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Abstract A one-pot direct reductive allylation protocol has been de-
veloped for the synthesis of secondary amines by using titanium
hydride and an allylzinc reagent. This protocol is applicable to a broad
range of substrates, including acyclic amides, benzamides, α,β-unsatu-
rated amides, and lactams. The stereochemical outcome obtained from
the reaction with crotylzinc reagent suggested that the allylation reac-
tion proceeds through a six-membered cyclic transition state. A total
synthesis of (–)-castoramine was accomplished by following this proto-
col for the highly stereoselective construction of contiguous stereo-
centers.

Key words amides, reduction, allylation, amines, total synthesis, alka-
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The amide group is a ubiquitous functional group that
can be found in natural products, pharmaceutical agents,
functional materials, and agrochemicals. In contrast to de-
velopments in protocols available for the formation of am-
ides,1 the conversion of the amide group into other func-
tional groups, particularly amines, has not been thoroughly
investigated. The most frequently used transformation of
amides into amines is through reduction to the correspond-
ing primary amines with LiAlH4. The conversion into α- or
α,α-branched amines by a one-pot sequential nucleophilic
addition of a hydride anion and a carbon nucleophile is not
straightforward due to the low nucleophilicity of the start-
ing amides and the imine intermediates, together with the
challenging control of each step of the reaction. To facilitate
the nucleophilic addition to amides, preactivation of the
starting amides as an imide 1, thioamide 2, or iminium tri-
flate 3, and the use of highly reactive nucleophiles such as
DIBAL, LiAlH4, Grignard reagents, or organolithium reagents
are generally required (Scheme 1a).2–4 Recently, Chida, Sato,
and their co-workers reported a direct conversion of tertia-

ry and secondary amides into α-allylated amines by using
Schwartz’s reagent and allylzinc halides; this method ex-
hibited superior chemoselectivity to previously reported
methods (Scheme 1b).5–7 Currently, there is no useful meth-
od, in terms of functional-group compatibility and practical
utility, for the large-scale conversion of amides into amines,
and the development of an efficient protocol is still re-
quired.

Scheme 1  Conversion of amides into α-branched amines

During the course of our recent total synthesis of (–)-
histrionicotoxin (HTX; 7), we obtained preliminary results
on a one-pot reductive allylation of a nonactivated second-
ary amide (Scheme 2).8 In following Buchwald’s protocol,
the spirocyclic lactam 4 was exposed to titanium hydride,
generated from Ti(O-i-Pr)4(10 equiv) and diethylsilane (40
equiv), to give the partially reduced imine intermediate
5;9,10 subsequent allylation under Ishihara’s conditions af-
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b) Direct reductive allylation developed by Chida (2012, 2014)
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forded the homoallylic amine 6 in a one-pot process
(71%).11,12 In the present study, this preliminary one-pot se-
quence was reinvestigated in detail for the optimization of
both the selective partial reduction to the imine and the al-
lylation, and its scope and limitations were explored. Here,
we report the practical and chemoselective one-pot reduc-
tive allylation of nonactivated amides by using a combina-
tion of titanium hydride and an allylzinc reagent, and its
application to a total synthesis of (–)-castoramine.

Scheme 2  Results of our previous studies

Initially, we investigated the optimization of the reduc-
tion conditions,13 and the resultant imine was subsequently
allylated under the conditions that were used for the syn-
thesis of HTX (Table 1).9 The reaction of the model substrate
8 with diethylsilane (40 equiv) and Ti(O-i-Pr)4(10 equiv)
gave the desired product 10 in 35% yield as a single diaste-
reomer,14 together with the over-reduction product 11 in
28% yield (Table 1, entry 1).

A series of experiments were then performed in an at-
tempt to prevent the overreduction of 8. Decreasing the
amount of reducing agent proved ineffective (Table 1, entry
2), whereas lowering the reaction temperature suppressed
the initial reduction (entry 3). By further screening, we
found that the use of diphenylsilane was key to the sup-
pression of the overreduction. When substrate 8 was treat-
ed with Ti(O-i-Pr)4(1.5 equiv) and diphenylsilane (5 equiv),
the reduction of lactam 8 reached completion even at room
temperature, and the yield of 10 dramatically increased to
71%, along with a trace amount of the fully reduced amine
11 (entry 4). A further decrease in the amount of Ph2SiH2
was ineffective (entries 5 and 6), whereas the silanes Et3SiH
(entry 7) and Ph3SiH (entry 8) did not promote the initial
reduction at all.

With the optimal reduction conditions in hand, we next
searched for a suitable allylating reagent (Table 2). The reac-
tion with a zinc reagent freshly prepared from allylmagne-
sium chloride and ZnCl2 (2:1) afforded the desired product
10 in a higher yield (Table 2, entry 2) than that obtained un-
der the original conditions using a lower amount of ZnCl2
(23 mol%) (entry 1). In the absence of ZnCl2, the reaction

with allylmagnesium chloride gave product 10 in a slightly
lower yield (entry 3), whereas allylzinc bromide did not
give 10 at all (entry 4). Finally, allylpinacol boronate gave
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Table 1  Optimization of the Reduction Conditions

Entry Silane Xa Yb Temp Time (h) Product [Yieldc,d (%)]

1 Et2SiH2 40 10 reflux  1 10 (35)
11 (28)

2 Et2SiH2  5  1.5 reflux  5 10 (40)
11 (28)

3 Et2SiH2  5  1.5 r.t.  8 no reaction

4 Ph2SiH2  5  1.5 r.t.  5 10 (71)
11 (6)

5 Ph2SiH2  3  1.5 r.t. 40 10 (50)
11 (10)

6 Ph2SiH2  1  1.5 r.t. 96 no reaction

7 Et3SiH  5  1.5 r.t. 22 no reaction

8 Ph3SiH  5  1.5 r.t. 22 no reaction
a Equivalents of the silane.
b Equivalents of Ti(O-i-Pr)4.
c In all cases, amine 10 was obtained as a single diastereomer.
d Isolated yield.
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Table 2  Optimization of the Allyl Nucleophile

Entry Nucleophiles Yielda,b (%) of 10

1 AllMgCl (3.0 equiv), ZnCl2 (23 mol%) 71

2 AllMgCl (3.0 equiv), ZnCl2 (1.5 equiv) 74c

3 AllMgCl (1.5 equiv) 56

4 AllZnBr (1.5 equiv)  0

5d AllB(pin) (1.5 equiv) 66

6d AllTMS (1.5 equiv), TiCl4 (1.5 equiv)  0

7d AllSnBu3 (1.5 equiv), Sc(OTf)3 (1.5 equiv)  0
a In all cases, amine 10 was obtained as a single diastereomer.
b Isolated yield.
c Amine 11 was obtained in 3% yield.
d Reaction temperature 25 °C.
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product 10 in a comparable yield (66%; entry 5), whereas
allylsilane or allylstannane with Lewis acids proved unsuc-
cessful (entries 6 and 7).

Having established the optimal conditions, we then in-
vestigated the generality, scope, and limitations of the
method (Scheme 3).15 A variety of benzylic amides derived
from aliphatic or aromatic carboxylic acids 12a–d were al-
lylated in good to almost quantitative yield. The protocol
was also practical and applicable to a gram-scale reaction.
Thus, amide 12d (1.0 g) was converted into the desired al-
lylated compound in 91% yield without such precautions as
the use of a glovebox to completely exclude oxygen or mois-
ture.16 In the case of the cinnamyl amide 12e, no byproduct
stemming from 1,4-reduction was observed. The reductive
allylation proceeded smoothly for the six- to eight-mem-
bered lactam compounds 8, 12f, and 12g.17,18 We found that
the present method was also applicable to the tertiary am-
ide 12h (84%). Furthermore, a number of functional groups
were compatible with the one-pot allylation protocol. In
addition, the electron-rich N-benzyl-4-methoxybenzamide
(12ia) and the electron-deficient N-benzyl-4-bromoben-
zamide (12ib) and N-benzyl-4-(chloromethyl)benzamide
(12ic) gave the corresponding products in excellent yields
(96, 94, and 91%, respectively). Interestingly, despite bear-
ing a sensitive nitro group, benzamide 12id tolerated the
reaction conditions, giving a 90% yield of the allylated prod-
uct. Moreover, the aromatic methyl ester group in 12ie re-
mained intact during the chemoselective reduction and al-
lylation (product yield: 60%). Various protecting groups for
alcohols, including THP (12ja, 58%), TBS (12jb, 72%), and
MOM (12jc, 88%) were also tolerated, as were two protect-
ing groups for nitrogen, Boc carbamate 12ka and Ts amide
12kc, which gave the corresponding allylated compounds in
low to good yields.

Scheme 4  Rationale for the observed stereoselectivity 

To obtain some mechanistic insights into the allylation
step, the reaction with a crotylzinc reagent was examined.
Thus, crotylation of the imine intermediate 9 proceeded in
a highly diastereoselective manner to give the branched
product 14 exclusively in 58% yield Scheme 4a,19 which
strongly suggests the formation of a six-membered chair-
like transition state on the half-chair conformation of the
initially formed imine intermediate 16. The axial attack by
the crotylzinc reagent must occur via the six-membered
transition state 17 to form the branched product 14 ste-
reospecifically Scheme 4b.

Scheme 3  Generality, scope, and limitations of the reductive allylation a Gram-scale reaction. b Obtained as single diastereomer.
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To demonstrate the utility of this highly diastereo-
selective reductive allylation protocol, we chose (–)-castor-
amine (23) as a target compound and we examined its
synthesis (Scheme 5).20 The reaction of lactam (+)-1821 with
Ti(O-i-Pr)4 (5.0 equiv) and diphenylsilane (0.5 equiv), fol-
lowed by addition of the crotylzinc reagent, resulted in the
expected partial reduction to yield product 19 with perfect
stereoselectivity.22 The facial selectivity of the crotylation
was completely controlled by the siloxymethyl group on the
piperidine ring. Crotylation of 19 followed by ring-closing
metathesis then gave the cyclic product 21. After reduction
of the double bond, a 3-furyl moiety was introduced by fol-
lowing Shenvi’s procedure to give 22 in 59% yield as a single
diastereomer.23 Finally, removal of the TBDPS group afford-
ed (–)-castoramine (23), whose physical properties were in
agreement with the reported data.20c

Scheme 5  Application to the total synthesis of (–)-castoramine

In summary, we have established a highly chemoselec-
tive, one-pot, direct reductive allylation of a variety of sec-
ondary amides by using titanium hydride and a diallylic
zinc reagent. The utility of this protocol was demonstrated
by performing a stereocontrolled total synthesis of (–)-cas-
toramine.
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