Syntheses of N-substituted benzimidazolone derivatives: DFT calculations, Hirshfeld surface analysis, molecular docking studies and antibacterial activities

Asmaa Saber, Nada Kheira Sebbar, Yusuf Sert, Nabil Alzaqri, Tuncer Hökelek, Lhoussaine El Ghayati, Ahmed Talbaoui, Joel T. Mague, Yassir Filali Baba, Martine Urrutigoîty, El Mokhtar Essassi

PII: S0022-2860(19)31283-9

DOI: https://doi.org/10.1016/j.molstruc.2019.127174

Reference: MOLSTR 127174

To appear in: Journal of Molecular Structure

Received Date: 24 July 2019

Revised Date: 28 September 2019

Accepted Date: 1 October 2019

Please cite this article as: A. Saber, N.K. Sebbar, Y. Sert, N. Alzaqri, T. Hökelek, L. El Ghayati, A. Talbaoui, J.T. Mague, Y.F. Baba, M. Urrutigoîty, E.M. Essassi, Syntheses of N-substituted benzimidazolone derivatives: DFT calculations, Hirshfeld surface analysis, molecular docking studies and antibacterial activities, *Journal of Molecular Structure* (2019), doi: https://doi.org/10.1016/j.molstruc.2019.127174.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

Syntheses of N-substituted benzimidazolone derivatives: DFT calculations, Hirshfeld surface analysis, molecular docking studies and antibacterial activities

Asmaa Saber^a, Nada Kheira Sebbar^{a,b,*}, Yusuf Sert^{c,*}, Nabil Alzaqri^d, Tuncer Hökelek^e, Lhoussaine El Ghayati^a, Ahmed Talbaoui^f, Joel T. Mague^g, Yassir Filali Baba^h, Martine Urrutigoîty^k, El Mokhtar Essassi^a

^aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014 Rabat, Morocco
^bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco
^cBozok University Department of Physics Yozgat/Turkey
^dDepartment of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
^e Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
^fLaboratoire de Biologie des Pathologies Humaines, Faculté des Sciences, Université Mohammed V, Rabat, Morocco,
^gDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA

^hLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, BP 2202 Fez, Morocco.

^kLaboratoire de Catalyse, Chimie Fine et Polymères, Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, 118 route de Narbonne, 31077 Toulouse Cedex 04, France.

Abstract

New benzimidazolone derivatives (2-5) were synthesized and characterized using NMR and single crystal X-ray diffraction techniques. Along with the experimental data, the predicted spectral data were also obtained using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. In addition, the closest contacts between the active atoms of the compounds were identified through Hirshfeld surface analyses, molecular docking studies, and DFT calculations. The antibacterial activities of derivatives (2-5) against gram-positive and gram-negative microbial strains, such as *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas aeruginosa* were also evaluated, and the results obtained showed the antibacterial activities of derivatives (2-5) using a minimum inhibitory concentration (MIC) assay.

Keywords: benzimidazolone, crystal structure, Hirshfeld surface, molecular docking, DFT, antibacterial activity.

Corresponding authors:

- Dr. Nada Kheira Sebbar
- Dr. Yusuf Sert

Tel: +212615011615; E-mail: snounousebbar@gmail.com, yusufsert1984@gmail.com

1. Introduction

In recent years, heterocyclic compounds have received considerable attention due to their significant importance in pharmacological and agricultural fields [1–7]. Notably, nitrogen heterocyclic compounds are known to exhibit excellent biological and pharmaceutical activities [3-5]. In fact, benzimidazole derivatives have been extensively studied in different areas of chemistry, including pharmaceutical and other chemical industries [5-7]. The benzimidazole core has several active sites and provides a great responsiveness, making it an excellent heterocyclic precursor in the syntheses of new heterocyclic compounds. With respect to the biological applications of benzimidazolone derivatives, these derivatives are found to possess potent antioxidant [8], antiparasitic [9], anthelmintic [10], antiproliferative [11], anti-HIV [12], anticonvulsant [13], antiinflammatory [14], antihypertensive [15], antineoplastic [16] and anti-trichinellosis [17] activities. In addition, they have been used as proteases, since proteases have been linked with several disease states, including thrombosis, inflammation, bronchoconstriction, and tumor growth and invasion [18]. The incorporation of the benzimidazolone nucleus is an important synthetic strategy in studies of antimicrobial drug discovery. Due to the varied bioactivities exhibited by the benzimidazoles, efforts have been made from time to time to generate libraries of these compounds and screen them for potential biological activities [18-23]. They have also been reported to function as precursors for the syntheses of the related compounds, such as N-ribosyl-dimethylbenzimidazole present in nature, which serves as an axial ligand for cobalt in vitamin B12 [24], and possesses anti-diabetic [25] and anti-corrosion activities [26-30]. Fig. 1 provides some examples of bioactive molecules possessing benzimidazole moieties [31-33].

In continuation of our research work on the development of N-substituted benzimidazole derivatives and evaluation of their potential pharmacological activities recently performed by our team [16, 34], it seemed interesting to prepare molecules of original structures incorporated with benzimidazole motifs and evaluate their activities. The synthesized compounds (2-5) were characterized by single crystal X-ray diffraction and Nuclear Magnetic Resonance (¹H and ¹³C NMR) techniques. The structures were confirmed by predicting the corresponding spectroscopic data and Z-matrix coordinates using DFT calculations at the B3LYP/6-31G(d,p) level of theory and molecular docking studies. The compounds (2-5) were evaluated further identified using Hirshfeld surface analyses, molecular docking studies and DFT calculations. Moreover, the antibacterial activities of the compounds (2-5) were evaluated

against gram-positive and gram-negative bacteria such as *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas aeruginosa*.

2. Material and methods

2.1. Spectral data measurements

The spectroscopic characterizations of the synthesized compounds (2-5) were achieved by recording NMR spectra, which were measured on a Bruker Avance DPX 300 instrument. The chemical shifts (δ) were expressed in ppm down field from TMS [tetramethylsilane, Si(CH₃)₄], which has been assigned to a chemical shift of zero, TMS as an internal reference. Thin layer chromatography (TLC) and column chromatography were carried out on silica plates (Merck 60 F254) and silica gel (Merck 60, 230-400 mesh), respectively. Melting points of the compounds (2-5) were measured in open capillaries and were uncorrected.

2.2. Syntheses of compounds (2-5) by alkylation reactions under PTC conditions.

Initially, we prepared benzimidazolone **2** by condensation of o-phenylenediamine **1** with ethyl acetoacetate in xylene at reflux for 6 h (**Step a**). Thereafter, 1-(prop-1-en-2-yl)-3-(prop-2-ynyl)-1H-benzimidazol-2(3H)-one **3** was prepared with a good yield (91%) *via* alkylation reaction of compound **2** by propargyl bromide under phase transfer catalysis (PTC) conditions using tetra-*n*-butylammonium bromide (TBAB) as a catalyst and potassium hydroxide as a base in CH₂Cl₂ at room temperature (**Step b**) (Scheme 1). In this paper, we present the synthesis of benzimidazolone **4** by means of N-3 deprotection (**Step c**) as described by Weber *et al*, 1992 [35] and Mondieig *et al*, 2013 [19]. The action of benzyl chloride on **4** in hot DMF, for 6 h in the presence of tetra *n*-butylammonium bromide (TBAB) as a catalyst and K₂CO₃ as a base, led to production of alkylated product **5** in good yield (76%) (**Step d**) (Scheme 1). The structures of the compounds (**2-5**) were determined by the usual spectroscopic methods, such as ¹H NMR, ¹³C NMR, and were further confirmed by X-ray crystallographic studies.

- (b): BrCH₂C=CH/ NaOH/ TBAB/ CH₂Cl₂;
- (**c**): Cold H₂SO₄ 50%, rt, 12 h;
- (d): CICH₂Ph, DMF, K₂CO₃, TBAB, rt, 24 h.

2.2.1. Experimental part:

* Procedure for the synthesis of 2: [36]

o-Phenylenediamine (1.0 g, 9 mmol) and ethyl acetoacetate (1.2 mL, 9 mmol) were heated in xylene (10 mL) for 6 h. The mixture was set aside for the growth of colourless crystals of N-isopropenyl benzimidazol-2-one (yield, 90%).

1-Isopropenyl-1H-1,3-benzimidazol-2(3H)-one: 2

Yield (%) = 90%; mp =392 K; ¹H NMR (300 MHz, CDCl₃): 22.24 (d, 3H, ⁴J_{H-H} = 3 Hz, CH₃),5.25 (d, 1H, ⁴J_{H-H} = 3 Hz, CH₂), 5.40 (d, 1H, ⁴J_{H-H} = 3 Hz, CH₂), 7.05-7.14 (m, 4H, CH_{arom}),10.00 (s, 1H, NH). ¹³C NMR (75 MHz, CDCl₃): 154.44 (C=O), 137.84 (Cq), 130.27 (Cq), 128.27 (Cq), 121.93 (CH_{arom}), 121.43 (CH_{arom}), 113.93 (CH₂), 109.79 (CH_{arom}), 109.14 (CH_{arom}), 20.22 (CH₃).

* Procedure for the synthesis of 3:

Propargyl bromide (11.4 mmol) was added to a mixture of 1-isopropenyl-1H-1,3benzimidazol-2(3H)-one **2** (5.7 mmol), potassium hydroxide (5.7 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in CH_2Cl_2 (15 mL). Stirring was continued at room temperature for 48 h. Salts were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue obtained was purified by recrystallization from ethanol to obtain colourless crystals in 91% yield.

1-(prop-1-en-2-yl)-3-(prop-2-ynyl)-1H-benzimidazol-2(3H)-one: 3

Yield (%) = 91; mp =331K; ¹H NMR (300 MHz, CDCl₃): 2.22 (d, 3H, ⁴J_{H-H} = 3 Hz, CH₃), 2.30 (t, 3H, ³J_{H-H} = 3 Hz, CH), 4.69 (d, 2H, ⁴J_{H-H} = 3 Hz, <u>CH₂C</u>=CH), 5.20 (d, 1H, ⁴J_{H-H} = 3 Hz, CH₂), 5.35 (d, 1H, ⁴J_{H-H} = 3 Hz, CH₂), 7.10-7.30 (m, 4H, CH_{arom}). ¹³C NMR (75 MHz, CDCl₃): 151.99 (C=O), 137.99 (Cq), 129.07 (Cq), 128.72 (Cq), 121.86 (CH_{arom}), 121.78 (CH_{arom}), 113.32 (CH₂), 109.20 (CH_{arom}), 108.57 (CH_{arom}), 77.06(CH), 72.82 (<u>C</u>=CH), 30.40 (CH₂), 20.22 (CH₃).

* Procedure for the synthesis of 4:

A solution of 1-(prop-1-en-2-yl)-3-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one **3** (7.0 mmol) in DMF (10 mL) was treated with a cold sulfuric acid solution (15 mL, 50%) for 12 h. The precipitate obtained was filtered, washed several times with water and subsequently with acetone, and dried to obtain **4**, in 75% yield [34].

1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one, 4

Yield (%) = 75; mp =399 K; ¹H NMR (300 MHz, DMSO): 3.31 (t, 1H, ${}^{3}J_{H-H} = 3$ Hz, CH), 4.68 (d, 2H, ${}^{4}J_{H-H} = 3$ Hz, <u>CH₂</u>C=CH), 7.04-7.21 (m, 4H, CH_{arom}), 10.99 (s, 1H, NH).¹³C NMR (75 MHz, DMSO):154.01 (C=O), 129.79 (Cq), 128.72 (Cq), 121.86 (CH_{arom}), 121.17 (CH_{arom}), 109.44 (CH_{arom}), 108.75 (CH_{arom}), 79.01 (CH), 74.99 (<u>C</u>=CH), 29.85 (CH₂).

* Procedure for the synthesis of 5: [37]

To a solution of 1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one (3.42 mmol), benzyl chloride (6.81 mmol), and potassium carbonate (6.42 mmol) in DMF (15 mL), a catalytic amount of tetra- n-butylammonium bromide (0.37 mmol) was added. The mixture was stirred for 24 h, the solid material was removed by filtration, and the solvent was evaporated under vacuum. The solid product obtained was purified by recrystallization from ethanol to obtain colourless crystals in 76% yield.

1-benzyl-3-(prop-2-ynyl)-benzimidazol-2-one, 5

Yield (%) = 76; mp =361 k; ¹H NMR (300 MHz, CDCl₃): 2.30 (t, 1H, ${}^{3}J_{H-H} = 3$ Hz, CH), 4.72 (d, 2H, ${}^{4}J_{H-H} = 3$ Hz, <u>CH₂C</u>=CH), 5.07 (s, 2H, CH₂), 6.87-7.32 (m, 9H, CH_{arom}). ¹³C NMR (75 MHz, DMSO): 153.65 (C=O), 136.17 (Cq), 129.38 (Cq), 128.82 (2CH_{arom}), 128.57 (Cq), 127.80 (CH_{arom}), 127.55(2CH_{arom}), 121.83 (CH_{arom}), 121.58 (CH_{arom}), 108.54 (CH_{arom}), 108.50 (CH_{arom}), 77.16(CH), 72.81 (<u>C</u>=CH), 45.10 (CH₂-Ph), 30.67 (CH₂).

2.3. Single crystal X-ray diffraction

2.3.1. Crystal structures of benzimidazole derivatives (2-5)

The molecular and crystal structures of the benzimidazole derivatives (2-5), which were obtained by condensation, N-3 deprotection and alkylation reactions were clarified. It is interesting to note that all compounds crystallize in the monoclinic system with the space groups of $P2_1/c$ (for compounds 3-5) and C 2/c (for compound 2). The crystallographic data have been deposited in Cambridge Crystallographic Data Center (CCDC) with the deposition numbers of CCDC NC2184 (for compound 2), CCDC 1941910 (for compound 3), CCDC GK2546 (for compound 4) and CCDC 1879758 (for compound 5).

2.4. Theoretical details

Recently, Density Functional Theory (DFT) method has been demonstrated to have an advantage in computations of organic or inorganic compounds because of its superiority over other methods. This method is very crucial due to both cost of calculations and reliable results

for complex molecules in quantum chemistry; the foundation of this method was established in the 1970s. From a literature survey, we can say that the DFT method is used in many fields from dense matter physics and computational physics to computational chemistry and the method is both popular and versatile. In this theorem an "s" function, usually Becke 3-Lee-Yang-Parr (B3LYP) is preferred, which is probably the best one [38, 39]. In this study, for computations by the B3LYP and 6-31G(d,p) methods, the basis set was selected and all calculations were carried out employing the Gaussian 09W package program [40]. Furthermore, the Gauss View 9 interface program [41] was used for visualization of properties of the computed quantities. Firstly, molecular optimizations of the compounds (2-5) were carried out starting with the atom coordinates determined by the crystallographic studies and other computations were made based on the optimized structures. Calculations of the intermolecular interactions were performed using the Crystal Explorer 3.1 program [42]; this method is known as the Hirshfeld surface analysis. Also, in this study, Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) analysis of the compounds (2-5) were performed and the distributions of the groups were obtained using the Chemissian software [43]. Later, ¹H and ¹³CNMR chemical shifts of the compounds (2-5) were computed by using the GIAO-Gauge-Including Atomic Orbital approach with the B3LYP functional and a 6-31G(d,p) basis set, and then compared with the experimental NMR spectra in a DMSO solution. Finally, molecular docking studies between the compounds (2-5) and topoisomerase II enzyme (PDB code: 1JIJ) were carried out employing the AutoDockVina free software program [44].

3. Results and discussion

3.1. Molecular Structures

As can be seen in Fig. 3, the compounds (2-5) are out of plane (all structures have C_1 symmetry) and the atom numbering schemes were those used in the structure determinations. Each compound was optimized starting from the observed crystal structure using the B3LYP method and 6-31G(d,p) basis set and the bond lengths and angles were determined. Important optimized parameters and their experimental values are given in Table 2. The experimental values were in the solid phase but the calculated values were in the gas phase, so some differences may be seen as frequently occured.

To the best of our knowledge, no computational analysis of 3 appears in the literature; however, compounds (2, 4 and 5) were examined as previously reported [36-37]. When we

focused on the benzimidazol-2-one group, which is common to all structures, the N1-C7, N2-C7, and O1=C7 bond lengths were calculated as 1.390 Å, 1.409 Å and 1.219 Å (for **2**), 1.404 Å, 1.395 Å and 1.221 Å (for **3**), 1.400 Å, 1.391 Å and 1.220 Å (for **4**) and 1.392 Å, 1.396 Å and 1.225 Å (for **5**), respectively, using the B3LYP method and 6-31G(d,p) basis set.

Regarding 1-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-6-methoxy-1H-benzimidazol-2(3H)-one [45], the N1-C1, N2-C1, and O1-C1 (according to the given atom numbering scheme) the bond lengths were calculated as 1.359 Å, 1.383 Å and 1.242 Å, respectively, using the DFT/B3LYP method/function. In this study, the basis set, D95V++**, by El Bakri *et. al* [45] was used.

In the present study, the N1-C7-O1, N2-C7-O1 and N1-C7-N2 bond angles were computed as 127.0° , 128.0° and 105.0° (for **2**), 128.0° , 126.2° and 105.7° (for **3**), 127.1° , 128.1° and 104.8° (for **4**) and 127.3° , 127.0° and 105.8° (for **5**), respectively, employing the DFT/B3LYP method and 6-31G(d,p) basis set. For 1-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-6-methoxy-1H-benzimidazol-2(3H)-one [45], the N1-C1-O1, N2-C1-O1 and N1-C1-N2 bond angles were calculated as 127.82° , 125.65° and 106.53° , respectively, using the DFT/B3LYP method and D95V++** basis set level. Furthermore, comparison of the selected theoretical bond lengths and angles by the B3LYP method and 6-31G(d,p) basis set show that there is an excellent agreement between them. The other optimized molecular structure parameters can be seen and compared in Table 2.

3.2. Hirshfeld surface calculations

The Hirshfeld surface analyses of the compounds (2-5) were carried out by using Crystal Explorer 3.1 program [41]. In these calculations, the experimental atom positions were used to obtain the intermolecular contacts and the contributions of the inter-contacts related to the Hirshfeld surfaces, which are presented in Figs. 4 (a-d) and Figs. S1-S3 (Supporting Information a-d since Hirshfeld surface analyses have been reported previously for the compounds 2, 4 and 5). For 3, Fig. 4 (a) represents the 3D Hirshfeld surface (D_{norm}), and Figs. 4 (b-d) represent the 2D fingerprint plots. In the figures, the three colours are represented on the surfaces; red, blue and white. The dark red spots indicate powerful hydrogen bond points in the crystals, white spots indicate contacts near the van der Waals separation, and blue spots indicate longer contacts [46-49]. As can be seen in Fig. 4 (a), the interacting distances for O-H, H-H, and C-H bonds were obtained as 2.326 Å, 2.525 Å to 2.863 Å, and 2.958 Å to 3.659

Å, respectively. Finally, the contributions of the inter-contacts to the Hirshfeld surfaces are H-H (52.2%), C-H/H-C (23.8%) and O-H/H-O (11%); the quantitative results of the Hirshfeld surface analysis are shown in Figs. 4 (b-d).

3.3. HOMO-LUMO Analyses

Considering the fact that HOMO-LUMO energies are the key factors in defining quantum chemical interactions, the importance of this analysis becomes clearer [50]. The highest occupied molecular orbital (HOMO) energies, the lowest unoccupied molecular orbital (LUMO) energies, and their related quantities and orbital distributions (percentage distribution according to the related groups) of the compounds (2-5) were computed using the DFT/B3LYP method and 6-31G(d,p) basis set. The contributions to HOMOs and LUMOs, and HOMO and LUMO energy values and other related parameters of the compounds (2-5) are tabulated in Tables 3 and 4, respectively, and the resulting orbital pictures are shown in Fig. 5. In Table 3, the contributions to HOMOs and LUMOs are determined by employing the Chemissian software [43] as shown. As can be seen, the group with the highest electron density is the benzimidazol-2-one moiety for both HOMO and LUMO distributions, that is, both HOMOs and LUMOs are mainly concentrated in this group. This indicates that the electronic transitions and charge transfers are over this group. Additionally, the HOMO-LUMO gaps of the compounds (2-5) were calculated as 5.401 eV, 5.426 eV, 5.500 eV and 5.381 eV, respectively. From these results, we can conclude that the sum of the electronic and zero-point energies of compound 5 is relatively low (the most stable structure according to the energy results) and its gap is small. Furthermore, by using HOMO and LUMO values, other crucial parameters such as the ionization potential, electron affinity, chemical hardness, electronic chemical potential, electrophilicity index and softness were also calculated (Table 3).

3.4. NMR Analyses

The theoretical ¹H-NMR and ¹³C-NMR chemical shifts were calculated using CDCl₃ solutions (for **2**, **3** and **5**) and d⁶-DMSO (for **4**) by the DFT/B3LYP and 6-31G(d,p) basis set method with the application of IEFPCM model and GIAO method. The experimental and calculated proton ¹H- and ¹³C-NMR chemical shifts are shown in Tables 5 and 6.

3.5. Molecular Docking Studies

For understanding the binding interactions between a ligand and its receptor, molecular docking studies are very important especially for drug design. In this section, molecular docking analyses were performed with the help of the AutoDockVina program [44]. In the computations, both the ligands and receptor pdb (protein data bank) formats were prepared using the Discover Studio Visualizer 4.0 (DSV 4.0) software [51] and pdb format for the target receptor was obtained from the Protein Data Bank [52, 53]. For the analysis between the ligands (2-5) and topoisomerase II enzyme-1 JIJ (receptor), the molecular docking positions (grid positions) were taken as 38x58x124 Å³, 40x40x126 Å³, 40x40x126 $Å^3$ and 44x52x126 $Å^3$, respectively. According to the rotatable bonds of the ligands (2-5), ten modes were superposed and their affinity energy values and root mean square (RMS) values were calculated (Table 7). From Table 7, we can surmise that the best docking pose is between 4 and 1JIJ receptor with a binding energy of -6.6 kcal/mol involving two hydrogen bonds. Additionally, the inhibition constant (K_i) is 14.5266×10^{-6} M (for 4) derived from $K_i = \exp(\Delta G/RT)$, where ΔG , R and T are the binding free energy, gas constant (1.9872036 × 10⁻³ kcal/mol) and room temperature (298.15 K), respectively. This docking model is shown in Figs. 6 (a and b). Most of the hydrogen bonding interactions (Figure 6) is between the GLU302 residue and H1 with a bond distance of 2.94 Å and between LYS305 residue and O1 atom with a 3.09 Å distance, additionally, there are π - π stacking interactions between the PHE273-PHE306 residues and the centroid of the benzimidazole unit. For ligands (2, 3 and 5), the molecular docking surfaces around the ligands and 2D structures are given in Figs. S4-S6 (Supporting Information).

Finally, the molecular docking results revealed that ligands (2, 3 and 5) may exhibit some activities against the active site of topoisomerase II enzyme; from this point of view, this study will be useful to take a step forward for future antibacterial studies.

4. Study of Antibacterial activity

4.1. Microorganism used and inoculum preparation

The microorganisms tested included the following bacteria: Staphylococcus aureus (*ATCC-25923*), Escherichia coli (*ATTC-25922*), and Pseudomonas aeruginosa (*ATCC-27853*). All pathogenic microorganisms isolated from patients were stored in the culture

collection of the Microbiology Department (Microthec Unity) at the National Institute of Hygiene (Rabat, Morocco). They were maintained in a brain heart infusion (BHI) at -80 °C. Prior to the experiment, the cultures were prepared by sub-culturing 1 mL of each culture stock in 9 mL of BHI broth.

4.2. Disc diffusion method

The "agar disc diffusion method" was employed for the determination of the antibacterial activities of the synthesized compounds (2-5). The principle of this technique is to estimate the bacteriostatic activities of the antibacterial agents by measuring the growth inhibition zones of the bacteria around the discs impregnated with the test samples placed on the agar plates. It is mostly used as a preliminary step to further studies, because it provides access to essential qualitative results. We have adapted a similar method described in some studies [54, 55]. The test samples were firstly dissolved in DMSO (1%), which does not have an adverse effect on microbial growth. Briefly, the test was performed in sterile petri plates containing an agar medium. Sterile medium (30 mL) was poured into petri plates, and after solidification, 100 µL [10⁶ colony-forming units (cfu)/mL] of fresh cultures of different bacterial species (one microorganism per petri plate) were swabbed on the plates. Sterile filter paper discs (6 mm in diameter), impregnated with 6 µL of each sample at a concentration of 50 mg/mL, were placed on the surface of the agar. The petri plates were sealed with sterile laboratory film to avoid evaporation of the test samples, and then incubated at 30 °C for 24 h. Diameters of the inhibition zones were measured in millimetres (mm). In addition, the antibacterial activities of the synthesized compounds (2-5) were compared with commercially available antibiotics, such as chloramphenicol (Chlor) and ampicillin (Amp). 1% DMSO alone was used as a negative control. The plates were then incubated at 37 °C for 24 h. After incubation, the diameter of the zones of inhibition were measured in mm and recorded [56, 57]. The experiment was carried out in triplicate. Compounds (2-5) showed an average antibacterial activity (Figure 7 and Table 8).

The results are presented in the form of antibiograms below:

Disc diffusion assays were employed to determine the MIC of the compounds (2-5). The results of the antibacterial activity of the compounds (2-5) exhibit growth inhibition in the three bacterial strains (*Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas aeruginosa*). Compound 2 obtained by the condensation of o-phenylenediamine 1 with ethyl acetoacetate gave an anti-bacterial activity of MIC = 12.5 μ g/mL for *Staphylococcus aureus*,

Pseudomonas aeruginosa, and **MIC** = 3.125 µg/mL for *Escherichia coli*. Moreover, in order to increase the inhibitory activity of **2** we alkylated it with propargyl bromide. Interestingly, the presence of a prop-1-yne group in compounds (**3**, **4**, and **5**) showed a similar activity against the two bacterial strains as that tested by **5**, with an **MIC** of 12.5 µg/mL for *Escherichia coli* and *Pseudomonas aeruginosa* and **MIC** = 3.125 µg/mL for *Staphylococcus aureus*. However, compound **3** showed a better activity with an MIC of 6.25 µg/mL for *Staphylococcus aureus*, 25 µg/mL for *Pseudomonas aeruginosa*, and 12.5 µg/mL for *Escherichia coli*. Indeed, the deprotection of N-3 of compound **3** also showed a better activity, with an MIC of 12.5 µg/mL for *Staphylococcus aureus* and 25 µg/mL for *Pseudomonas aeruginosa*. Notably that the derivatives functionalized with ester groups and benzene rings possess the highest antibacterial activity (92% of the pathogenic bacteria were sensitive to these compounds). Studies, such as, anti-inflammatory, anti-fungal, antiparasitic, and anti-cancer tests should also be performed, as the literature reveals a lot of interesting results on these subjects. Also, other bacteria should be tested to expand this investigation.

5. Conclusions

The studies performed in this work show that benzimidazole constitutes an interesting core present in several drugs and natural products Moreover, we report the synthesis of novel benzimidazole derivatives **2-5**. Their structures have been elucidated thanks to X-ray crystallography and spectroscopic techniques. The theoretical approach used allows a relatively good reproduction of X-ray geometrical parameters, spectral data, and ¹H and ¹³C NMR chemical shifts. Hirshfeld surface analysis was employed to confirm the existence of intermolecular interactions in compounds **2-5**. The experimental spectroscopic data were well reproduced by using quantum chemical DFT and in silico based molecular docking studies. The benzimidazolone derivatives **2-5** exhibited antibacterial activity and could act as potent antibacterial compounds.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for participating in this work through research group no (RG- 1440-141). Authors would like to thank Prof. Dr. Fatih Ucun for his helpful contribution and Gaussian Calculations and JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Abbreviations

Chlor-Chloramphenicol; Amp-Ampicillin; DMSO-dimethylsulfoxyde MIC-Minimum Inhibitor Concentration BHI-Brain heart infusion HOMO-highest occupied molecular orbital LUMO-lowest unoccupied molecular orbital DSV 4.0-Discover Studio Visualizer 4.0

References

[1] Y. Özkay, Y. Tunalı, H. Karaca, İ. Işıkdağ, Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety, European journal of medicinal chemistry 45(8) (2010) 3293-3298.

[2] S. Kumar, R. Saini, H. Singh, Silver selective benzimidazol-2 (1H)-one based, sulphurcontaining podands, Journal of inclusion phenomena and molecular recognition in chemistry 11(2) (1991) 115-119.

[3] S.-P. Olesen, E. Munch, P. Moldt, J. Drejer, Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone, European journal of pharmacology 251(1) (1994) 53-59.

[4] G.S. Baxter, D.E. Clarke, Benzimidazolone derivatives act as 5-HT4 receptor ligands in rat oesophagus, European journal of pharmacology 212(2-3) (1992) 225-229.

[5] G. Rémond, B. Portevin, J. Bonnet, E. Canet, D. Regoli, G. De Nanteuil, Pharmacological profile of a novel series of NK1 antagonists. In vitro and in vivo potency of benzimidazolone derivatives, European journal of medicinal chemistry 32(11) (1997) 843-868.

[6] L. Al-Nakkash, S. Hu, M. Li, T.-C. Hwang, A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs, Journal of Pharmacology and Experimental Therapeutics 296(2) (2001) 464-472.

[7] A. Cuthbert, M. Hickman, P. Thorn, L. MacVinish, Activation of Ca2+-and cAMP-sensitive K+ channels in murine colonic epithelia by 1-ethyl-2-benzimidazolone, American Journal of Physiology-Cell Physiology 277(1) (1999) C111-C120.

[8] M. Gaba, S. Singh, C. Mohan, Benzimidazole: an emerging scaffold for analgesic and antiinflammatory agents, European journal of medicinal chemistry 76 (2014) 494-505.

[9] G. Ayhan Kılcıgil, C. Kus, E.D. Özdamar, B. Can Eke, M. Iscan, Synthesis and antioxidant capacities of some new benzimidazole derivatives, Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 340(11) (2007) 607-611.

[10] G. Navarrete-Vázquez, R. Cedillo, A. Hernández-Campos, L. Yépez, F. Hernández-Luis, J. Valdez, R. Morales, R. Cortés, M. Hernández, R. Castillo, Synthesis and antiparasitic activity of 2-(trifluoromethyl) benzimidazole derivatives, Bioorganic & medicinal chemistry letters 11(2) (2001) 187-190.

[11] E. Ravina, R. Sanchez-Alonso, J. Fueyo, M. Baltar, J. Bos, R. Iglesias, M. Sanmartin, Antiparasitic activity of some New Caledonian medicinal plants, Arzneim. Forsch 43 (1993) 684-694.

[12] L. Garuti, M. Roberti, M. Malagoli, T. Rossi, M. Castelli, Synthesis and antiproliferative activity of some benzimidazole-4, 7-dione derivatives, Bioorganic & medicinal chemistry letters 10(19) (2000) 2193-2195.

[13] A. Rao, A. Chimirri, E. De Clercq, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappalà, Synthesis and anti-HIV activity of 1-(2, 6-difluorophenyl)-1H, 3H-thiazolo [3, 4-a]

benzimidazole structurally-related 1, 2-substituted benzimidazoles, Il Farmaco 57(10) (2002) 819-823.

[14] P.A. Thakurdesai, S.G. Wadodkar, C.T. Chopade, Synthesis and anti-inflammatory activity of some benzimidazole-2-carboxylic acids, Pharmacologyonline 1 (2007) 314-329.

[15] B. Serafin, G. Borkowska, J. Główczyk, I. Kowalska, S. Rump, Potential antihypertensive benzimidazole derivatives, Polish journal of pharmacology and pharmacy 41(1) (1989) 89-96.

[16] A.-h. Abdel-monem, New synthesis and antineoplastic activity of substituted 3, 4-dihydroand 1, 2, 3, 4-tetrahydro-benzo [4, 5] imidazo [1, 2-a] pyrinnidine derivatives, Arch. Pharm. Res 30 (2007) 78-684.

[17] A.T. Mavrova, P. Denkova, Y.A. Tsenov, K.K. Anichina, D.I. Vutchev, Synthesis and antitrichinellosis activity of some bis (benzimidazol-2-yl) amines, Bioorganic & medicinal chemistry 15(18) (2007) 6291-6297.

[18] J. Béahdy, Recent developments of antibiotic research and classification of antibiotics according to chemical structure, Advances in applied microbiology, Elsevier1974, pp. 309-406.

[19] D. Mondieig, L. Lakhrissi, A. El Assyry, B. Lakhrissi, P. Negrier, E.M. Essassi, M. Massoui, J.M. Leger, B. Benali, Synthesis and structural study of some bis-benzimidazol-2-one derivatives by x-ray diffraction, Moroccan Journal of Heterocyclic Chemistry 12(1) 51-61.

[20] B. Lakhrissi, A. Benksim, M. Massoui, E.M. Essassi, V. Lequart, N. Joly, D. Beaupère, A. Wadouachi, P. Martin, Towards the synthesis of new benzimidazolone derivatives with surfactant properties, Carbohydrate research 343(3) (2008) 421-433.

[21] Y. Ouzidan, Y. Kandri Rodi, F.R. Fronczek, R. Venkatraman, L. El Ammari, E.M. Essassi, 1, 3-Bis [2-(2-0x0-1, 3-0xazolidin-3-yl) ethyl]-1H-benzimidazol-2 (3H)-one, Acta Crystallographica Section E: Structure Reports Online 67(2) (2011) 0362-0363.

[22] A. Saber, N.K. Sebbar, T. Hökelek, B. Hni, J.T. Mague, E.M. Essassi, Crystal structure and Hirshfeld surface analysis of 1-{[2-oxo-3-(prop-1-en-2-yl)-2, 3-dihydro-1H-1, 3-benzodiazol-1-yl] methyl}-3-(prop-1-en-2-yl)-2, 3-dihydro-1H-1, 3-benzodiazol-2-one, Acta Crystallographica Section E: Crystallographic Communications 74(12) (2018) 1746-1750.

[23] D. Mondieig, P. Negrier, J.-M. Léger, L. Lakhrissi, A. El Assyry, B. Lakhrissi, E.M. Essassi, B. Benali, A. Boucetta, Synthesis and structural study of N-isopropenylbenzimidazolone, Russian Journal of Physical Chemistry A 89(5) (2015) 807-811.

[24] R. Walia, M. Hedaitullah, S.F. Naaz, K. Iqbal, H. Lamba, Benzimidazole derivatives-an overview, IJRPC 1(3) (2011) 565-574.

[25] B. Kumar, P. Rao, Synthesis and structural studies on transition metal complexes derived from 1-(2-thienyl)-1-ethanole-1H-benzimidazole, Asian J Chem 18 (2006) 3060-3064.

[26] T. Yanardag, S. Dinçer, A. Aksüt, Corrosion inhibition efficiency of benzimidazole and benzimidazole derivatives for zinc, copper and brass, Asian Journal of Chemistry 24(1) (2012) 47-52.

[27] X. Wang, Y. Wan, Y. Zeng, Y. Gu, Investigation of benzimidazole compound as a novel corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Electrochem. Sci 7 (2012) 2403-2415.

[28] Y. Abboud, B. Hammouti, A. Abourriche, B. Ihssane, A. Bennamara, M. Charrouf, S. Al-Deyab, 2-(O-Hydroxyphenyl) benzimidazole as a new corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Electrochem. Sci 7 (2012) 2543-2551.

[29] M. Benabdellah, A. Tounsi, K. Khaled, B. Hammouti, Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as corrosion inhibitor for mild steel in hydrochloric acid solutions, Arabian Journal of Chemistry 4(1) (2011) 17-24.

[30] H. Shukla, G. Udayabhanu, M. Mirdha, S. Mondal, Synergistic corrosion inhibition of mild steel by some Mercaptobenzidazol compounds with halide ions in sulfuric acid solution, 56 (2013) 13363-13369.

[31] J. Shukla, S. SAXENA, R. RASTOGI, SYNTHESIS OF SOME NEWER. 1-HETEROCYCLIC AMINO/IMINOMETHYL-2-SUBSTITUTED BENZIMIDAZOLES AS A POTENT CNS; ANTICONVULSANT AND MONOAMINEOXIDASE INHIBITORY AGENTS, Current Science (1982) 820-822.

[32] Z. Ateş-Alagöz, C. Kuş, T. Çoban, Synthesis and antioxidant properties of novel benzimidazoles containing substituted indole or 1, 1, 4, 4-tetramethyl-1, 2, 3, 4-tetrahydro-naphthalene fragments, Journal of enzyme inhibition and medicinal chemistry 20(4) (2005) 325-331.

[33] J. Bariwal, A. Shah, M. Kathiravan, R. Somani, J. Jagtap, K. Jain, Synthesis and antiulcer activity of novel pyrimidylthiomethyl-and pyrimidylsulfinylmethyl benzimidazoles as potential reversible proton pump inhibitors, Indian Journal of Pharmaceutical Education and Research 42(3) (2008) 225-231.

[34] A. Saber, N.K. Sebbar, T. Hökelek, Y. Ouzidan, Y.K. Rodi, M. Elhafi, J.T. Mague, E.M. EssassI, crystal structure and hirshfeld surface analysis of 1-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazo-2-one, Moroccan Journal of Heterocyclic Chemistry 17(2) (2018) 92-101.

[35] E. Weber, M. Piel, H.J. Buschmann, E. Cleve, Synthese und Komplexbildung eines neuen makrocyclischen Liganden mit drei Benzimidazolin 2 on Einheiten, Chemische Berichte 125(11) (1992) 2483-2485.

[36] A. Saber, H. Zouihri, E.M. Essassi, S.W. Ng, 1-Isopropenyl-1H-1, 3-benzimidazol-2 (3H)one, Acta Crystallographica Section E: Structure Reports Online 66(6) (2010) 01409-01409.

[37] A. Saber, N.K. Sebbar, T. Hökelek, J. Mague, E. Essassi, Crystal structure and Hirshfeld surface analysis of 1-benzyl-3-(prop-2-yn-1-yl)-2, 3-dihydro-1H-1, 3-benzodiazol-2-one, Acta Crystallographica Section E: Crystallographic Communications 74(12) (2018) 1842-1846.

[38] A.D. Becke, Density functional thermochemistry. I. The effect of the exchange only gradient correction, The Journal of chemical physics 96(3) (1992) 2155-2160.

[39] R.G. Parr, Density functional theory of atoms and molecules, Horizons of Quantum Chemistry, Springer1980, pp. 5-15.

[40] M.J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 01, Gaussian, Inc.: Wallingford, CT (2009).

[41] R. Dennington, T. Keith, J. Millam, GaussView, version 5, Semichem Inc.: Shawnee Mission, KS (2009).

[42] M. Turner, J. McKinnon, S. Wolff, D. Grimwood, P. Spackman, D. Jayatilaka, M. Spackman, CrystalExplorer. Version 17. University of Western Australia, 2017.

[43] S. Leonid, Chemissian software 2017. <u>www.chemissian.com</u>.

[44] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of computational chemistry 31(2) (2010) 455-461.

[45] Y. El Bakri, C.-H. Lai, J. Sebhaoui, A.B. Ali, Y. Ramli, E.M. Essassi, J.T. Mague, Synthesis, crystal structure, Hirshfeld surface analysis, and DFT calculations of new 1-[(1-benzyl-1H-1, 2, 3-triazol-4-yl) methyl]-6-methoxy-1H-benzimidazol-2 (3H)-one, Chemical Data Collections 17 (2018) 472-482.

[46] Y.F. Baba, Y. Sert, Y.K. Rodi, S. Hayani, J.T. Mague, D. Prim, J. Marrot, F.O. Chahdi, N.K. Sebbar, E.M. Essassi, Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, molecular docking studies and DFT calculations, and antioxidant activity of 2oxo-1, 2-dihydroquinoline-4-carboxylate derivatives, Journal of Molecular Structure 1188 (2019) 255-268.

[47] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoretica chimica acta 44(2) (1977) 129-138.

[48] J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals, Acta Crystallographica Section B: Structural Science 60(6) (2004) 627-668.

[49] M.A. Spackman, P.G. Byrom, A novel definition of a molecule in a crystal, Chemical physics letters 267(3-4) (1997) 215-220.

[50] Z. Zhou, R.G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution, Journal of the American Chemical Society 112(15) (1990) 5720-5724.

[51] <u>https://www.3dsbiovia.com/</u>.

[52] X. Qiu, C.A. Janson, W.W. Smith, S.M. Green, P. McDevitt, K. Johanson, P. Carter, M. Hibbs, C. Lewis, A. Chalker, Crystal structure of Staphylococcus aureus tyrosyl \Box tRNA synthetase in complex with a class of potent and specific inhibitors, Protein Science 10(10) (2001) 2008-2016.

[53] RCSB. <u>https://www.rcsb.org/</u>.

[54] J. Sirot, Bactériologie Médicale, Flammarion, Paris, France (1990).

[55] L. Prescott, J. Harley, D. Klein, Microbiology, Wm. C. Brown Communication, Inc., 2nd. Edition, USA 912 (1993) 325-343.

[56] S.M. Finegold, W.J. Martin, Diagnostic microbiology, Diagnostic microbiology, CV Mosby1982.

[57] D. Alderman, P. Smith, Development of draft protocols of standard reference methods for antimicrobial agent susceptibility testing of bacteria associated with fish diseases, Aquaculture 196(3-4) (2001) 211-243.

Figure Captions

Figure 1. Examples of bioactive molecules derived from benzimidazoles.

Figure 2. ORTEP plots with the ellipsoids drawn at the 50% probability level of the compounds (2-5). 2: 1-(prop-1-en-2-yl)-1H-benzoimidazol-2(3H)-one: [31]; 3: 1-(prop-1-en-2-yl)-3-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one; 4: 1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one and 5: 1-benzyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol -3-one.

Figure 3. The optimized structures of benzodiazaol-2-one derivatives (2-5).

Figure 4. The 3D Hirshfeld surface (a) and 2D fingerprint histograms of **3**.

Figure 5. HOMO and LUMO plots of **2-5** in B3LYP/6-31G(d,p).

Figure 6. The molecular docking results of **4** with 1JIJ protein, surfaces around ligand (a) and 2D forms (b).

Figure 7. Antibacterial activities of the compounds (2-5) vis-a-vis bacteria tested (*Staphylococcus aureus, Escherichia* coli and *Pseudomonas aeruginosa*) are summarized in the figure below. Chlor, Chloramphenicol (30 μ g/mL); Amp, Ampicillin (10 μ g/mL); DMSO, dimethylsulfoxyde (1%).

Journal Pre-proof	

Table 1. Experimental det	tails			
	<i>Compound</i> 2 [36]	Compound 3	Compound 4	Compound 5
		Crystal data		
CCDC Deposition	NC2184	1941910	GK2546	1879758
number				
Chemical formula	$C_{10}H_{10}N_2O$	$C_{13}H_{12}N_2O$	$C_{10}H_8N_2O$	$C_{17}H_{14}N_2O$
Mr	174.20	212.25	172.18	262.30
Crystal system, space group	Monoclinic, C2/c	<i>Monoclinic</i> , P2 ₁ /c	<i>Monoclinic</i> , P2 ₁ /c	<i>Monoclinic</i> , P2 ₁ /c
Temperature (K)	100	150	150	298
	15.8724 (2),	15.3197 (4),	4.5116 (2), 17.9709	8.3567 (2), 9.2040
a, b, c (Å)	6.0971 (1),	9.4602 (2),	(7), 10.6508 (4)	(2), 17.7868 (4)
	17.9313 (3)	7.2933 (2)		
β (°)	90.961 (2)	92.467 (1)	94.405 (2)	94.559 (1)
V (Å3)	1735.07 (5)	1056.02 (5)	860.99 (6)	1363.74 (5)
Z	8	4	4	4
Radiation type	$Mo K_{\alpha}$	$Cu K_{\alpha}$	$Cu K_{\alpha}$	$Cu K_{\alpha}$
μ (mm-1)	0.09	0.69	0.72	0.64
Crystal size (mm)	$0.35 \times 0.30 \times 0.18$	$0.28 \times 0.12 \times 0.05$	$0.37 \times 0.09 \times 0.02$	$0.23 \times 0.20 \times 0.19$
		Data collection		
	Bruker X8 APEXII	Bruker D8	Bruker D8	Bruker D8
Diffractometer		VENTURE	VENTURE	VENTURE
Diffactoficter		PHOTON 100	PHOTON 100	PHOTON 100
		CMOS	CMOS	CMOS
No. of measured,	2231	7854, 2053, 1838	6789, 1586, 1319	13551, 2778, 2433
independent and				
observed $[1 > 2\sigma(1)]$				
reflections	0.020	0.000	0.050	0.000
Rint	0.023	0.030	0.053	0.032
		Refinement	0.041.0100.110	0.000 0.100 1.05
$R[F2> 2\sigma(F2)], wR(F2),$	0.039, 0.114, 0.98	0.036, 0.090, 1.05	0.041, 0.100, 1.13	0.038, 0.108, 1.05
S		2052	1506	2550
No. of reflections	2506	2053	1586	2778
No. of parameters	123	183	150	238
$\Delta \rho max$, $\Delta \rho min$ (e A–3)	0.39, 0.21	0.24, -0.25	0.18, -0.22	0.15, -0.12

Table 2. The selected optimized structure parameters of the title compounds (2-5)							
Bo	ond angles (°)			Bond lenghts (Å)	1		
Optimized bond	X-Ray	DFT/B3LYP/	Optimized	X-Ray	DFT/B3LYP/		
angles	2	6-31 G(d,p)	bond lenghts		6-31 G(d,p)		
¥		Compo	und 2				
C7—N1—C1	110.29(7)	111.5	01—C7	1.2338 (11)	1.219		
C4—C5—H5	121.5	121.2	С3—Н3	0.9500	1.085		
C7—N1—H1	122.5 (11)	121.1	N1—C7	1.3663 (11)	1.390		
C1—N1—H1	127.2 (11)	127.3	C4—C5	1.3963 (13)	1.400		
C5-C6-N2	131.94 (8)	132.1	N1-C1	1.3868 (11)	1.388		
01—C7—N2	125.86 (8)	128.0	C4—H4	0.9500	1.085		
01	127.42 (8)	127.0	N1—H1	0.871 (9)	1.006		
C6—N2—C8	126.52 (7)	126.8	C5—C6	1.3827 (12)	1.390		
C7—N2—C6	109.21 (7)	106.6	N2—C7	1.3878 (11)	1.409		
C9—C8—N2	119.50 (8)	120.1	N2—C6	1.4016 (10)	1.405		
N1-C1-C6	107.14 (7)	106.5	C8—C9	1.3225 (14)	1.337		
C1—C2—C3	117.45 (9)	117.6	N2—C8	1.4319 (11)	1.430		
C4—C3—C2	120.99 (9)	120.9	C8—C10	1.4960 (13)	1.504		
N2-C8-C10	115.54 (8)	115.6	C1—C6	1.3999 (11)	1.410		
C2-C1-N1	131.46 (8)	131.8					
N1-C7-N2	106.72 (7)	105.0					
C7—N2—C8	124.13 (7)	123.5					
		Compo	und 3	L			
C7—N1—C6	109.41(10)	109.5	N2-C11	1.4525(16)	1.450		
C7—N1—C8	123.86(10)	123.5	01—C7	1.2233(15)	1.221		
C6—N1—C8	126.44(10)	126.9	N1—C7	1.3925(15)	1.404		
C7—N2—C1	110.51(10)	110.5	N1-C6	1.4035(16)	1.405		
C7—N2—C11	123.10(11)	121.6	N1—C8	1.4301(15)	1.430		
C1—N2—C11	126.22(11)	127.7	N2—C7	1.3812(16)	1.395		
C2-C1-N2	130.92(11)	131.4	N2-C1	1.3890(16)	1.391		
C2-C1-C6	122.11(11)	121.6	C8—C9	1.3280(19)	1.336		
N2-C1-C6	106.97(10)	106.9	C8—C10	1.4909(18)	1.504		
C5-C6-N1	132.25(11)	132.0	C1—C2	1.3836(18)	1.389		
C1-C6-N1	107.05(10)	107.2	C4—C5	1.3942(19)	1.401		
01—C7—N2	126.53(11)	126.2	C5—C6	1.3822(17)	1.389		
01	127.46(11)	128.0	C1—C6	1.3980(17)	1.409		
N2-C7-N1	106.01(10)	105.7	C3—C4	1.3933(19)	1.398		
C9-C8-N1	119.88(12)	120.1	C2—C3	1.3923(19)	1.400		
C9-C8-C10	124.03(12)	124.3					
N1-C8-C10	116.07(11)	115.6					
		Compo	und 4				
C7—N1—C6	109.64(12)	110.6	01—C7	1.239(2)	1.220		
C7—N1—C8	124.23(14)	121.6	N1—C7	1.382(2)	1.400		
C6—N1—C8	126.11(13)	127.8	N1-C6	1.395(2)	1.394		
C7—N2—C1	110.06(13)	111.3	N1—C8	1.455(2)	1.453		
C5-C6-N1	131.43(15)	131.9	N2—C7	1.364(2)	1.391		
C1-C6-N1	106.58(13)	106.9	N2—C1	1.390(2)	1.391		
C2-C1-N2	131.56(15)	132.3	C1—C2	1.383(2)	1.388		
C2—C1—C6	121.25(15)	121.3	C1—C6	1.391(2)	1.411		
N2—C1—C6	107.19(13)	106.5	C2—C3	1.388(2)	1.401		
01—C7—N2	127.89(14)	128.1	С2—Н5	0.951(19)	1.085		
01—C7—N1	125.60(14)	127.1	C3—C4	1.388(3)	1.397		
N2-C7-N1	106.51(14)	104.8	C3—H4	0.97(2)	1.085		

N1-C8-C9	111.29(13)	113.8	C4—C5	1.391(3)	1.401
C10-C9-C8	176.99(18)	178.7	C4—H3	0.94(2)	1.085
C9-C10-H10	177.6(15)	179.0	C5—C6	1.384(2)	1.389
C1—C2—C3	116.99(16)	117.6			
C2—C3—C4	121.76(17)	121.2			
		Compo	ound 5		
C7—N1—C6	110.18(9)	110.1	01—C7	1.2163(15)	1.225
C7—N1—C11	123.09(10)	122.2	N1C7	1.3823(16)	1.392
C6-N1-C11	126.62(10)	127.7	N1-C6	1.3869(15)	1.394
C7—N2—C1	110.34(9)	110.2	N1-C11	1.4632(15)	1.458
C7—N2—C8	123.32(11)	122.0	N2	1.3775(16)	1.396
C1—N2—C8	126.34(11)	128.0	N2-C1	1.3875(15)	1.394
C2-C1-N2	131.74(11)	131.8	N2	1.4525(16)	1.453
C2-C1-C6	121.46(11)	121.4	C1—C2	1.3737(17)	1.388
N2-C1-C6	106.80(10)	106.8	C1—C6	1.3985(16)	1.411
01—C7—N2	126.95(12)	127.0	C2—C3	1.383(2)	1.401
01—C7—N1	127.23(12)	127.3	С2—Н2	0.959(17)	1.084
N2-C7-N1	105.82(10)	105.8	C3—C4	1.384(2)	1.398
N2-C8-C9	111.93(11)	113.8	C4—C5	1.388(2)	1.401
N1-C11-C12	113.05(10)	114.0	C9—C10	1.166(2)	1.207
C5-C6-N1	132.12(11)	131.8			
C2—C3—C4	121.16(13)	121.2			
$C_{3}-C_{4}-C_{5}$	121.56(14)	121.3			

Table	3. The contributions to HOMOs and LUMOs of compounds (2-5).								
MOs	Compound 2								
	Benzoimidazol-2-one	Prop-1-en-2yl							
HOMO	93%	7%							
LUMO	89%	11%							
		Compound 3							
MOs	Benzoimidazol-2-one	Prop-1-en-2yl	Prop-2-ynyl						
HOMO	93%	6%	1%						
LUMO	86%	14%	0%						
MOs		Compound 4							
	Benzoimidazol-2-one	Prop-2-ynyl							
HOMO	98%	2%							
LUMO	100%	0%							
		Compound 5							
MOs	Benzoimidazol-2-one	Prop-2-ynyl	benzyl						
HOMO	95%	1%	4%						
LUMO	11%	0%	89%						

Table 4. HOMO and LUMO Energy Values and other related parameters of compounds (2-5).								
Parameters (eV)	Compound 2	Compound 3	Compound 4	Compound 5				
$E_{\rm LUMO}({\rm eV})$	-0.221	-0.200	-0.177	-0.212				
$E_{\rm HOMO}({\rm eV})$	-5.622	-5.627	-5.677	-5.593				
Energy band gap $/E_{HOMO}$ - $E_{LUMO}/$	5.401	5.426	5.500	5.381				
Ionization potential ($I = -E_{HOMO}$)	5.622	5.627	5.677	5.593				
Electron affinity ($A = -E_{LUMO}$)	0.221	0.200	0.177	0.212				
Chemical hardness $(h = (I-A)/2)$	2.700	2.713	2.750	2.690				
Chemical softness ($z = 1/2h$)	0.185	0.184	0.182	0.186				
Electronegativity ($\chi = (I+A)/2$)	2.922	2.914	2.927	2.903				
Chemical potential (μ = -(<i>I</i> + <i>A</i>)/2)	-2.922	-2.914	-2.927	-2.903				
Electrophilicity index ($w = \mu^2/2h$)	1.581	1.564	1.558	1.566				
Sum of Electronic and zero-point Energies (a.u)	-571.661776	-687.073056	-570.418136	-840.681218				

Table 5. The experimental and computed ¹³C NMR isotropic chemical shifts (with respect to TMS, all values are in ppm) of compounds (2-5).

	2			3			4			5	
Atoms	$\delta_{exp.}$	$\delta_{cal.}$	Atoms	$\delta_{exp.}$	$\delta_{cal.}$	Atoms	$\delta_{exp.}$	$\delta_{cal.}$	Atoms	$\delta_{exp.}$	$\delta_{cal.}$
C1	128.27	116.29	C1	129.07	117.54	C1	128.72	115.88	C1	129.38	116.96
C2	109.79	97.21	C2	108.57	97.64	C2	109.44	97.85	C2	108.54	97.39
C3	121.93	109.99	C3	121.86	110.16	C3	121.86	110.31	C3	121.58	109.75
C4	121.43	109.49	C4	121.78	110.04	C4	121.17	109.88	C4	121.83	109.98
C5	109.14	98.02	C5	109.20	98.02	C5	108.75	97.53	C5	108.50	97.02
C6	130.27	118.67	C6	128.72	117.62	C6	129.79	117.87	C6	136.17	117.73
C7	154.44	136.89	C7	151.99	137.06	C7	154.01	137.47	C7	153.65	139.22
C8	137.84	131.62	C8	137.99	131.62	C8	29.85	24.01	C8	30.67	24.57
C9	113.93	99.61	C9	113.32	100.08	C9	74.99	64.45	C9	72.81	64.16
C10	20.22	13.24	C10	20.22	13.28	C10	79.01	60.00	C10	77.16	60.13
			C11	30.40	24.10				C11	45.10	39.62
			C12	72.82	63.98				C12	128.57	126.92
			C13	77.06	60.15				C13	128.82	116.99
									C14	128.82	117.01
									C15	127.80	115.66
									C16	127.55	115.90
									C17	127.55	116.55

Table 6. The experimental and computed ¹H NMR isotropic chemical shifts (with respect to TMS, all values are in ppm) of compounds (2-5).

				-		r				-	
	2			3			4			5	
Atoms	δ _{exp.}	$\delta_{cal.}$	Atoms	δ _{exp.}	$\delta_{cal.}$	Atoms	δ _{exp.}	$\delta_{cal.}$	Atoms	δ _{exp.}	$\delta_{cal.}$
H1		6.75	H2		7.55	H1		7.00	H2		7.51
H2	7.05	7.23	H3	7.10-	7.49	H5	7.04-	7.55	H3	6.87-	7.43
H3	7.05	7.39	H4	7.30	7.48	H4	7.21	7.51	H4	7.32	7.39
H4	-	7.41	H5		7.49	H3		7.51	H5		7.34
H5	/.14	7.45	H9A	5.35	5.72	H2		7.38	H8A	4.72	4.42
H9A	5.25	5.48	H9B	5.20	5.48	H8A	4.68	4.42	H8B	4.72	5.45
H9B	5.40	5.68	H10A	2.22	2.05	H8B	4.68	5.24	H10	2.30	2.23
H10A	2.24	2.00	H10B	2.22	2.02	H10	3.31	2.29	H11A	5.07	4.41
H10B	2.24	3.59	H10C	2.22	3.59	NH2	10.99		H11B	5.07	5.81
H10C	2.24	1.98	H11A	4.69	4.37				H13		8.03
NH1	10.0		H11B	4.69	5.36				H14	6.07	7.72
			H13	2.30	2.23				H15	0.87-	7.65
									H16	1.32	7.71
									H17		7.82

	Table 7. AutoDockVina results of t	he binding affinity and RMSD values of different poses in 1JIJ	
inhibitor of compounds 2-5.	inhibitor of compounds 2-5.		

minutor of compounds.	2-3.					
Mode		2-1JIJ			3-1JIJ	
	Affinity	rmsdl.b.	rmsdu.b.	Affinity	rmsdl.b.	rmsdu.b.
	(kcal/mol)			(kcal/mol)		
1	-6.5	0.000	0.000	-5.9	0.000	0.000
2	-5.6	20.458	21.739	-5.8	36.198	37.853
3	-5.3	36.621	37.555	-5.6	36.572	38.498
4	-5.3	20.140	21.310	-5.6	37.662	39.435
5	-5.3	1.731	2.873	-5.5	35.963	37.762
6	-5.3	10.553	12.161	-5.4	19.720	21.405
7	-5.2	20.467	21.663	-5.4	11.303	13.549
8	-5.1	20.070	21.413	-5.1	36.933	38.758
9	-5.1	40.735	41.840	-5.0	36.729	38.493
10	-5.0	2.531	3.338	-4.9	1.528	3.927
		4-1JIJ			5-1JIJ	
Mode	Affinity	rmsdl.b.	rmsdu.b.	Affinity	rmsdl.b.	rmsdu.b.
	(kcal/mol)			(kcal/mol)		
1	-6.6	0.000	0.000	-6.5	0.000	0.000
2	-6.2	23.334	24.717	-6.4	3.613	5.677
3	-5.4	1.816	2.125	-5.4	41.713	43.692
4	-5.4	20.775	22.032	-5.4	2.130	3.961
5	-5.4	20.805	22.065	-5.2	2.707	5.852
6	-5.3	37.308	38.393	-5.1	23.257	24.770
7	-5.2	30.494	31.430	-5.1	21.777	23.109
8	-5.2	19.363	20.805	-5.0	23.218	25.255
9	-5.1	20.042	21.409	-4.9	23.357	25.933
10	-5.0	21.277	22.643	-4.8	12.323	15.645

Table 8. Antibacterial activity of the compounds (2-5) represented as Minimum Inhibitory									
Concentration [MIC (µg/mL)]									
Compounds	MIC (µg/mL)								
	Staphylococcus	Escherichia	Pseudomonas	Staphylococcus					
	aureus	coli	aeruginosa	aureus					
2	12.5	3.125	12.5	12.5					
3	6.25	12.5	25	6.25					
4	3.125	6.25	6.25	3.125					
5	6.25	12.5	12.5	6.25					
Chlor	12.5	6.25	6.25	12.5					

Journal Pre-proof

 $\mathbf{R} = 4 - CH_3C_5H_{10}, 4 - CH_3C_5H_{10}N, 4 - C_6H_5C_4H_9N_2,$ $4 - C_6H_5C_4H_9N_2, 4 - C_6H_5C_4H_9N_2$ $\mathbf{R}_1 = H, Br, OCH_3$

C:Antioxidant Activity

D:Antiulcerative Activity

Highlights

- Synthesis of new N-substituted benzimidazolone derivatives. •
- 3D molecular structure is characterized using x-Ray and spectroscopic techniques. •
- Good correlations are obtained between the spectra and Xx-ray data with the predicted ones. •
- The Hirshfeld surface analysis was used to analyze the intermolecular interaction. •
- The synthesized compound shows significant antibacterial activity. •

the second secon