Regioselective Pd-Catalyzed Aerobic Aza-Wacker Cyclization for Preparation of Isoindolinones and Isoquinolin-1(2*H*)-ones

ORGANIC LETTERS 2012 Vol. 14, No. 1 268–271

Guoqiang Yang and Wanbin Zhang*

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

wanbin@sjtu.edu.cn

Received November 11, 2011

ABSTRACT

A switchable regioselective intramolecular aerobic aza-Wacker cyclization catalyzed by palladium is presented. Isoindolinones or isoquinolin-1(2H)-ones could be prepared selectively from the same substrates using different catalysts. The type and steric hindrance of the ligands may be the variables most significant for regiocontrol.

Nitrogen-containing heterocycles are the components of potent drugs and bioactive natural products, therefore considerable effort has been directed toward their synthesis.¹ Among the aza-cyclization reactions, oxidative aminations catalyzed by palladium represent one of the most efficient methods to build such ring systems under mild conditions.^{2–4} Hegedus' pioneering work opened the study of palladium-catalyzed aza-Wacker-type reactions.⁵ After further improvement, this reaction became attractive for the construction of nitrogen-containing heterocycles with dioxygen or air as the oxidant.^{3,6}

As an important goal in synthetic chemistry, however, the ability to achieve catalyst-controlled regioselectivity in coupling reactions with alkenes has rarely been reported.^{3a} For example, the regioselective Heck reaction has become feasible only recently.⁷ A few examples of the palladium-

catalyzed regioselective coupling reactions of oxygen nucleophiles with alkene substrates have also been reported.⁸ In addition, several reports have described the substrateor condition-controlled palladium-catalyzed oxidative regioselective amination of olefins.^{5a,6a,9} Liu and co-workers reported the Brønsted base controlled selective preparation of five- or seven-membered nitrogen-containing heterocycles via a palladium-catalyzed intramolecular aerobic

^{(1) (}a) Brown, E. G. *Ring Nitrogen and Key Biomolecules*; Springer: Boston, MA, 1998. (b) O'Hagan, D. *Nat. Prod. Rep.* **2000**, *17*, 435. (c) Bellina, F.; Rossi, R. *Tetrahedron* **2006**, *62*, 7213.

^{(2) (}a) Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seavad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. *Synlett* **2002**, 1579. (b) Roesky, P. W.; Müller, T. E. *Angew. Chem., Int. Ed.* **2003**, 42, 2708. (c) Hong, S.; Marks, T. J. *Acc. Chem. Res.* **2004**, 37, 673. (d) Zeni, G.; Larock, R. C. *Chem. Rev.* **2006**, 106, 4644. (e) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. *Chem. Rev.* **2007**, 107, 5318. (f) Beccalli, E. M.; Broggini, G.; Fasana, A.; Rigamonti, M. *J. Organomet. Chem.* **2011**, 696, 277.

^{(3) (}a) Kotov, V.; Scarborough, C. C.; Stahl, S. S. *Inorg. Chem.* **2007**, *46*, 1910. (b) McDonald, R. I.; Liu, G.; Stahl, S. S. *Chem. Rev.* **2011**, *111*, 2981.

^{(4) (}a) Manzoni, M. R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R. Organometallics 2004, 23, 5618. (b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868. (c) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 1690. (d) Streuff, J.; Hövelmann, C. H.; Nieger, M.; Muñiz, K. J. Am. Chem. Soc. 2005, 127, 14586. (e) Scarborough, C. C.; Stahl, S. S. Org. Lett. 2006, 8, 3251. (f) Muñiz, K. J. Am. Chem. Soc. 2007, 129, 14542. (g) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 14542. (g) Du, H.; Shi, Y. Angew. Chem., Int. Ed. 2008, 47, 8224. (i) Muñiz, K.; Streuff, J.; Chávez, P.; Hövelmann, C. H. Chem.—Asian J. 2008, 3, 1248. (j) Hövelmann, C. H.; Streuff, J.; Brelot, L.; Muñiz, K. Chem. Commun. 2008, 2334. (k) Muñiz, K.; Hövelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2009, 130, 763. (l) Zhang, Z.; Tan, J.; Wang, Z. Org. Lett. 2008, 10, 173. (m) Michael, F. E.; Sibbald, P. A.; Cochran, B. M. Org. Lett. 2008, 10, 793. (n) Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Sce. 2009, 131, 9488. (p) Liskin, D. V.; Sibbald, P. A.; Rosewall, C. F.; Sibbald, F. A.; Diskin, D. V.; Sibbald, P. A.; Rosewall, C. F.; Sibsald, F. E. J. Org. Chem. 2010, 75, 6294. (q) Zhao, B.; Du, H.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 3523.

^{(5) (}a) Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800. (b) Hegedus, L. S.; Allen, G. F.; Olsen, D. J. J. Am. Chem. Soc. 1980, 102, 3583. (c) Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444. (d) Weider, P. R.; Hegedus, L. S.; Asada, H. J. Org. Chem. 1985, 50, 4276. (e) Hegedus, L. S.; Holden, M. S. J. Org. Chem. 1986, 51, 1171.

allylic oxidative amination.¹⁰ Importantly, the Brønsted base modulated regioselective palladium-catalyzed intermolecular aerobic aza-Wacker-type reaction has been developed by Stahl and co-workers.¹¹ However, the *anti*-Markovnikov amination is limited in substrate scope in their reported work. Herein, we report a regioselective palladium-catalyzed intramolecular aerobic aza-Wacker cyclization. With this method, isoindolin-1-one and isoquinolin-1(2H)-one derivatives were prepared in different conditions and high yields (Scheme 1).

Scheme 1. Switchable Regioselective Palladium-Catalyzed Intramolecular Aerobic Aza-Wacker Cyclization

Our initial goal was to develop an enantioselective aza-Wacker-type cyclization reaction toward the total synthesis of 3-monosubstituted chiral isoindolinone natural products.¹² Although no satisfactory enantioselectivity was obtained, we discovered that different reaction conditions could provide different products, isoindolin-1-one derivative **2a** or isoquinolin-1(2*H*)-one derivative **3a** (Table 1).¹³ We screened the conditions to optimize the yields of **2a** and **3a**. The well studied system, pyridine/ $Pd(OAc)_2/toluene,^{6b-e}$ gave the best yield (68%) of **2a** in toluene under aerobic conditions (Table 1, entries 1–3). The bidentate ligand, Phen, was toxic to $Pd(OAc)_2$ in

toluene and THF for the reaction yielding **2a** due to the poor solubility of the correponding palladium complex but beneficial to the catalysis in MeOH, resulting in an 85% yield of product (entries 3, 5 vs 7). An opposite behavior was observed with the quinoline as a monodentate ligand (entries 2, 4 vs 6). To our surprise, the six-membered ring **3a** was afforded as the favored product in the absence of ligand in MeOH (entry 8). The yield of **3a** could be further enhanced by adding CuCl₂ as the cocatalyst and changing Pd(OAc)₂ to (MeCN)₂PdCl₂ (entries 9, 10). The **3a** forming reactions in different solvents gave lower or similar yields (entries 11, 12). When 20 mol % triethylamine was added to the system described in entry 10, an excellent yield of **3a** was achieved (entry 13). In addition, CuCl₂ could catalyze neither of the reactions (entry 14).

To identify the variables for regiocontrol, we further screened several reaction conditions.¹⁴ A catalytic amount of PhCO₂H had no significant effect on the yield of **3a** but could decrease the yield of 2a dramatically (entries 15, 16). This means the excess Phen in condition A may also function as a Brønsted base.¹¹ We have also studied the effect of the chloride ion (entries 7-10, 17-20). Unfortunately, maybe due to the poor solubility, no reaction happened with or without added CuCl₂ when (MeCN)₂-PdCl₂ and Phen in situ formed the catalyst in MeOH (entries 17, 18). Importantly, the cocatalysts Cu(OAc)₂ and Cu(OTf)₂ could also increase the yield of **3a** (entries 19, 20). These results show that the chloride ion can improve the activity of the catalyst toward the six-membered ring product, but it is not the most significant variable for regiocontrol.¹⁵ Similar ligands, Bpy and Phen, gave similar yields of 2a (entries 7, 21). Interestingly, when the more sterically hindered ligand NC was used, the regioselectivity

^{(6) (}a) Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. **1996**, 61, 3584. (b) Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. **2002**, 41, 164. (c) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. **2003**, 42, 2892. (d) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. **2005**, 127, 17778. (e) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y; Yang, D. J. Am. Chem. Soc. **2006**, 128, 3130. (f) Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. **2006**, 8, 2257. (g) He, W.; Yip, K.-T; Zhu, N.-Y; Yang, D. Org. Lett. **2009**, 11, 1911. (h) He, W.; Yip, K.-T; Zhu, N.-Y; Yang, D. Org. Lett. **2009**, 11, 5626. (i) Scarborough, C. C.; Bergant, A.; Sazama, G. T.; Guzei, I. A.; Spencer, L. C.; Stahl, S. S. Tetrahedron **2009**, 65, 5084. (g) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. **2010**, 51, 5124. (l) McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. **2011**, 13, 2830. (m) Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. **2011**, 76, 1031. (n) Yip, K.-T.; Yang, D. Chem.—Asian J. **2011**, 6, 2166.

^{(7) (}a) Wucher, P.; Caporaso, L.; Roesle, P.; Ragone, F.; Cavallo, L.; Mecking, S.; Göttker-Schnetmann, I. *Proc. Natl. Acad. Sci. U.S.A.* **2011**, *108*, 8955. (b) Ruan, J.; Xiao, J. *Acc. Chem. Res.* **2011**, *44*, 614.

^{(8) (}a) Kasahara, A.; Izumi, T.; Sato, K.; Maemura, K.; Hayasaka, T. Bull. Chem. Soc. Jpn. 1977, 50, 1899. (b) Annby, U.; Stenkula, M.; Andersson, C. M. Tetrahedron Lett. 1993, 34, 8545. (c) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970.

^{(9) (}a) Hegedus, L. S. J. Mol. Catal. 1983, 19, 201. (b) Harrington,
P. J.; Hegedus, L. S. J. Org. Chem. 1984, 49, 2657. (c) Kasahara, A.;
Izumi, T.; Murakami, S.; Miyamoto, K.; Hino, T. J. Heterocycl. Chem.
1989, 26, 1405. (d) Beccalli, E. M.; Broggini, G.; Paladino, G.; Penoni,
A.; Zoni, C. J. Org. Chem. 2004, 69, 5627. (e) Rogers, M. M.; Wendlandt,
J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257.

⁽¹⁰⁾ Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.

 ^{(11) (}a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem.
 Soc. 2003, 125, 12996. (b) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc.
 2005, 127, 17888.

⁽¹²⁾ For enantioselective Wacker-type cyclization and related reactions, see: (a) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 5063. (b) Uozumi, Y.; Kyota, H.; Kato, K.; Ogasawara, M; Hayashi, T. J. Org. Chem. 1999, 64, 1620. (c) Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907. (d) Wang, F.; Zhang, Y. J.; Wei, H.; Zhang, J.; Zhang, W. Tetrahedron Lett. 2007, 48, 4083. (e) Wang, F.; Zhang, Y. J.; Yang, G.; Zhang, W. Tetrahedron Lett. 2007, 48, 4179. (f) Zhang, Y. J.; Wang, F.; Zhang, W. J. Org. Chem. 2007, 72, 9208. (g) Wang, F.; Yang, G.; Zhang, Y. J.; Zhang, W. Tetrahedron 2008, 64, 9413. (h) Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274. (i) Takenaka, K.; Mohanta, S. C.; Patil, M. L.; Rao, C. V. L; Takizawa, S.; Suzuki, T.; Sasai, H. Org. Lett. 2010, 12, 3480. Also see ref 6c, 6d, 6k, and 6l.

⁽¹³⁾ For selected recent papers on the synthesis of isoindolin-1-one derivatives, see: (a) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. *Tetrahedron Lett.* 2003, 44, 3483. (b) Khan, M. W.; Reza, A. F. G. M. *Tetrahedron* 2005, 61, 11204. (c) Cao, H.; Mcnamee, L.; Alper, H. Org. Lett. 2008, 10, 5281. (d) Wan, J.; Zhou, J.; Mao, H.; Pan, Y.-J.; Wu, A.-X. *Tetrahedron* 2008, 64, 11115. (e) Takaya, J.; Sangu, K.; Iwasawa, N. Angew. Chem., Int. Ed. 2009, 48, 7090. (f) Wang, F.; Song, G.-Y.; Li, X.-W. Org. Lett. 2011, 12, 5430. (g) Zhu, C.; Falck, J. R. Org. Lett. 2011, 13, 1214. (h) Shacklady-McAtee, D. M.; Dasgupta, S.; Watson, M. P. Org. Lett. 2011, 13, 3490. (i) Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326. (j) Augner, D.; Gerbino, D. C.; Slavov, N.; Neudörfl, J.-M.; Schmalz, H.-G. Org. Lett. 2011, 13, 5374. (k) Newman, S. J.; Howell, J. K.; Nicolaus, N.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916. For selected recent papers on the synthesis of isoquinolin-1(2H)-one derivatives, see:(l) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5829. (m) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058. (n) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379. (o) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 13, 14915.

⁽¹⁴⁾ Thanks for the reviewers' gentle suggestions.

was switched to the six-membered ring product, although with poor yield (entry 22). This steric effect of ligand on regioselectivity was also observed when *i*Pr-Pyox and *i*Pr-Quinox were used as ligands (entries 23-25). As a consequence of the above-mentioned, we propose that the type and steric hindrance of the ligands play key roles in regiocontrol. The poisoning effect of quinoline to Pd(OAc)₂ in MeOH is still unclear.

entry	Pd source	L ^c	solvent	yield	yield
entry	i a source	Ľ	sorvent	(2a)	(3 a)
1	$Pd(OAc)_2$	pyridine	toluene	68%	ND
2	$Pd(OAc)_2$	quinoline	toluene	61%	5%
3	$Pd(OAc)_2$	Phen ^e	toluene	N	R
4	$Pd(OAc)_2$	quinoline	THF	51%	6%
5	$Pd(OAc)_2$	Phen ^e	THF	N	R
6	$Pd(OAc)_2$	quinoline	MeOH	N	R
7	Pd(OAc) ₂	Phen	MeOH	85%	ND
8^d	$Pd(OAc)_2$		MeOH	ND	9%
9^d	$Pd(OAc)_2^g$		MeOH	ND	42%
10^d	$(MeCN)_2PdCl_2^g$		MeOH	ND	85%
11^{d}	(MeCN) ₂ PdCl ₂ ^g		DME	ND	74%
12^{d}	(MeCN) ₂ PdCl ₂ ^g		THF	ND	84%
13 ^d	(MeCN) ₂ PdCl ₂ ^g	NEt ₃	MeOH	ND	98%
14^{d}	g		MeOH	N	R
15	$Pd(OAc)_2$	Phen ^h	MeOH	42%	ND
16^{d}	(MeCN) ₂ PdCl ₂ ^g	^h	MeOH	ND	85%
17^{d}	(MeCN) ₂ PdCl ₂	Phen ^e	MeOH	N	R
18^{d}	(MeCN) ₂ PdCl ₂ ^g	Phen ^e	MeOH	N	R
19^{d}	$Pd(OAc)_2^i$		MeOH	5%	32%
20^d	$Pd(OAc)_2^j$		MeOH	ND	69%
21	$Pd(OAc)_2$	Вру	MeOH	84%	ND
22^d	$Pd(OAc)_2$	NC	MeOH	ND	9%
23^{k}	$Pd(OAc)_2$	<i>i</i> Pr-Pyox	MeOH	46^{l}	ND
24^d	$Pd(OAc)_2$	iPr-Quinox	MeOH	ND	10%
25^{k}	$Pd(OAc)_2$	<i>i</i> Pr-Quinox	MeOH	ND	19%

^{*a*} Unless otherwise stated, reactions were carried out on a 0.20 mmol scale using 10 mol % Pd salt, with or without added 20 mol % ligand in solvent (2.0 mL) under 1 atm of dioxygen at 60 °C for 12 h. When the solvent was toluene, the reaction temperature was 80 °C. ^{*b*} Isolated yield. NR = No reaction. ND = trace, not detected. ^{*c*} Phen = 1,10-phenanthroline. NC = neocuproine. Bpy = 2,2'-bipyridine. *i*Pr-Pyox = (*S*)-4-isopropyl-2-(pyridin-2-yl)-4,5-dihydrooxazole. *i*Pr-Quinox = (*S*)-4-isopropyl-2-(quinolin-2-yl)-4,5-dihydrooxazole. *i* The reaction time was 15 h. ^{*e*} The corresponding complex showed poor solubility in the solvent. *f* The solubility of the corresponding complex in the solvent was not good. ^{*s*} CuCl₂ (10 mol %) was added. ^{*h*} PhCO₂H (30 mol % for entry 16) was added. ^{*k*} The reaction time was 48 h. *i* With 49% yield of the olefin isomers of **2a** obtained; please see Supporting Information.

Based on the above results, the optimal reaction conditions leading to **2a** were found to be when using Phen as the ligand,

 $Pd(OAc)_2$ as the palladium source, and MeOH as the solvent and performing the reaction at 60 °C for 12 h. On the other hand, **3a** could be furnished in nearly quantitative yield with (MeCN)₂PdCl₂ and CuCl₂ as the catalytic metal sources and triethylamine as the ligand and/or base in MeOH at 60 °C for 15 h.

 Table 2. Substrate Scope^{a,b}

entry	substrate	condition A: product / yield	condition B : product / yield				
	0 II		Ŷ				
	R Me	R					
R' = Ph							
1	1a R = H	2a / 85%	3a / 98%				
2	1b R = 3-Me	2b / 76%	3b / 86%				
3	1c R = 4-Me	2c / 77%	3c / 88%				
4	1d R = 5-Me	2d / 97%	3d / 99%				
5	1e R = 4-0Me	2e / 80%	3e / 99%				
6	1f R = 4-Cl	2f / 58% (2f / 77% +	⊦ 3f /19%) ^c 3f / 49%				
7	1g R = 5-Cl	(2g / 40% + 3g / 8	3%) ^c 3g / 37% ^c				
R=H							
8	1h R' = 4-MeC ₆ H ₄	2h / 65%	3h / 91%				
9	1i R' = 3,4-diMeC ₆	₃H₄ 2i / 62%	3i / 85%				
10	1j R' = 2,4-diMeC _€	₃H₄ 2j / 61%	3j / 57%				
11	1k R' = 4-CIC ₆ H ₄	2k / 87%	3k / 95%				
12	11 R' = Bn	2 /22%	31 / 84%				
13	1m R' = Bu	2m / 41% ^o	3m / 87% ^e				
	0	0 N	Q				
	NHPh	/NPh	MPh				
14							
		× · · · · · · · · · · · · · · · · · · ·	3n / 52%				
	1n 2	2n / 41% + 2n' / 35%	+ 2n / 5%				
	O L						
45	NHPh	NPh NPh	NPh				
15	S [™] Pr ⁱ	Pr ⁱ	Pr ⁱ				
	10	3o / 40% ^f	30 / 9% ^c				
	0	O [u	nidentified products 65%]				
		ANPh .					
16							
	Ser Sen	∑ °Ph	Service Servic				
	1р	2p / 80%	(3p / 32% + 2p / 44%) ^c				
	0 II	0 II					
17	NHPh	NPh	trace of unidentified				
	Me		products				
	1q	2q / NR (16%) ⁹	g, c				
	0	o í					
18	MHPh	NPh					
	Me		2r / 27%				
	Me	Me					
	1r	2r / 99%					

^{*a*} Reaction was conducted at 0.20 mmol scale in 2.0 mL of MeOH under 1 atm of dioxygen at 60 °C. Condition **A**: Pd(OAc)₂ (10 mol %) and Phen (20 mol %), 12 h. Condition **B**: (MeCN)₂PdCl₂ (10 mol %), CuCl₂ (10 mol %), NEt₃ (20 mol %), 15 h. ^{*b*} All of the yields were isolated yields. ^{*c*} Reaction time was 48 h. ^{*d*} Pd(OAc)₂ (20 mol %) and Phen (40 mol %), 48 h. ^{*e*} Reaction time was 18 h. ^{*f*} Reaction time was 96 h. ^{*g*} The yield in parentheses was obtained under the conditions of entry 1 of Table 1.

With a catalyst set identified, a variety of substrates were examined (Table 2). For substrates 1a-1g (R' = Ph), the electronic and steric properties of substituents affect the constructions of 2 and 3 in a similar manner (entries 1–7). The substrates with electron-rich groups gave better yields

⁽¹⁵⁾ It has been established that the concentration of chloride ion can affect the stereochemistry of oxypalladation. For a selected recent paper and review, please see: (a) Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. **2004**, *126*, 3036. (b) Keith, J. A.; Henry, P. M. Angew. Chem., Int. Ed. **2009**, *48*, 9038.

of 2 and 3 than the ones with an electron-withdrawing group (entries 1-5 vs 6, 7). A longer reaction time gave a better yield of 2f (entry 6, 77% vs 58%). The ortho-methyl group slightly decreased the yields of both 2 and 3 (entry 2). Both of the catalyst systems tolerate different aryl substituents on the nitrogen (R = H, entries 8–11). However, the electronic effect of substituents on the benzene ring of aniline is opposite to that of R.¹⁶ An electron-withdrawing group led to a better yield when compared with the corresponding electron-rich substrate (entry 8 vs 11). With a methyl group at the ortho position of aniline, cyclization of 1 under condition B showed an obvious decrease in yield. However, this is not the case with condition A (entry 10 vs 8, 9). When R' was an alkyl group, under condition A, 2l and 2m were produced sluggishly while reactions under condition **B** occurred more rapidly to construct **3** and **3** m (entries 12, 13). Two olefin isomers 2n and 2n' were obtained when substrate 1n was catalyzed under condition A. Under condition **B**, a moderate yield of **3n** and 5% yield of 2n were observed (entry 14). Substitution is not always permitted at the external vinyl position. For instance, substrate 10 with a bulky group at this position favored the six-membered ring product 30 under condition A, and substrate 1p containing a benzyl group tended to form the five-membered ring product even under condition B (entries 15, 16). Substrate 1q, with an aliphatic link instead of an aromatic functional group, showed poor reactivity toward both catalytic systems. This also occurred when using the pyridine/Pd(OAc)₂/toluene system (entry 17, 16% yield after 48 h at 80 °C). The trisubstituted olefin substrate 1r has a tendency to yield 2r, even under condition **B** (entry 18).

The 2a forming reaction of 1a under condition A may proceed through an aminopalladation/ β -H elimination pathway (Wacker-type mechanism) 6m,n,17 or an allylic C-H activation/reductive elimination pathway.^{8c,10,18} If the oxidative cyclization under condition A proceeds via an allylic oxidative substitution mechanism, both 1a and 4 will result in the formation of the same π -allylic-Pd^{II} intermediate 5 and afford the same product 2a (Scheme 2). If the C–N forming reaction under condition A follows an aminopalladation/ β -H elimination pathway, the reaction of 4 will give product 3a. The experimental results showed that 1a favored product 2a while 3a was the predominant product of the reaction when using 4. Therefore, we believe that formation of 2 from 1 under condition A occurs via a Wacker-type mechanism through the intermediate 6. The six-membered ring product 3a was obviously thermodynamically stable, but it was produced through a more sterically hindered intermediate 7a. We propose that if a smaller ligand (MeOH, Cl⁻, AcO⁻) is used, the steric hindrance between the ligand and reactant in the intermediates **6** or **7** would be weaker. Thus the thermodynamic product **3a** will be produced. If a larger ligand (Phen, Bpy, *i*Pr-Pyox) is employed, the steric hindrance in **7** would be increased more than that in **6**. As a consequence, the kinetic product **2a** will be the major product. However, more sterically hindered ligands (NC, *i*Pr-Quinox) could reduce the steric hindrance difference between **6** and **7**, and then the thermodynamic product **3a** will be generated but in low yield. In the cases of substrate **10** or **1r**, the steric hindrance difference between **6** and **7** decreased or increased, respectively. Therefore, the thermodynamic product **3o** or kinetic product **2r** was favored. A detailed mechanism study is being carried out.

In summary, we have developed a palladium-catalyzed intramolecular aerobic aza-Wacker cyclization to prepare isoindolinones and isoquinolin-1(2H)-ones selectively from the same substrates. The switchable selectivity could be controlled by using different catalysts. We propose that the type and steric hindrance of the ligands should be the most significant variables for regiocontrol.

Acknowledgment. We thank Prof. Tsuneo Imamoto and Dr. Masashi Sugiya of Nippon Chemical Industrial Co., Ltd. for helpful discussions. This work was partially supported by the National Natural Science Foundation of China (Nos. 20972095 and 21172143) and Science and Technology Commission of Shanghai Municipality (No. 10dz1910105), and Nippon Chemical Industrial Co., Ltd.

Supporting Information Available. General experimental procedures and characterization details. This material is available free of charge via the Internet at http://pubs. acs.org.

^{(16) (}a) For cyclization-decelerating effect of electron-deficient acyl group side, see: ref 6m. (b) For cyclization-accelerating effect of electron-deficient aniline side, see ref 6n.

⁽¹⁷⁾ For selected recent papers, see: (a) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (b) White, P. B.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 18594.

⁽¹⁸⁾ The terminal olefins have been well studied as the substrates for palladium-catalyzed allylic oxidative substitution probably due to their high activity. For selected recent papers, see: (a) Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc. **2010**, *132*, 11978. (b) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. **2010**, *132*, 15116. (c) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. **2011**, *133*, 12584.