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ABSTRACT: A new series with the tetrahydroisoquinoline-fused
benzodiazepine (TBD) ring system combined with the surrogates
of (1-methyl-1H-pyrrol-3-yl)benzene (“MPB”) payloads were
designed and executed for conjugation with a monoclonal antibody
for anticancer therapeutics. DNA models helped in rationally
identifying modifications of the “MPB” binding component and
guided structure−activity relationship generation. This hybrid
series of payloads exhibited excellent in vitro activity when tested
against a panel of various cancer cell lines. One of the payloads was
appended with a lysosome-cleavable peptide linker and conjugated
with an anti-mesothelin antibody via a site-specific conjugation
method mediated by the enzyme bacterial transglutaminase
(BTGase). Antibody−drug conjugate (ADC) 50 demonstrated good plasma stability and lysosomal cleavage. A single intravenous
dose of ADC 50 (5 or 10 nmol/kg) showed robust efficacy in an N87 gastric cancer xenograft model.
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Antibody−drug conjugates (ADCs) have ascended as
powerful biologics that combine the high affinity and

specificity of monoclonal antibodies (mAbs) with the promising
antitumor efficacy of the payloads.1,2 Over the last two decades,
ADCs have continued to evolve as an attractive modality for the
treatment of hematological malignancies and solid tumors.3

Currently, there are nine approved and marketed ADCs.4 A
cytotoxic agent, often called a payload, that is generally too toxic
for systemic administration is combined with mAbs with the
help of linkers to specifically target tumor cells. On the basis of
the mechanism of action, payloads fall into three categories:
antimitotic, DNA-interacting, and transcription-inhibiting. The
antimitotic class of payloads used in ADCs act by interacting
with tubulin and include maytansinoids, auristatins, tubulysins,
and many others.5 The DNA-interacting class includes
calicheamicin, duocarmycin, etc.6 The transcription inhibitors
include amatoxins that bind to RNA polymerase II.7 Antimitotic
and DNA-interacting payloads are most broadly used in ADCs.
DNA-interacting agents act by binding to the minor groove and

lead to intercalation, scission, alkylation, or cross-linking of
strands. Hence, they are also called DNA minor groove binders
(MGBs). Another important class of payloads used in ADCs is
camptothecins.8 Camptothecin and its derivatives bind to the
topoisomerase I/DNA complex as their mechanism of action.9

One of the MGBs that is highly pursued in the ADC
architecture is the pyrrolo[2,1-c][1,4]benzodiazepine (PBD)
class of compounds (Figure 1, example payload 1).10−17 PBD
dimers bind in the minor groove of DNA, where they form
interstrand cross-links with guanines. Rahman et al.18 reported
that some non-covalent heteroaryl pharmacophores have a
strong preference for GC-rich DNA sequences either alone or
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when combined with PBDs. Compounds 2a and 2b are the two
most advanced candidates from Rahman et al.18 Notably, 2b
demonstrated significant antitumor efficacy in breast (MDA-
MB-231) and pancreatic (MIA PaCa-2) xenograft models.18

As part of our ADC discovery efforts19−21 and inspired by the
report by Rahman et al.,18 we sought to pursue PBD−4-(1-
methyl-1H-pyrrol-3-yl)benzeneamine (“MPB” as termed by
Rahman et al.18) hybrid payloads for the ADC modality (Figure
1, example payloads 2a and 2b). The inherent toxicity of these
payloads to normal cells motivated us to prosecute these agents
for a targeted therapeutic approach like ADC. Our prior
experience with PBD molecules led us to hypothesize that some
examples in this class might be too potent to achieve an
acceptable therapeutic index. An appealing aspect of these
hybrid molecules was the potential to tune the properties by
preparing a diverse set of analogues through variation of the
MPB portion of themolecules.We pursued the reported “PBD−
MPB” hybrid payloads in the context of our fused
benzodiazepine with a tetrahydroisoquinoline ring system,
herein called TBD (Figure 1, example payload 3).
For benchmarking purposes, we made 4 and 5, which are the

TBD versions of 2a and 2b, respectively, from the original
publication by Rahman et al.18 Initial characterization of the
payloads was based on an in vitro evaluation against a suite of
cellular proliferation assays for lung (H226), gastric (N87),
ovarian (OVCAR3), and colon (HCT116) cancer cell lines as
described in our recent publication.22 Compounds 4 and 5
showed quite potent (single- to double-digit and subpicomolar)
activities in these cell lines (Table 1). A double-stranded B-DNA
binding model for 4 was generated using the sequence 5′-
AAGAAGGCAA-3′, as reported by Rahman et al.18 We
hypothesized that 4, which is a TBD variant of 2a, would also
bind to the 5′-AAGAAGGCAA-3′ sequence that was demon-
strated to be the preferred binding sequence for 2b.18 Figure
2A,B illustrates the bindingmode of 4 in theDNAminor groove.
The C11−N10 imine of TBD makes a covalent bond with the
exocyclic amine of G3 of the DNA, while the “py-MPB” portion
of the payload makes non-covalent interactions and nicely
follows the curvature of the DNA minor groove.
The DNA-binding model of 4 revealed opportunities to

modify the “MPB” portion of the payloads. A set of internally

available anilines was evaluated to rationally replace the “MPB”
moiety. Among these, we envisioned a (methyltriazolo)benzene
replacement (compound 6) for the “MPB” moiety. We
hypothesized that the flat (methyltriazolo)benzene group
would nicely complement the minor groove, with one of the
ring nitrogens in the triazole ring being in close proximity to the
exocyclic amine of G7 in the DNA model to engage in a
hydrogen-bonding interaction dynamically. While the H226 cell
line activity was retained or improved in 6 compared with its
progenitor 4, the other three cell lines showed diminished
activity, with the worst being the OVCAR3 cell line. Compound
7 was made to explore the impact of removing the methyl group
in the triazole ring, and it turned out to be equipotent to its
methyl counterpart in the H226, N87, and HCT116 cell lines
and ∼3-fold more potent in the OVCAR3 cell line. As an N-
linked imidazole derivative, 8 lacks the hydrogen-bond acceptor
close to the exocyclic amine of G7 and showed a considerable
loss of activity across all four cell lines compared with 6. C-linked
imidazole 9 had further-diminished activities across all four cell
lines. The substantial drop in the activity is perhaps partly due to
the possibility of tautomerization where hydrogen bonding with
the exocyclic amine of G7 is absent in one set of tautomers. The
perturbed coplanarity between the two terminal rings may also
play a role in reducing the activity. For oxazole 10, which has the
ring nitrogen to complement the exocyclic amine of G7, the
activity was restored in all of the cell lines except H226
compared to its triazole counterpart 6.
Next, we kept the methyltriazolo ring constant and surveyed

the structure−activity relationship (SAR) around the N-linked
phenyl group. o-Fluoro analogue 11 showed comparable activity
in the H226 cell line and improved activities in the other three
cell lines relative to 6. Slightly bulky ortho substituents
negatively impacted the activities in all four cell lines
(compounds 12−16). o-Hydroxy analogue 17 showed activities
comparable to those of 6 in the H226 and HCT116 cell lines.
Pyridyl derivative 18 showed an enhancement in activity in the
N87 cell line relative to its phenyl counterpart 7. Compound 19
with a difluoromethyl group instead of the methyl group in 13
showed an improvement in the activities in the N87 and
OVCAR3 cell lines. Desmethyl analogue 20 showed a modest
drop in activity across all of the tested cell lines except N87
compared with its parent analogue 13. Dimethyl derivative 21
exhibited a dramatic loss in the activities across all four cell lines,
likely hinting at the need for coplanarity of the distal biaryl ring
system. We revisited N-linked imidazole (cf. compound 8) and
introduced substitutions in the linking phenyl and terminal
imidazole rings. Compounds 22−26 are the outcomes of this
effort, and the combination of chloroimidazole with either a
fluorophenyl or pyridine linking ring yielded acceptable activity
profiles in all four cell lines. N-Phenylpyrazole 27 showed
double-digit picomolar activities in three of the four cell lines.
Tricyclic analogues 28 and 29 showed activity profiles

comparable to that of 6. Tricyclic derivative 30 is not as flat as
28 and 29 and showed a marked drop in activities across all four
cell lines. Tricyclic analogue 31 exhibited further-diminished
activities in all four cell lines. While all three rings in the tricyclic
ring system in 30 fit well in the minor groove of the DNAmodel,
the morpholinotriazole portion of the tricyclic ring system in 31
projected outside the minor groove. Aza-N-methylbenzimida-
zole 32 had activities in the single-digit nanomolar range in all
four cell lines, which once againmay partly be due to the putative
suboptimal fit of the bicyclic ring in the minor groove of the
DNA.

Figure 1. Example structures of PBD dimer,17 “PBD-py-MPB”,18 and
TBD dimer.19−21
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Table 1. Compounds and Cytotoxicity Data (IC50 in nM)
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Table 1. continued

aThe IC50 value was the result of multiple determinations (n ≥ 2). bThe IC50 value was obtained after single determination (n = 1).
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Figure 2. (A) Binding model of 4 in double-helical B-DNA. The inset shows the sequence used in the DNA model development. (B) Surface
representation of the DNA model showing the snug fit of 4 in the minor groove. Hydrogen bonds are represented by yellow dotted lines. The
covalently bound TBD portion of the payload, the linker, and the non-covalently bound “py-MPB” portion are shown in green, orange, and magenta,
respectively. The figure was prepared using PyMOL (The PyMOL molecular graphics system, Version 2.3.0, Schrödinger, LLC).

Scheme 1. Synthetic Route for 4−32
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The synthetic route for payloads 4 to 32 is shown in Scheme 1
(see the Supporting Information for details). An effort was
started to produce a fit-for-purpose synthetic route capable of
delivering tens to hundreds of grams of monomer precursors.
This was undertaken to supply ample quantities of material for
SAR studies while also providing a blueprint toward a large-scale
process. The route begins with aldehyde 33, obtained from
vanillin in three steps, all conducted in continuous flow mode.23

The phenol was protected as a tosyl ester, which imparted
crystallinity to many of the early-stage intermediates and greatly
reduced the number of purifications by chromatography.
Aldehyde 34 was oxidized to the acid through a Pinnick
oxidation (92%), and through the intermediacy of the acid
chloride, the acid was coupled with tetrahydroisoquinoline 36 to
give amide 37 (82%) under Schotten−Baumann conditions.
The nitro group of 37 was reduced with hydrogen gas catalyzed
by palladium on carbon doped with 1% iron (99%). The aniline
was protected as an allyloxycarbamate (Alloc), again under
Schotten−Baumann conditions (98%). Freshly distilled Alloc-

Cl was found to eliminate the formation of urea-like byproducts
that formed from old lots of Alloc-Cl. The primary alcohol of 38
was oxidized with TEMPO/NCS to afford the aldehyde, which
cyclized in situ to form tetracycle 39 as a single aminal
diastereomer (86%). We found this to be a strategic place to
store bulk material, as it is the last crystalline intermediate in the
synthesis. The aminal oxygen in 39was protected as a TBS ether
(89%), and then the tosyl group was removed under the action
of potassium carbonate in methanol (82%) to afford phenol 40,
which was then alkylated with methyl bromobutyrate and
hydrolyzed to afford key intermediate acid 41 in a robust,
scalable 10-step process. This acid was then diversified by amide
bond formation followed by deprotection of the Alloc group,
which led to spontaneous elimination of the protected
hemiaminal, affording the imine products 4−32. It was felt
that unmasking the imine functionality as late as possible was
important to minimize any potential stability concerns with the
potentially reactive imine and also, for safety reasons, to

Scheme 2. Synthetic Route for Payload−Linker 49
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minimize the number of steps that required handling of these
potently cytotoxic compounds.
On the basis of our in vitro cytotoxicity SAR and the desired

physicochemical properties, 13 was selected as an exemplar for
installing the linker for conjugation with an antibody since this
starting point might lead us to tune potency up or down if we
found the corresponding ADC to be either not potent enough or
too poorly tolerated. This synthesis commenced in a manner
similar to that of 4−32, albeit on a differentially protected
scaffold (Scheme 2). Amide coupling between chiral amine 42
and acid 43 afforded nitro−amide 44, which was next reduced to
the corresponding aniline, and the cathepsin-cleavable valine−
alanine−benzyl carbamate linker was installed to give 45.
Cleavage of the TBS ether, oxidation to the hemiaminal, and a
subsequent protecting-group manipulation led to phenol 46,
from which the MGB motif was added, similarly to the
nonconjugated analogues, to afford 48. Removal of the Alloc
protecting group on the linker followed by installation of a
poly(ethylene glycol) 4 (PEG4) spacer gave linker−payload 49.
Conjugation to an antibody that targets the mesothelin24

antigen using site-specific conjugation mediated by BTGase25 as
described in the Supporting Information provided ADC 50
(Figure 3). The final purified ADC 50 was >98%monomer with
a drug to antibody ratio (DAR) of 2.0.

ADC 50 was incubated with cathepsin B at 37 °C for 4 h to
check whether this ADC could be cleaved enzymatically by a
lysosomal protease. Cleavage of 98% of the payload occurred
within 4 h. ADC 50 was found to be quite stable upon
incubation with mouse serum at 37 °C, with minimal loss of
payload (<0.1%) over 96 h. The in vitro potency of ADC 50 is
comparable to that of the corresponding payload by itself.
The efficacy of anti-mesothelin ADC 50 was evaluated in a

xenograft model of mesothelin-positive N87 human gastric
tumors while anti-FucGM126 ADC 50 was administered as a
nontargeted isotype-ADC control. Administration of a single iv
dose of anti-mesothelin ADC 50 at 5 or 10 nmol/kg (0.4 or 0.8
mg/kg) is highly efficacious, whereas the nontargeted anti-
FucGM1 ADC 50 demonstrated only minor tumor growth
inhibition at 10 nmol/kg iv (0.8 mg/kg) (Figure 4A). Anti-
mesothelin ADC 50 was well-tolerated up to 10 nmol/kg with
only a transient body weight loss observed relative to vehicle-
treated mice (Figure 4B).
In summary, inspired by a literature report of the conventional

payload efficiency of a hybrid PBD, we pursued modified hybrid
payloads in the context of ADC modality. PBD-based payloads
are extremely potent and quite toxic to normal cells, and hence, a
targeted therapeutic approach like the ADC modality is
warranted to increase their safety when used in anticancer

Figure 3. Structure of ADC 50.

Figure 4. Antitumor efficacy was measured in an established N87 human gastric cancer xenograft model in mice. (A) Time course of tumor volume
after administration of a single iv dose of anti-mesothelin-ADC 50. (B) Time course of median percent body weight change from the same experiment.
A dose of 5 or 10 nmol/kg is equivalent to 0.4 or 0.8 mg/kg, respectively.
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therapeutics. With the help of molecular modeling studies, we
executed some TBD version of PBD payloads combined with
the new (methyltriazolo)benzene MGBs. This new series of
payloads showed great promise in terms of in vitro activities in a
select panel of cancer cell lines. One of the new hybrid payloads
was appended with a linker and conjugated with an antibody.
This ADC demonstrated robust in vivo antitumor efficacy and
acceptable tolerability in a mouse xenograft model.
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