Organic & Biomolecular Chemistry

View Article Online View Journal | View Issue

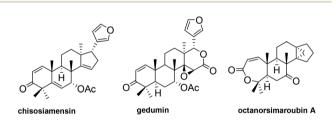
Check for updates

Cite this: Org. Biomol. Chem., 2018, **16**, 8491

Received 8th October 2018, Accepted 24th October 2018 DOI: 10.1039/c8ob02495b

rsc.li/obc

A rapid construction of the ABC tricyclic skeleton of malabanone A⁺


Tao Li, Guangmiao Wu, Shangbiao Feng, Zemin Wang, Xingang Xie 💿 * and Xuegong She 💿

The construction of the ABC tricyclic skeleton of malabanone A with the required 4 stereocenters was accomplished in a concise route starting from *R*-carvone. The synthesis featured an intramolecular [3 + 2] cycloaddition reaction to assemble its A ring and an intramolecular Diels–Alder reaction to construct its C ring.

Malabanone A (Fig. 1, 1), a novel octanor-triterpenoid with the [4.3.1.01,6]decane unit in its structure was isolated from *Ailanthus malabarica DC* (Simaroubaceae) of India and Indo-China by Koichi Takeya's group in 2001.¹ Its parent plant has long been used by the local people for treatment of dysentery, dyspepsia, febrifuge and bronchitis and a preliminary bioassay indicated that malabanone A showed weak cytotoxic activity on P-388 murine leukemia cells with an IC_{50} value of 16 µg mL⁻¹. To our knowledge, there have been no previous synthetic

reports towards malabanone A. Continuing with our long-term research interest in the synthesis of natural polycyclic terpenoids,² we recently initiated a program towards the total synthesis of malabanone A.³ Herein, we reported a concise synthesis of its ABC tricyclic skeleton, a very common structure in many triterpenoids,⁴ with the required 4 stereocenters (C5, C7, C8, C10) which featured an intramolecular [3 + 2] cycloaddition reaction to assemble the A ring and an intramolecular Diels-Alder reaction to construct its C ring.

Since the B ring of malabanone A has a similar carbon skeleton to carvone (Scheme 1, red part of 1), commercially available and inexpensive *R*-carvone was envisioned to be an ideal starting point of our synthesis and our retrosynthetic analysis is outlined in Scheme 1. The cyclopropane subunit (E ring) of malabanone A could be assembled by an intramolecular $S_N 2$ substitution cyclization reaction from precursor

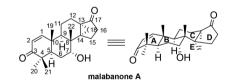
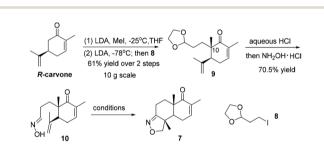


Fig. 1 Structures of chisosiamesin, gedunin, octanorsimaroubin A and malabanone A.

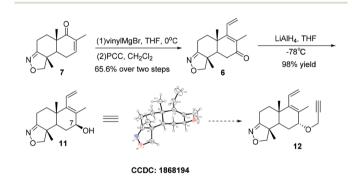
[†]Electronic supplementary information (ESI) available. CCDC 1868194, 1868195 and 1868145. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8ob02495b

Scheme 1 Retrosynthetic analysis.

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China. E-mail: xiexg@lzu.edu.cn


2 which might be obtained via the Nazarov cyclization reaction of divinyl ketone 3. Compound 3 could be easily derived from diene 4 by vinyl Grignard addition on a weinreb amide derivative. The C ring of compound 4 was envisioned to be constructed through an intramolecular Diels-Alder cycloaddition reaction and the requisite precursor 5 was expected to be obtained from conjugated dienone 6 which could be prepared by a two step process (vinyl Grignard reagent addition/PCCinduced oxidative rearrangement) from the known tricyclic cyclohexenone 7.5 And compound 7 could be prepared via an intramolecular 1,3-dipolar cycloaddition reaction of the corresponding derivatives of commercially available R-carvone.

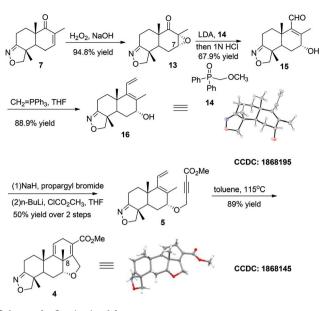
Our synthesis started with dialkylation of C10 of R-carvone. As Scheme 2 depicts, the two-step process afforded acetal 9 as a single diastereoisomer with the requisite C10 quaternary carbon stereocenter and could be performed on a 10 g scale in 61% overall yield. The configuration of compound 9 was determined by analogy with the literature.^{6a} Subsequent acid hydrolysis and condensation with hydroxyl amine hydrochloride gave the [3 + 2] cycloaddition precursor 10.


Following literature precedents,⁵ only 30% of desired 7 was obtained in our first trial (Table 1, entry 1). The low yield could be attributed to the decomposition of reaction precursor 10 and the formation of other unknown by-products. So the reaction

condition optimization was performed and the results are shown in Table 1. Solvents were first screened. While product formation did not occur in CH₃CN or methanol, employing DCM, toluene, or a mixture of toluene and THF gave a comparable yield of 30% (Table 1, entries 2-6). Chloroform proved to be the best choice, as the yield increased to 56% (Table 1, entry 7). Different oxidants were tested, without success (Table 1, entries 8-10). So the optimal conditions at present are performing the reaction in CHCl₃ with 14.5% NaClO aqueous solution for 4 h. Under the above reaction conditions, this cycloaddition reaction could be performed on a 1 g scale in 56% yield which expediently fulfilled the requirement of our synthetic program.

With enough tricyclic cyclohexenone 7 in hand, we then turned our attention to its further transformations (Scheme 3). After vinyl Grignard reagent 1,2-addition⁷ and a subsequent PCC promoted oxidative rearrangement reaction,⁸ conjugated dienone 6 was obtained in 65% yield. LAH reduction of compound 6 gave the corresponding 7β secondary alcohol 11 in 98% yield whose stereo-configuration was confirmed by X-ray single crystal diffraction experiment. However all attempts to invert the configuration of the secondary alcohol under Mitsunobu conditions⁹ failed. Nucleophilic substitutions on

Scheme 2 Preparation of tricyclic cyclohexenone 7.


Scheme 3 Failed route towards compound 12.

$ \begin{array}{c} HO_{n} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					
Entry	Solvent	Time (h)	T (°C)	Oxidant ^b	Yield ^c (%)
1	CH_2Cl_2	4	25	NaClO	30
2	CH_2Cl_2 : THF = 2 : 1	4	25	NaClO	31
3	CH ₃ CN	4	25	NaClO	N.R
4	Toluene	4	25	NaClO	30
5	CH ₃ OH	4	25	NaClO	N.R
6	CH_2Cl_2	Overnight	75	NaClO	33
7	CHCl ₃	4	25	NaClO	56
8	EtOH	4	25	Tolamine	Complex
9	$CHCl_3$: THF = 2 : 1	4	25	NaClO·5H ₂ O	38
10	CHCl ₃	4	0	PhI(OAc) ₂	Trace

HO

Table 1 Optimization of the [3 + 2] dipolar cycloaddition reaction of 10^a

^a All the reactions were performed on a 0.2 mmol scale at 0.04 M concentration. ^b In entries 1–7, 14.5% NaClO aqueous solution was used as the oxidant. ^c Isolated yield.

Scheme 4 Synthesis of 4.

the mesylate¹⁰ or tosylate derivatives of **11** did not afford propargyl ether **12**. The poor reactivity of alcohol **11** may be attributed to the steric hindrance preventing the required approach of a nucleophile from the α face.

Inspired by Antonio Abad's and Craig M. Williams's excellent work,^{11,12} tricyclic hexenone was firstly transformed to α -epoxide 13 as a single diastereoisomer with basic H₂O₂.^{11,13} The configuration of compound 13 was determined by analogy with the literature.¹¹ Then it was treated with the lithium derivative of 14 followed by 1 N hydrochloric acid quenching to obtain the secondary alcohol 16 with the requisite C-7 stereocenter in 57% overall yield.¹¹ The configuration of 16 was also confirmed by X-ray single crystal diffraction experiment. At this time, the corresponding propargyl ether was obtained smoothly and the requisite Diels-Alder precursor 5 was obtained via a subsequent common propargyl ester assembly.¹¹ The Diels-Alder reaction^{11,14} proceeded smoothly in toluene at 115 °C to give the desired adduct 4 in 89% yield and its stereo configuration was also confirmed by X-ray single crystal diffraction experiment analysis (Scheme 4).

Conclusions

In summary, the construction of the ABC tricyclic skeleton of malabanone A with the requisite 4 stereocenters (C5, C7, C8 and C10) was accomplished in a concise route starting from *R*-carvone. Our synthesis featured two highly effective intramolecular cycloaddition reactions to assemble the required cyclic system and the essential stereocenters: (1) a [3 + 2] cycloaddition reaction to assemble the A ring; (2) a Diels–Alder cycloaddition reaction to construct its C ring. Further synthetic work towards malabanone A is being undertaken in this laboratory now and it will be reported in due course.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

We wish to acknowledge the generous financial support by the NSFC (21472079, 21572088) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-91).

Notes and references

- 1 Y. Hitotsuyanagi, A. Ozeki, C. Y. Choo, K. L. Chan, H. Itokawa and K. Takeya, *Tetrahedron*, 2001, 57, 7477.
- 2 (a) Z. M. Wang, Z. M. Xing, L. Liu, H. Zhang, Z. L. Zhong,
 X. G. Xie and X. G. She, *ChemistrySelect*, 2016, 2225;
 (b) H. Zhang, S. Q. Ma, Z. M. Xing, L. Liu, B. W. Fang,
 X. G. Xie and X. G. She, *Org. Chem. Front.*, 2017, 2211;
 (c) L. Liu, H. Y. Song, P. Chen, Z. Y. Yuan, S. B. Feng,
 W. W. Zhang, B. W. Fang, X. G. Xie and X. G. She, *Org. Chem. Front.*, 2018, 5, 3013.
- 3 Z. M. Wang, *Thesis for a master degree, Studies on the Total Syntheses of Daphenylline, Malabanone A, Polyrhaphin D and Marginatone*, 2016, Lanzhou University.
- 4 (a) S. Laphookhhieo, W. Maneerat, S. Koysomboon,
 R. Kiattansakul, K. Chantrapromma and J. K. Syers, *Can. J. Chem.*, 2008, 86, 205; (b) A. Akisanya,
 C. W. L. Bevan, J. Hirst, T. G. Halsall and D. A. Taylor, *J. Chem. Soc.*, 1960, 3827; (c) S. N. J. Grosvenor, K. Mascoll,
 S. McLean, W. F. Reynolds and W. F. Tinto, *J. Nat. Prod.*, 2006, 69, 1315.
- 5 J. P. Gesson, S. A. M. Nieuwenhuis and B. Renoux, *Nat. Prod. Lett.*, 1993, **2**, 129.
- 6 (a) Z. L. Zhong, G. Y. Zhao, D. Y. Xu, B. B. Dong, D. P. Song,
 X. G. Xie and X. G. She, *Chem. Asian J.*, 2016, 11,
 1542; (b) C. L. Chapelain, *Org. Biomol. Chem.*, 2017, 15,
 6242; (c) A. Gris, N. Cabedo, I. Navarro, I. Alfonso,
 C. Agulló and A. Abad-Somovilla, *J. Org. Chem.*, 2012, 77,
 5664.
- 7 A. Mayasundari, U. Peters and D. G. J. Young, *Tetrahedron Lett.*, 2003, 44, 2633.
- 8 A. Srikrishna and D. H. Dethe, *Tetrahedron Lett.*, 2003, 44, 7817.
- 9 (a) A. B. Charette, B. Côté, S. Monroc and S. Prescott, *J. Org. Chem.*, 1996, 60, 6888; (b) A. P. Green, S. Hardy, A. Lee and E. J. Thomas, *Org. Biomol. Chem.*, 2017, 15, 9497; (c) K. S. Raju and G. Sabitha, *Org. Biomol. Chem.*, 2017, 15, 6393.
- 10 (a) N. Gao, M. G. Banwell and A. C. Willis, Org. Lett., 2017,
 19, 162; (b) M. Balci and W. M. Jones, J. Am. Chem. Soc.,
 1980, 102, 7608.
- 11 A. Abad, C. Agulló, A. C. Cuñat, A. B. García and C. Giménez-Saiz, *Tetrahedron*, 2003, **59**, 9523.

Communication

- 12 (a) D. M. Pinkerton, T. J. V. Berg, P. V. Bernhardt and C. M. Williams, *Chem. – Eur. J.*, 2017, 23, 2282;
 (b) D. M. Pinkerton, P. V. Bernhardt, G. P. Savage and C. M. Williams, *Asian J. Org. Chem.*, 2017, 6, 583.
- 13 T. Nomura, S. Yokoshima and T. Fukuyama, *Org. Lett.*, 2018, **20**, 119.
- 14 A. Abad, C. Agulló, A. C. Cuñat and A. B. García, *Tetrahedron*, 2005, **61**, 1961.