte, H.-W. Lerner,* M. Wagner* 1–8

Halide-Ion Diadducts of Perhalogenated Cyclopenta- and Cyclohexasilanes

