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We have previously reported the power of combining a 50-phosphoramidate ProTide, phosphate pro-
drug, motif with a 6-methoxy purine pro-drug entity to generate highly potent anti-HCV agents, leading
to agents in clinical trial. We herein extend this work with the disclosure that a variety of alternative 6-
substituents are tolerated. Several compounds exceed the potency of the prior 6-methoxy leads, and in
almost every case the ProTide is several orders of magnitude more potent than the parent nucleoside.
We also demonstrate that these agents act as pro-drugs of 20-C-methyl guanosine monophosphate. We
have also reported the novel use of hepatocyte cell lysate as an ex vivo model for ProTide metabolism.

� 2011 Elsevier Ltd. All rights reserved.
Nucleoside analogues continue to play a vital role in the search
for improved therapies for hepatitis C Virus (HCV) infection.1 Sev-
eral families of modified nucleosides have been reported as inhib-
itors of the HCV NS5B RNA polymerase, including 40-modified2 and
20-modified3 nucleosides. All of these nucleosides act following
sequential phosphorylation to their bioactive 50-triphosphate
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forms. As with many nucleoside analogues this phosphorylation,
and particularly the first, nucleoside kinase-mediated, step may
be limiting to their bio-activity.3 In these circumstances one of a
number of phosphate pro-drug methods may be used.4 We have
developed a phosphoramidate ProTide approach5 and applied it
extensively to a variety of bioactive nucleosides. Recently we re-
ported its effectiveness when applied to the anti-HCV agent 20-C-
methylguanosine (1).6 We further reported that combining the
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Figure 1. Reagents and conditions: (a) DBU, TMSOTf, ACN, 65 �C, 4–6 h, 76%; (b) NH3/MeOH, 12 h, rt, 90% (for 6a); NaOMe, MeOH, rt, 12 h, 78% (for 6b); NaOEt/EtOH, 50 �C,
5 h, 84% (for 6c); MeNH2/Et3N/EtOH, 85 �C, sealed tube, 92% (for 6d); NaSMe/EtOH, rt, 18 h, 87% (for 6e); NH3/MeOH, rt, 12 h, 90%, NaH, 3-methoxy-1-propanol, 50% (for 6f);
BnCH2NH2, EtOH, reflux, 16 h, 55%, NH3/MeOH, rt, 94% (for 6g); BnNH2, EtOH, reflux, 16 h, 98%, NH3/MeOH, rt, 89% (for 6h); NaOCH(Me)2, rt, 18 h then NaOMe, rt, 18 h, 70%
(for 6i).

Figure 2. Reagents and conditions: (a) N-methylimidazole, THF, 16 h, rt, 11–28%; (b) tBuMgCl, THF, 22-25%.
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50-phosphate ProTide moiety with a C6 methoxy pro-drug entity
further significantly boosted the potency of the compound to give
the clinical candidate INX-189 (2) with nanomolar activity against
HCV.7 This agent has recently successfully completed phase 1b
clinical trial in HCV infected patients.

Several reasons were suggested for the potency boost presented
on C6 modification. Amongst them was the ca 2-log increase in
lipophilicity upon this modification, and potential consequential
enhancements in passive cell uptake.7

Since the ProTide motif is thought to function by intracellular
50-monophosphate release it was considered that the 50-mono-
phosphate from (2) was a substrate for adenylate deaminase to lib-
erate 20-methylguanosine monophosphate as an essential
precursor to the bioactive 50-triphosphate. Given the known wide
substrate specificity of adenylate deaminase8 we wondered if
alternative 6-substituents might substitute for the 6-methoxy
and might further boost lipophilicity and enhance potency. We
herein report the notable success of this approach.

As shown in Figure 1 we used the 6-chloro nucleoside as a route
into various 6-substituted analogues. Thus, tetrabenzoyl 20-C-
methyl-D-ribose (3) was condensed with 2-amino-6-chloropurine
(4) in the presence of TMS triflate to give the protected beta nucle-
oside (5) in 76% yield. This was deprotected with methanolic
ammonia to give (6a) in 78% yield. Use of alternatives deprotec-
tion/substitution conditions gave the various 6-substituted
analogues (6b–i) as shown in Figure 1. Thus, sodium methoxide
and ethoxide respectively gave (6b–c), methylamine (6d), and
thiomethoxide gave (6e). Other analogues were similarly
prepared.

The anti-HCV activity of (6a–i) was studied in sub-genomic rep-
licon assay and the data are reported in Table 1. In general the
compounds are active at lM levels; activity decreasing for larger
C6 substituents.

Following the discovery of the power of the naphthyl neopen-
tylalanine ProTide motif in (2) we now applied this moiety to
(6a–i) as shown in Figure 2. Thus, 1-naphthyl neopentylalaninyl
phosphorochloridate was allowed to react with (6a–i) to generate
the corresponding ProTides (7a–i) in moderate yield.

All compounds were isolated as roughly equimolar mixtures of
phosphorus diastereoisomers as evidenced by 31P NMR and HPLC.9

The ProTides were tested as inhibitors of HCV as noted above,
with data being shown in Table 2.



Figure 3. Putative mechanism of ProTide activation.

Figure 4. Carboxypeptidase Y mediated hydrolysis of (8a) followed by 31P NMR.
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It is striking that while all of the parent nucleosides (6a–i) are
poorly active, with EC50 values of ca 5–30 lM, all of the ProTides
are active sub-lM. Particularly active are the 6-ethoxy, 6-methoxy
and 6-chloro compounds with EC90values of <100 nM. The largest
C6 substituted compounds such as (7h) seem to lose some activity,
implying some size restrictions at C6, but even here the ProTide re-
mains 30-fold more active than the parent (6h). The ProTides are
cytotoxic at lM levels but their high potency still leads to thera-
peutic index values in the 1000 range. Given the extremely high
potency of the 6-O-ethoxy analogue we decided to vary the ProTide
motif on (7c). Following the same procedures as in Figure 2 but
varying the phosphorochloridate we converted (6c) to (8a–f)
(Table 3).

All of these compounds show sub-lM activity in replicon but
none are as active as (7c). In general, the alanine compounds are
more active than the valine ones as we have previously noted.6
To confirm the possible mode of action of these compounds we
conducted a number of assays. In the first instance we performed a
Carboxypeptidase Y assay, an in vitro probe of ProTides activation
pathway (Fig. 3).

The data shown in Figures 4 and 5 represent 31P NMR spectra
recorded every 7 min during 14 h incubation period of (8a) and
(8e) with Carboxypeptidase Y in acetone-d6 and Trizma buffer
(pH 7.6).

In case of the naphthyl benzylalanine compound (8a) (Fig. 4),
the experiment showed fast hydrolysis of starting material
(dP = 3.62, 4.11 ppm) to the intermediate lacking the ester group
(dP = 4.69, 4.83 ppm). Both diastereoisomers of (8a) appear to be
processed with roughly similar efficacy as far as the data
allow us to discern. The single peak at 6.95 ppm corresponds to
the final product of the hydrolysis—the achiral aminoacyl phos-
phate. The estimated half-life of (8a) was less than 5 min. In case



Figure 6. Metabolism of (8c) in HuH7 cell lysate followed by 31P NMR.

Figure 5. Carboxypeptidase Y mediated hydrolysis of (8e) followed by 31P NMR.
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of the isopropyl analogue (8e) (Fig. 5) conversion of the starting
material was slower, with a half-life of 4 h and in this case one
of the diastereoisomers of (8e) seems to be processed rather more
rapidly.

These results are consistent with the replicon data, showing
that (8a), which is processed faster, is also found to be more active
(EC50 = 0.04 lM vs 0.14 lM for (8e)). The carboxypeptidase assay is
thus a potentially useful predictive model for the in vitro bio-acti-
vation of these agents.

HuH7 cell lysates have been prepared to examine monophos-
phate formation during the ProTide hydrolysis. An NMR based as-
say was performed on (8c) using HuH7 cell lysate (107 cells) in
acetone-d6 and Trizma buffer (pH 7.6) at 37 �C. 31P NMR spectra
were recorded every 1 h for 11 h. After 1 h of incubation, the pres-
ence of newly formed peak at 0.98 ppm was observed suggesting
successful liberation of the monophosphate species (Fig. 6). This
signal had the same chemical shift as an authentic monophosphate
under these conditions. Given that its release is considered to be a
pre-requisite for antiviral action, via the triphosphate, we view
these data as encouraging and consistent with the replicon data
in Tables 1–3 above.

As far as we are aware, this is the first time that P-31 NMR of
hepatocyte lysate has been used as an ex vivo assay of anti-HCV
ProTide metabolism.

Since we regard each of these 6-modified nucleotides as pro-
drugs of the guanine nucleotides, we also conducted an adenosine
deaminase (ADA) assay on (6b), with spectra recorded each min-
ute.10 The results are shown in Fig 7.



Table 3
HCV Replicon activity and cytotoxicity of various ProTides of 6-ethoxy-20-C-
methylguanosine

Compound R1 R2 R3 EC50/lMa CC50/lMb

8a OEt Bn L-Ala 0.04 11

8b OEt NeoPnt L-Val 0.17 24

8c OEt S-PhEt L-Ala 0.085 12

8d OEt THP L-Ala 0.08 47

8e OEt iPr L-Ala 0.14 40

8f OEt 2,4F2Bn L-Ala 0.034 17

a 50% effective concentration. Replicon data for genotype 1b in HUH7 cells with
48 h exposure.

b 50% cytotoxic concentration in HUH7 cells.

Table 2
HCV Replicon activity and cytotoxicity of 1-naphthyl neopentyl alanine ProTides of 6-
substituted 20-C-methylguanosine nucleosides

Compound R1 EC50
a/lM EC90

b/lM CC50
c/lM

7a Cl 0.012 0.028 16
7b OMe 0.010 0.038 7
7c OEt 0.008 0.032 10
7d NHMe 0.035 0.103 38
7e SMe 0.037 0.16 41
7f O(CH2)3OMe 0.043 0.12 31
7g NHCH2Bn 0.270 1.30 42
7h NHBn 0.79 2.7 15
7i OCH(CH3)2 0.023 0.065 11

For structures see Figure 1.
a 50% effective concentration. Replicon data for genotype 1b in HUH7 cells with

48 h exposure.
b 90% effective concentration. Replicon data for genotype 1b in HUH7 cells with

48 h exposure.
c 50% cytotoxic concentration in HUH7 cells.

Figure 7. Adenosine deaminase mediated deamination of (6b) followed by UV
spectroscopy.

Table 1
HCV Replicon activity and cytotoxicity of 6-substituted 20-C-methylguanosine
nucleosides

Compound R1 EC50/ lMa CC50/ lMb

6a Cl 8.5 >100
6b OMe 4.6 >100
6c OEt 8.8 >100
6d NHMe 13 >100
6e SMe 11 >100
6f O(CH2)3 OMe 12 >100
6g NHCH2 Bn 24 >100
6h NHBn 30 ND
6i OCH(CH3)2 9.3 >100

For structures see Figure 1.
a 50% effective concentration. Replicon data for genotype 1b in HUH7 cells with

48 h exposure.
b 50% cytotoxic concentration in HUH7 cells.
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These data demonstrate that (6b) is an excellent substrate for
adenosine deaminase-mediated deamination. The final product
has an identical UV spectrum to (1) as expected. Compound (6c)
was found to be suitable substrate for the enzyme, however the
conversion rate to (1) was much slower than for (6b). We expect
that the monophosphates of (6a–c) released from the ProTide
in vitro, may similarly be substrates for adenylate deaminase, giv-
ing the 20-C-methylguanosine monophosphate in each case. ADA
assay performed on (6d) and (6e) showed no transformation with-
in the reaction time of 24 h which may suggest that broader sub-
strate specificity might operate at the adenylate deaminase level
or that the deamination of these nucleoside analogues and their
corresponding monophosphates is catalysed by a different type
of deaminase for example, human abacavir monophosphate deam-
inase.11 To further pursue this notion we conducted the replicon
anti-viral assay in the presence and absence of pentostatin, a
known inhibitor of both adenosine and adenylate deaminase (data
not shown) and noted that each of the ProTides herein described
lost entirely their activity in the presence of pentostatin, clearly
confirming an absolute need for ‘deamination’ to be active.

In conclusion, we herein report that a wide range of 6-substitu-
ents is acceptable at the ProTide level of 20-C-methyl guanosine
based anti-HCV agents. In every case, the parent nucleosides are
poorly active, being active at only high lM levels. In every case
their ProTides are active sub-lM; in most cases the potency of
the nucleoside is enhanced >100 fold. Alanine emerges again as
the preferred amino acid, and several ester variants lead to very
potent compounds. In some cases the potency and selectivity
in vitro exceeds that of the clinical candidate (2), INX-08189. In
every case ‘deamination’ at the C6-position, presumably at the
monophosphate level, is implicated as essential for activity, and
thus these compounds are dual pro-drugs. We have also reported
the novel use of hepatocyte cell lysate as an ex vivo model for
ProTide metabolism.
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