Contents lists available at ScienceDirect



**Bioorganic & Medicinal Chemistry Letters** 

journal homepage: www.elsevier.com/locate/bmcl

# Novel pyridine derivatives as potent and selective CB<sub>2</sub> cannabinoid receptor agonists

Guo-Hua Chu<sup>a,\*</sup>, Christopher T. Saeui<sup>a</sup>, Karin Worm<sup>a</sup>, Damian G. Weaver<sup>a</sup>, Allan J. Goodman<sup>a</sup>, Robert L. Broadrup<sup>a</sup>, Joel A. Cassel<sup>b</sup>, Robert N. DeHaven<sup>b</sup>, Christopher J. LaBuda<sup>b</sup>, Michael Koblish<sup>b</sup>, Bernice Brogdon<sup>c</sup>, Steve Smith<sup>c</sup>, Bertrand Le Bourdonnec<sup>a</sup>, Roland E. Dolle<sup>a</sup>

<sup>a</sup> Department of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA
<sup>b</sup> Department of Pharmacology, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA

<sup>c</sup> Department of DMPK, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA

#### ARTICLE INFO

Article history: Received 21 May 2009 Revised 13 August 2009 Accepted 13 August 2009 Available online 21 August 2009

*Keywords:* Cannabinoid receptors Selective CB<sub>2</sub> agonists Pain Pyridine derivatives

### ABSTRACT

Replacement of the phenyl ring in our previous (morpholinomethyl)aniline carboxamide cannabinoid receptor ligands with a pyridine ring led to the discovery of a novel chemical series of  $CB_2$  ligands. Compound **3**, that is, 2,2-dimethyl-*N*-(5-methyl-4-(morpholinomethyl)pyridin-2-yl)butanamide was identified as a potent and selective  $CB_2$  agonist exhibiting in vivo efficacy after oral administration in a rat model of neuropathic pain.

© 2009 Elsevier Ltd. All rights reserved.

The cannabinoid receptors CB<sub>1</sub> and CB<sub>2</sub> belong to the superfamily of G-protein-coupled receptors (GPCRs).<sup>1</sup> Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information.<sup>1</sup> The analgesic effects of cannabinoids have been extensively studied.<sup>2</sup> However, administration of tetrahydrocannabinol (THC) or other non-selective synthetic cannabinoids is followed by severe psychotropic side effects mediated by activation of CB1 receptors within the central nervous system (CNS).<sup>2-4</sup> The CB<sub>1</sub> receptors are located centrally and peripherally, whereas the CB<sub>2</sub> receptors are expressed primarily in immune cells and tissues.<sup>1-3</sup> In preclinical studies, CB<sub>2</sub> selective receptor agonists inhibit signs of acute nociceptive, inflammatory and neuropathic pain, and importantly they do not cause the CNS side effects typically produced by cannabinoid ligands displaying agonist activity at the CB<sub>1</sub> receptor.<sup>2–7</sup> Therefore, selective CB<sub>2</sub> receptor agonists are very promising candidates for the treatment of pain.

As part of a research program aimed at identifying novel selective CB<sub>2</sub> agonists, we identified the (morpholinomethyl)aniline carboxamide derivative **1** (Fig. 1) as the starting point for a lead optimization campaign.<sup>8</sup> Compound **1** bound with moderate affinity to the CB<sub>2</sub> receptor ( $K_i = 120 \text{ nM}$ ), while lacking significant affinity at the CB<sub>1</sub> receptor (4% inh. @ 10 µM). However, compound 1 suffered from poor in vitro metabolic stability as measured in rat and human liver microsomes (abbreviated as RLM and HLM, respectively), and the lead optimization campaign focused on improving CB<sub>2</sub> affinity as well as in vitro metabolic stability, while retaining good selectivity for the CB<sub>2</sub> receptor. As indicated in Figure 1, introduction of a methyl group at the 2-position of the benzene core of 1 (compound 2) led to a clear improvement in the metabolic stability in rat liver microsomes. However, this subtle structural modification also led to a fivefold reduction in the CB<sub>2</sub> binding affinity. This result suggested that the 2-position of the benzene ring of 1 might represent one of the 'soft' spots of the molecule (position at which metabolism may occur). Based on this hypothesis, we investigated whether replacing the phenyl moiety of **1** with a pyridine core (compound **3**) would also result in an improvement in metabolic stability. As shown in Figure 1, the pyridine derivative 3 displayed increased metabolic stability in rat liver microsomes when compared to its benzene analog 1. In addition, this modification led to a fivefold increase in the binding affinity toward the CB<sub>2</sub> receptor [1:  $K_i$  (CB<sub>2</sub>) = 120 nM; 3:  $K_i$  $(CB_2) = 24 \text{ nM}$ ]. As a follow up to this result, we explored the structure-activity relationships (SAR) in this new series of pyridinebased CB<sub>2</sub> agonists (general formula I, Fig. 1).

The syntheses of compound **3** and its regioisomeric analogs **4**, **5** and **6** are summarized in Schemes 1 and 2. Treatment of commercially available 2-amino-4-methyl-5-bromopyridine (**17a**) with 2,2-dimethylbutanoyl chloride gave the amide **18a** (98%).

<sup>\*</sup> Corresponding author. Tel.: +1 484 595 1083; fax: +1 484 595 1551. *E-mail address:* ghchu@adolor.com (G.-H. Chu).

<sup>0960-894</sup>X/\$ - see front matter  $\odot$  2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.08.063



Figure 1. Design of novel pyridine derivatives as CB<sub>2</sub> cannabinoid receptor agonists.



Scheme 1. Synthesis of compound 3–5. Reagents: (a) 2,2-dimethylbutanoyl chloride, TEA, DCM, 93–96%; (b) NBS, AIBN, CCl<sub>4</sub>; (c) morpholine, THF, NaHCO<sub>3</sub>, 10–65% (two steps); (d) MeZnCl, Pd(PPh<sub>3</sub>)<sub>4</sub>, THF, 76–88%.

Treatment of amide **18a** with NBS in the presence of AIBN provided the bromide **19a** which reacted with morpholine to yield **20a** (40% for two steps). Compound **20a** was subjected to a Negishi coupling reaction by treatment with methylzinc chloride to afford the desired target compound **3** (84%). Compounds **4** and **5** were synthesized following the same route described for the preparation of **3** (Scheme 1).

Compound **6** was prepared from commercially available 2-amino-4,6-dimethylpyridine (**17d**) according to Scheme 2. Bromination of amide **18d** with NBS yielded a mixture of two regioisomeric bromides **19d** and **19e**, which was reacted with morpholine to furnish the desired compound **6** as the minor product ( $\sim$ 10%), and the regioisomeric analog of **6**, that is, compound **21**, as the major product (45%).

Scheme 3 outlines the synthesis of analogs **7–9**. Suzuki–Miyaura cross-coupling of the bromide **20a** with 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane in the presence of Pd(PPh<sub>3</sub>)<sub>4</sub> under microwave conditions gave the vinyl compound **22** (60%), which was hydrogenated to furnish the 5-ethyl analog **7** (70%). Substitution reaction of **20a** with copper(I) cyanide in refluxing DMF afforded the 5-cyano substituted analog **8** (21%). Palladium-catalyzed carbon monoxide insertion reaction of the bromide **20a** under



Scheme 2. Synthesis of compound 6. Reagents: (a) 2,2-dimethylbutanoyl chloride, TEA, DCM, 95%; (b) NBS, AIBN, CCl<sub>4</sub>; (c) morpholine, THF, NaHCO<sub>3</sub>, 10% for 6, 45% for 21 (two steps).



Scheme 3. Synthesis of compounds 7–9. Reagents: (a) 4,4,5,5-tertamethyl-2-vinyl-1,3,2-dioxaborlane, Pd(PPh<sub>3</sub>)<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, dioxane–H<sub>2</sub>O, microwave, 120 °C, 60%; (b) H<sub>2</sub>, Pd/C, MeOH, 70%; (c) CuCN, DMF, reflux, 21%; (d) MeOH, CO, dppp, Pd(OAc)<sub>2</sub>, TEA, DMF, 54%; (e) LiOH, THF–MeOH–H<sub>2</sub>O, 98%; (f) (i) DPPA, TEA, dioxane, *t*-BuOH; (ii) HCl, MeOH, Et<sub>2</sub>O, 26%.

standard conditions gave the methyl ester **23** (54%) which was hydrolyzed to the corresponding carboxylic acid **24** (98%) by treatment with lithium hydroxide. Curtius rearrangement of **24** by reaction with diphenylphosphoryl azide (DPPA) in the presence of *t*-BuOH<sup>9</sup> followed by treatment of the resulting *tert*-butyl carbamate with HCl yielded the 5-amino substituted analog **9** (26%).



RCOOH



Scheme 4. Synthesis of compounds 10–16. Reagents: (a) 6 N HCl, reflux, 82%; (b) (i) RCOOH, SOCl<sub>2</sub>; (ii) 25, TEA, DCM or RCOOH, bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOPCl), DIEA, DCM, 7–55%.

The synthesis of compounds **10–16** is described in Scheme 4. Treatment of **3** with 6 N HCl at reflux provided the aminopyridine **25** (82%), a common intermediate used for the preparation of **10– 16**. Compounds **10–16** were prepared in 7–55% yield by coupling the aminopyridine derivative **25** with carboxylic acids under standard peptide coupling conditions using bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOPCl) as coupling reagent or by coupling **25** with the corresponding acyl chloride derivatives.

The novel pyridine derivatives 3-16 were evaluated for their affinity toward the CB<sub>2</sub> and the CB<sub>1</sub> receptors as measured by their ability to displace [<sup>3</sup>H]-CP-55960 from its specific binding sites in membranes expressing CB<sub>1</sub> and CB<sub>2</sub> receptors.<sup>10</sup> The agonist potencies of selected compounds (CB<sub>2</sub>:  $K_i$  <100 nM) were assessed by their abilities to stimulate guanosine 5'-O-(3-[<sup>35</sup>S]thio)triphosphate ([<sup>35</sup>S]GTPγS) binding to membranes containing CB<sub>2</sub> cannabinoid receptors.<sup>10</sup> Compounds displaying good affinity at CB<sub>2</sub> receptors ( $K_i < 50$  nM) were also evaluated for in vitro metabolic stability in rat and human liver microsomes.<sup>11</sup> As indicated in Table 1, compounds 4 and 5, the regioisomeric analogs of 3, displayed weak affinity at the CB<sub>2</sub> receptor. Changing the methyl moiety of **3** from the 5-position to the 6-position relative to the pyridine ring (compound  $\mathbf{6}$ )<sup>12</sup> also led to a threefold reduction in the CB<sub>2</sub> binding affinity, indicating that the substitution pattern of the pyridine ring has a significant impact on the optimal CB<sub>2</sub> binding affinity. The 5ethyl analog of **3** (compound **7**) displayed potent affinity at the  $CB_2$ 

| Table 1                                                                         |
|---------------------------------------------------------------------------------|
| Cannabinoid receptor binding and in vitro metabolic stability of compounds 1-16 |

| Compd | $K_i CB_1^a$ | $K_{i} CB_{2}^{a}$ | Ratio<br>(CB <sub>1</sub> /CB <sub>2</sub> ) | EC <sub>50</sub> CB <sub>2</sub> <sup>a</sup><br>(nM) | Microsomal<br>stability <sup>b</sup> |     |
|-------|--------------|--------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------|-----|
|       | (nM or % i   | nh @ 10 µM)        |                                              |                                                       | RLM                                  | HLM |
| 1     | 4%           | 120                | nd                                           | nd <sup>c</sup>                                       | 2.2                                  | 56  |
| 2     | 18%          | 530                | nd                                           | nd                                                    | 68                                   | 61  |
| 3     | 3800         | 24                 | 160                                          | 41                                                    | 43                                   | 64  |
| 4     | 4%           | 46%                | nd                                           | nd                                                    | nd                                   | nd  |
| 5     | 28%          | 1800               | nd                                           | nd                                                    | nd                                   | nd  |
| 6     | 0%           | 67                 | nd                                           | 260                                                   | nd                                   | nd  |
| 7     | 4300         | 7.9                | 550                                          | 9.6                                                   | 29                                   | 34  |
| 8     | 11%          | 100                | nd                                           | 200                                                   | nd                                   | nd  |
| 9     | 10%          | 870                | nd                                           | nd                                                    | nd                                   | nd  |
| 10    | 37%          | 81                 | nd                                           | 70                                                    | nd                                   | nd  |
| 11    | 1800         | 5.3                | 330                                          | 4.1                                                   | nd                                   | 15  |
| 12    | 25%          | 63                 | nd                                           | 62                                                    | nd                                   | nd  |
| 13    | 13%          | 45                 | nd                                           | 140                                                   | 48                                   | 51  |
| 14    | 1100         | 13                 | 85                                           | 13                                                    | nd                                   | 12  |
| 15    | 36%          | 7.0                | nd                                           | 8.8                                                   | 0                                    | 0   |
| 16    | 2500         | 1.9                | 1300                                         | 2.8                                                   | 0                                    | 1   |

<sup>a</sup> For assay description see Ref. 10.

<sup>b</sup> % remaining of parent compound after 30 min, see Ref. 11.

<sup>c</sup> nd: not determined.

receptor. However, this modification also led to a decrease in the in vitro metabolic stability (see Table 1). Replacement of the 5methyl group of 3 with a polar substituent such as CN (compound 8) or NH<sub>2</sub> (compound 9) caused a significant decrease in CB<sub>2</sub> binding affinity. We investigated further the SAR at the 2-position of **3**, concentrating on carboxamide derivatives. Substitution of the 2,2dimethylbutanoyl moiety of **3** with the less lipophilic pivaloyl group (compound **10**) led to a threefold reduction in CB<sub>2</sub> binding affinity. In contrast, extending the acyl substituent from dimethvlbutanovl to 2,2-dimethylpentanovl, as in **11**, was beneficial to improve the binding affinity at the CB<sub>2</sub> receptor. Unfortunately, compound **11** displayed poor in vitro metabolic stability. Among the constrained analogs of **3** that were prepared, the two cyclohexyl derivatives 15 and 16 were identified as potent and selective CB<sub>2</sub> agonists. However, as was the case for 11, compounds 15 and 16 could not be studied further due to their poor in vitro metabolic stability.

After exploring the SAR in this new chemical series of pyridinebased CB<sub>2</sub> agonists, 2,2-dimethyl-*N*-(5-methyl-4(morpholinomethyl)pyridin-2-yl)butanamide (**3**) was the best compound identified in terms of CB<sub>2</sub> affinity, selectivity versus CB<sub>1</sub> and metabolic stability. We then determined the pharmacokinetic profile of **3** in rat and dog after IV and PO administration. As indicated in Table 2, **3** is a high clearance compound in rat. The elimination of **3** was high with a half-life of 0.5 h after a single IV dose of 1 mg/

#### Table 2

Pharmacokinetics of **3** in male Sprague-Dawley rats and male Beagle dogs after IV and PO administration

| Route                      |               | IV PO         |                | 0              |
|----------------------------|---------------|---------------|----------------|----------------|
| Species                    | Rat           | Dog           | Rat            | Dog            |
| Dose (mg/kg)               | 1.0           | 1.0           | 10             | 3.0            |
| CLs (L/h/kg)               | $5.8 \pm 0.8$ | $0.9 \pm 0.0$ | _              | -              |
| Vdss (L/kg)                | 3.5 ± 0.8     | $0.6 \pm 0.1$ | _              | -              |
| $^{a}t_{1/2}(h)$           | 0.5 ± 0.2     | $1.4 \pm 0.0$ | $2.1 \pm 2.4$  | 1.1 ± 0.1      |
| $AUC_{0-\infty}$ (ng h/mL) | 158 ± 23      | 1127 ± 30     | 893 ± 487      | 977 ± 227      |
| ${}^{b}T_{max}$ (h)        | _             | _             | 2.0 (0.25-2.0) | 0.5 (0.25-2.0) |
| $C_{\rm max}$ (ng/mL)      | _             | _             | 185 ± 133      | 535 ± 225      |
| F (%)                      | -             | -             | 57 ± 31        | 29 ± 7         |

Values represent the mean ± standard deviation of three animals.

<sup>a</sup> Expressed as harmonic mean.

<sup>b</sup> Expressed as median and range.



**Figure 2.** Antiallodynic activity of compound **3** (100 mg/kg PO) in the L5 SNL model (9 days after surgery) (morphine: 3 mg/kg s.c.). \*p <0.05 compared to vehicle-treated rats. n = 8 (SNL Groups), n = 4 (Sham-operated animals); Vehicle threshold = 2.4 grams.

kg. After a 10 mg/kg PO dose, maximum plasma concentrations were reached at around 2 h post-dose. The oral bioavailability of **3** in rat was 57%. Table 2 summarizes the pharmacokinetics of **3** in male Beagle dogs after single IV and PO doses of 1 and 3 mg/ kg, respectively. In contrast to the high clearance observed in rat, the systemic plasma clearance of **3** in dog was low (0.9 L/h/ kg). The half-life of **3** in dog was 1.4 h after a 1 mg/kg IV dose. After a single 3 mg/kg oral dose of 3, maximum plasma concentrations averaging 535 ng/mL were reached 30 min post-dose. The oral bioavailability of 36 in dog was 29%. Additional studies demonstrated that **3** exhibited antiallodynic activity in the L5 spinal nerve ligation (L5 SNL) rat model<sup>13</sup> of neuropathic pain at a dose of 100 mg/kg PO (Fig. 2). The weak in vivo activity of the compound 3 is not optimized and possibly caused by its rapid clearance. Further work is underway to enhance in vivo activity of this class of CB<sub>2</sub> agonists.

In summary, replacement of the benzene template in our previous (morpholinomethyl)aniline carboxamide cannabinoid receptor ligands with a pyridine core led to the discovery of a novel chemical series of pyridine-based potent and selective CB<sub>2</sub> agonists. Compound **3**, that is, 2,2-dimethyl-*N*-(5-methyl-4-(morpholinomethyl)pyridin-2-yl)butanamide, the best compound in this series, displayed good affinity at the CB<sub>2</sub> receptor ( $K_i = 24$  nM), 160-fold selectivity versus CB<sub>1</sub> and moderate metabolic stability in rat and human liver microsomes. Importantly, compound **3** displayed antiallodynic activity after oral administration in a rat model of neuropathic pain.

## **References and notes**

- 1. Pan, H.-L.; Wu, Z.-Z.; Zhou, H.-Y.; Chen, S.-R.; Zhang, H.-M.; Li, D.-P. Pharmacol. Ther. 2008, 117, 141.
- Malan, T. P., Jr.; Ibrahim, M. M.; Lai, J.; Vanderah, T. W.; Makriyannis, A.; Porreca, F. Curr. Opin. Pharmacol. 2003, 3, 62.
- Ermann, M.; Riether, D.; Walker, E. R.; Mushi, I. F.; Jenkins, J. E.; Noya-Marino, B.; Brewer, M. L.; Taylor, M. G.; Kahrs, A. F.; Ebneth, A.; Lobbe, S.; O'Shea, K.; Shih, D.-T.; Thomson, D. Bioorg. Med. Chem. Lett. 2008, 18, 1725.
- Giblin, G. M. P.; O'Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.; Eatherton, A. J.; Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.; Brown, A. J.; Haslam, C. P.; Clayton, N. M.; Wilson, A. W.; Chessell, I. P.; Wittington, A. R.; Green, R. J. Med. Chem. 2007, 50, 2597.
- Hohmann, A. G.; Farthing, J. N.; Zvonok, A. M.; Makriyannis, A. J. Pharmacol. Exp. Ther. 2004, 308, 446.
- Ibrahim, M. M.; Porreca, F.; Lai, J.; Albrecht, P. J.; Rice, F. L.; Khodorova, A.; Davar, G.; Makriyannis, A.; Vanderah, T. W.; Mata, H. P.; Malan, T. P., Jr. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3093.
- Worm, K.; Zhou, Q. J.; Saeui, C. T.; Green, R. C.; Cassel, J. A.; Stabley, G. J.; DeHaven, R. N.; Conway-James, N.; LaBuda, C. J.; Koblish, M.; Little, P. J.; Dolle, R. E. Bioorg. Med. Chem. Lett. 2008, 18, 2830.

- Worm, K.; Weaver, D. G.; Green, R. C.; Saeui, C. T.; Dulay, D.-M. S.; Barker, W. M.; Cassel, J. A.; Stabley, G. J.; DeHaven, R. N.; LaBuda, C. J.; Koblish, M.; Brogdan, B. L.; Smith, S. A.; Dolle, R. E. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5004.
   Ninomiya, K.; Shioiri, T.; Yamada, S. *Tetrahedron* **1974**, *30*, 2151.
- Binding assays were performed by modification of the method of Pinto, J. C.; Potie, F.; Rice, K. C.; Boring, D.; Johnson, M. R.; Evans, D. M.; Wilken, G. H.; Cantrell, C. H.; Howlett, A. *Mol. Pharmacol.* **1994**, 46, 516–522: (b) The [<sup>35</sup> S]GTPγS binding method is a major modification of the method by Selley, D. E.;

Stark, S.; Sim, L. J.; Childers, S. R. *Life Sci.* **1996**, 59, 659–668. Additional details are given in Ref. 7; (c) All the compounds listed in Table 1 are full CB<sub>2</sub> receptor agonists as determined in a [<sup>35</sup> S]GTP $\gamma$ S functional binding assay.

- 11. Obach, S. R. Drug Metab. Dispos. 1999, 27, 1350.
- 12. Compound **21**, the regioisomeric analog of **6**, exhibited much weaker  $CB_2$  binding affinity as compared to **6** and **3** with  $K_i$  ( $CB_2$ ) = 470 nM.
- 13. LaBuda, C. J.; Little, P. J. J. Neurosci. Methods 2005, 144, 175.