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Acetalization and thioacetalization are important transforma-
tions for the protection of a carbonyl group in multistep organic
synthesis. Acetals and dithioacetals tolerate a wide range of nucle-
ophilic, basic and organometallic reagents, reducing agents, and
nonacidic oxidants. Dithioacetals or dithianes are also useful for
the generation of masked carbonyl anions which are employed in
a C–C bond formation reaction known as Corey-Seebach reaction.1

Hence, studies on acetalization and thioacetalization of carbonyls
continue to receive high attention and several methods were
developed for acetalization and thioacetalization of carbonyls in
the literature.2 However, there is a dearth of methods for chemose-
lective acetalization and thioacetalization of carbonyls and the
existing methods3 suffer from one or more of the practical limita-
tions such as long reaction times, high catalyst loading, limited
substrate scope, use of toxic reagents and lack of commercial avail-
ability of the catalyst. In our recent study, we found an efficient
method for selective acetalization and thioacetalization of a variety
of aliphatic, aromatic, and heteroaromatic aldehydes using InF3 as
the catalyst as shown in Scheme 1 and under similar conditions,
ketones remained unreactive.

In recent years, Indium (III) reagents, particularly InCl3, InBr3,
InI3, and In(OTf)3, have emerged as promising catalysts for various
organic transformations.4 When compared to these indium
reagents, InF3 has, however, less significance as a catalyst and its
ll rights reserved.
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).
applications in organic synthesis have remained scarce in the
literature.
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Scheme 1. Acetalization and thioacetalization of an aldehyde using InF3 as a
catalyst.
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Scheme 2. Reactions of benzaldehyde and homoallyl alcohol in the presence of InF3 and InCl3.

Table 1
InF3 catalyzed synthesis of acetals and dioxanes
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a Isolated yields and all products gave satisfactory 1H, 13C NMR, IR, and Mass spectral data.
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Recently, we were interested in the preparation of 4-fluoropy-
rans by Prins reaction of a homoallylic alcohol and benzaldehyde
and we envisioned that InF3 could possibly promote this reaction
as Lee et al.,5 reported earlier formation of 4-chloropyrons using
InCl3. In our study, the expected Prins reaction, however, did not
proceed with InF3 but it was found to catalyze formation of acetal
of benzaldehyde with homoallyl alcohol in good yield (86%) as
shown in Scheme 2, which is hitherto not known in the literature.

The above observation prompted us to study the scope of ace-
talization of carbonyl groups with other alcohols under catalysis
of InF3. In our preliminary study, we found a variety of aldehydes
such as benzaldehyde 1a, thiophene-2-carboxaldehyde 1b, furfural
1c, 2-napthaldehyde 1d, 4-nitrobenzaldehyde 1e, heptanal 1f,
cyclohexanecarboxaldehyde 1g, and chromone-3-carboxaldehyde
1h to undergo efficient acetalization with methanol and InF3 as a
catalyst under reflux condition producing corresponding acetals
2a–h in 82–87% yields. In a similar study, we observed efficient
acetalization of aldehydes 1a-h with benzylalcohol, which gave
corresponding dibenzylacetals 3a–h in 83–90% yields and also
with 2,2-dimethyl-1,3-propanediol giving corresponding dioxanes



Table 2
InF3 catalyzed synthesis of dithioacetals, dithiolanes, and dithianes

Entry Thioacetal 5 % yielda (reaction time) Dithiolanes 6 % yielda (reaction time) Dithiane 7 % yielda (reaction time)
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a Isolated yields and all products gave satisfactory 1H, 13C NMR, IR, and Mass spectral data.

Table 3
Reusability of InF3 as a catalyst in acetalization and thioacetalization of furfural

Acetal/thioacetal % Yielda

1st run 2nd run 3rd run 4th run 5th run
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4a–h in 92–98% yields as shown in Table 1.6 In our study,
acetalization reactions did not proceed with 1,2-ethanediol and
1,3-propanediol under similar conditions.

Next, we studied the scope of thioacetalization of carbonyls 1a–
h under InF3 catalysis using benzenethiol, 1,2-ethanedithiol, and
InF3
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Scheme 3. Deprotection of dithioacetals under InF3 catalysis.



Table 4
Deprotection of acetals and dithioacetals of furfural using InF3 as the catalyst
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1,3-propanedithiol and obtained corresponding dithioacetals 5a–h
in 80–90% yields, dithiolanes 6a–h in 82–86% yields and dithianes
7a–h in 80–87% yields, respectively, under reflux in toluene as
shown in Table 2.7

In our study, only aldehydes were found to undergo acetaliza-
tion and thioacetalization under InF3 catalysis and ketones such
as cyclohexanone and acetophenone were found to be unreactive
under similar conditions. For example, acetalization and thioace-
talization of chromone-3-carboxaldehyde 1h proceeded selectively
on its aldehyde functionality as shown in Table 1 (entries 2h, 3h,
and 4h) and Table 2 (entries 5h, 6h, and 7h), respectively. Simi-
larly, when a 1:1 mixture of benzaldehyde and acetophenone
was subjected to acetalization with methanol in the presence of
InF3, dimethyl acetal of benzaldehyde was obtained in an 85%
yield, while acetophenone was recovered unreacted.

Unlike other indium (III) salts, InF3 is insoluble in organic sol-
vents and water. In the present study of acetalization and thioace-
talization reactions, it was easily separated quantitatively by
simple filtration and reused it to observe consistent activity in five
consecutive cycles as shown in Table 3.

Unlike acetals,8 dithioacetals do not easily undergo deprotec-
tion by acid catalyzed hydrolysis and oxidative conditions are
essentially employed in most of the existing methods for depro-
tection of dithioacetals.9 In the literature, only a few methods
are available for hydrolytic deprotection of dithioacetals10 and
in the present study, we observed a highly efficient hydrolytic
deprotection of dithioacetals of both aldehydes and ketones using
InF3 as a catalyst and aqueous organic solvents as shown in
Scheme 3.

In our study, dithioacetals were found to undergo deprotection
essentially in aqueous acetonitrile as a solvent,11 while acetals
were found to undergo deprotection also in aqueous mixtures
of other organic solvents such as tetrahydrofuran, dichlorometh-
ane, and toluene. For example, results observed in deprotection
of dithioacetals of furfural (5c, 6c, and 7c) in 4:1 mixture of
acetonitrile-water and deprotection of acetals of furfural 2c, 3c,
and 4c in 4:1 mixture of tetrahydrofuran and water is shown in
Table 4.

In summary, this work shows a simple and practical method for
the chemoselective acetalization and thioacetalization of a variety
of aldehydes in high yields using InF3 as a mild Lewis acid catalyst.
In this study, we demonstrated InF3 as a reusable catalyst for a
number of cycles with consistent activity and showed efficient
hydrolytic deprotection of acetals and dithioacetals using InF3 as
a catalyst in aqueous organic solvents.
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27.19, 26.53, 25.88, 22.94, 21.87; IR (neat): t 2950, 1453, 1350, 1231, 1194,
841 cm�1;EIMS(m/z,%):198(M+),168,102,83;ExactmassobservedforC12H22O2:
198.1632(calculated:198.1620).

7. (a) Typical procedure for preparation of a dithioacetal 5 using InF3 as a catalyst:
Furfural 1c (0.50 g, 5.2 mmol), thiophenol (1.26 g, 11.4 mmol), toluene (5 ml),
and InF3 (0.04 g, 0.26 mmol), were taken into a 25 ml round-bottomed flask
fitted with a condenser and calcium chloride guard tube and the mixture was
refluxed for 2.5 h. After completion of the reaction (TLC), the reaction mixture
was filtered, catalyst was washed with toluene and the washings were
combined with filtrate. The combined organic layer was concentrated and
purified by normal column chromatography (silica gel 100–200 mesh, ethyl
acetate–hexane = 1:20) to obtain 2-(bis (phenylthio) methyl) furan 5c (1.34, 86
%) in the form of a colorless oil and it was characterized by the following
spectral data : 1H NMR (300 MHz, CDCl3): d = 7.35–7.32 (m, 5H), 7.24–7.22 (m,
6H), 6.21–6.20 (d, 1H, J = 3.0 Hz), 6.12–6.10 (d, 1H, J = 3.0 Hz), 5.4 (s, 1H); 13C
NMR (75 MHz, CDCl3): d = 151.66, 143.74, 134.30, 132.73, 128.73, 127.89,
126.33, 125.58, 55.63; IR (neat): t 3058, 2923, 1477, 1438, 1303, 1228, 1069,
1012, 936, 885, 739, 690 cm�1 ; EIMS (m/z, %) : 298 (M+), 189, 122, 100; Exact
mass observed for C17H14OS2: 298.0479 (calculated: 298.0486).
(b) Typical procedure for preparation of a dithiolane 6 using InF3 as a catalyst:
Furfural 1c (0.50 g, 5.2 mmol), 1,2-ethanedithiol (0.58 g, 6.2 mmol), toluene
(5 ml), and InF3 (0.04 g, 0.26 mmol), were taken into a 25 ml round-bottomed
flask fitted with a condenser and calcium chloride guard tube and the mixture
was refluxed for 4 h. After completion of the reaction (TLC), the reaction
mixture was filtered, catalyst was washed with toluene and the washings were
combined with filtrate. The combined organic layer was concentrated and
purified by normal column chromatography (silica gel 100–200 mesh, ethyl
acetate–hexane = 1:20) to obtain 2-(1,3-dithiolan-2-yl)furan 6c (0.76 g, 85 %)
in the form of a colorless oil and it was characterized by the following spectral
data : 1H NMR (300 MHz, CDCl3): d = 7.31–7.32 (m, 1H), 6.22–6.25 (m, 2H), 5.55
(s, 1H), 3.34–3.42 (m, 2H), 3.24–3.32 (m, 2H); 13C NMR (75 MHz, CDCl3):
d = 154.10, 142.17, 110.08, 106.76, 47.22, 38.84; IR (neat): t 3117, 2925, 1585,
1499, 1421, 1276, 1171, 1147, 1010, 936, 851, 739 cm-1 ; EIMS (m/z, %) :
172(M+), 143, 111, 105; Exact mass observed for C7H8OS2: 172.0009
(calculated: 172.0017).
(c) Typical procedure for preparation of dithiane 7 using InF3 as a catalyst: Furfural
1c (0.50 g, 5.2 mmol), 1,3-propanedithiol (0.58 g, 6.2 mmol), toluene (5 ml),
and InF3 (0.04 g, 0.26 mmol), were taken into a 25 ml round-bottomed flask
fitted with a condenser and calcium chloride guard tube and the mixture was
refluxed for 4 h. After completion of the reaction (TLC), the reaction mixture
was filtered, catalyst was washed with toluene and the washings were
combined with filtrate. The combined organic layer was concentrated and
purified by normal column chromatography (silica gel 100–200 mesh, ethyl
acetate–hexane = 1 : 20) to obtain 2-(1,3-dithian-2-yl)furan 7c (0.84 g, 87%) in
the form of a colorless oil and it was characterized by the following spectral
data : 1H NMR (300 MHz, CDCl3): d = 7.33–7.34 (d, 1H, J = 2.27 Hz), 6.35–6.36
(d, 1H, J = 3.0 Hz), 6.30–6.31 (dd, 1H, J = 3.0 Hz, 2.27 Hz), 5.13 (s,1H), 2.86–2.98
(m, 4H), 1.95–2.17 (m, 2H); 13C NMR (75 MHz, CDCl3): 152.00, 141.88, 110.58,
107.75, 41.95, 30.22, 25.25; IR (neat): t 2925, 1496, 1420, 1274, 1161, 1069,
1010, 939, 878, 740, 642 cm�1; EIMS (m/z, %) : 186 (M+), 141, 127, 111; Exact
mass observed for C8H10OS2: 186.0178 (calculated: 186.0173).
(d) Characterization data for new compounds:
Compound 5b: 1H NMR (300 MHz, CDCl3): d = 7.33–7.37 (m, 4H), 7.20–7.25 (m,
6H), 7.15–7.18 (d, 1H, J = 5.09 Hz), 6.86–6.88 (d, 1H, J = 3.58 Hz), 6.78–6.81 (dd,
1H, J = 5.09 Hz, 3.58 Hz), 5.6 (s, 1H); 13C NMR (75 MHz, CDCl3): d = 143.73,
134.20, 132.73, 128.73, 127.89, 126.33, 125.57, 96.13, 55.62; IR (neat): t 3062,
2924, 1464, 1340, 1231, 1120, 1015, 934, 740 cm�1; EIMS (m/z, %): 314 (M+),
205, 84, 77, 56; Exact mass observed for C17H14S3: 314.0245 (calculated:
314.0258).
Compound 5h: 1H NMR (300 MHz, CDCl3): d = 8.24–8.27 (dd, 1H, J = 9.82 Hz,
8.31 Hz), 8.02 (s, 1H), 7.61–7.67 (m, 1H), 7.38–7.43 (m, 6H), 7.18–7.27 (m, 6H),
5.94 (s,1H); 13C NMR (75 MHz, CDCl3): d = 179.51, 157.23, 135.83, 131.28,
130.74, 129.88, 127.87, 127.07, 126.13, 125.78, 122.93, 116.45, 115.21, 46.67;
IR (neat): t 3062, 2928, 1728, 1496, 1366, 1187, 1069, 976, 832, 748 cm�1;
EIMS (m/z, %): 376 (M+), 267, 189, 102, 88, 60; Exact mass observed for
C22H16O2S2: 376.0583 (calculated: 376.0592).
Compound 7h: 1H NMR (300 MHz, CDCl3): d = 8.23–8.26 (d, 1H, J = 7.93 Hz),
8.15 (s, 1H), 7.61–7.67 (m, 1H), 7.36–7.43 (m, 2H), 5.55 (s, 1H), 3.07–3.16 (m,
2H), 2.84–2.91 (m, 2H), 2.14–2.23 (m, 1H), 1.20–1.89 (m, 1H); 13C NMR
(75 MHz, CDCl3): d = 178.06, 157.23, 151.64, 135.34, 130.61, 123.92, 117.71,
115.32, 39.04, 32.46, 25.25; IR (neat): t 3101, 2954, 1732, 1484, 1289, 1184,
1074, 954, 793 cm�1; EIMS (m/z, %) : 264 (M+), 232, 145, 117, 106; Exact mass
observed for C13H12O2S2: 264.0291 (calculated: 264.0279).
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11. Typical procedure for deprotection of a dithioacetal: 2-(1,3-dithiolan-2-yl)furan
6c (0.5 g, 2.9 mmol), InF3 (24 mg, 0.14 mmol), acetonitrile (8 ml), water (2 ml)
were taken into a 50 ml round bottomed flask fitted with a condenser and the
mixture was refluxed for 3.5 h. After completion of the reaction (TLC),
acetonitrile was removed under reduced pressure and extracted with
diethylether (2 � 5 ml). The combined organic layer was washed with brine
(1 � 5 ml), concentrated and the crude product was purified by normal column
chromatography to obtain furfural 1c (0.25 g, 89 %), which gave spectral data
(1H NMR, IR, and Mass) identical to that of the authentic sample.
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