

WILEY-VCH

Olefin-Oriented Selective Synthesis of Linear and Branched *N*-Alkylated Heterocycles *via* Hydroamination

Sushmita, Trapti Aggarwal, Kapil Mohan Saini and Akhilesh K. Verma*

Dedication ((optional))

Abstract: An effective base-induced selective approach for the synthesis of linear and branched *N*-alkylated heterocycles *via* hydroamination of olefins has been described. The designed C-N bond formation method was directed through the olefin as with styrenes only linear *N*-alkylated product was obtained and acrylates gave linear as well as branched alkylated heterocycles. This protocol provided the synthesis of exclusive *N*-alkylated product instead of C-3 Michael addition product. The reaction was also compatible with phenyl vinyl sulfone, thus leading to the formation of sulfone substituted heterocycles in good yield. Further, the method was utilizied for the synthesis of medicinally important analogs of CB1 Cannabinoid receptor and Dimebon analouge in short reaction sequence.

The C-N bond-forming reactions contribute as one of the most important, versatile and practical synthetic approach for the development of nitrogen-containing compounds that demonstrate numerous applications in natural products and biologically active drugs.¹⁻² Due to the wide applicability of Nheterocyles, enormous effort has been devoted for the designing of an economical and mild protocol to furnish N-alkylated indoles and carbazoles. Hydroamination of amines with C-C unsaturated bond using expensive metal-catalyst is among the most preferred reaction for the N-alkylation of heterocycles because of its high atom economy.³ Importantly, hydroamination of alkene afforded two possible regioisomeric products, the Markovnikov, and the anti-Markovnikov, which depends on the formation of new C-N bond.⁴ Though hydroamination of alkenes typically furnishes the Markovnikov product, however; the participation of the lone pair available on nitrogen in the aromatic system enhance the nucleophilicity at C-3 position of indole. Thus, various reports are available in the literature for C-3 alkylation of indoles⁵ however; the challenging task was to execute intermolecular anti-Markovnikov alkylation selectively at nitrogen of indoles instead of C-3 position under mild reaction conditions (Figure 1).

Figure 1. Overview of the Addition of Alkene on N-heterocycles

 Sushmita, Dr. Trapti Aggarwal, Kapil Mohan Saini and Prof. Akhilesh K. Verma* Department of Chemistry, University of Delhi, Delhi 110007, India URL: <u>http://akvresearch.com</u> E-mail:: <u>averma@acbr.du.ac.in</u>

Supporting information for this article is given via a link at the end of the document.

Tremendous advances has been gained over the past decades with metal-catalyzed alkene hydroamination,⁶ however the basemediated synthesis of linear and branched alkylated heterocycles remains elusive. Interestingly, heterocycles pendant with *N*-alkyl group enhances the biological activity of the molecule.⁷ The *N*-alkylated carbazoles core are present in many drugs like AZ-5 (GAT236) CB1 Cannabinoid Receptor (I),⁸ latrepirdine or dimebon (II) act as antihistamine drug⁹ and Ramatroban (III)¹⁰ used as DP(2) receptor antagonist (Figure 2). The *N*-functionalized carbazoles are in high demand because it increases the solubility of drug in organic solvents.

Figure 2. Biologically active carbazoles analogs

In 2012, Hill and co-workers reported the *N*-alkylation of secondary amines with styrenes in the presence of alkaline earth-metal catalysts (Scheme 1a).¹¹ Later, intermolecular hydroamination of indoles with unactivated olefins in the presence of iridium catalyst was exploited by Hartwig and co-workers to afford the Markonikov addition product (Scheme 1b).¹² Very recently, Akai and co-workers reported the Cobalt-catalyzed alkylation of benzotriazole with alkenes (Scheme 1c).¹³ Owing to the high efficacy and versatility of C-N bond formation reaction and our ongoing research on hydroamination with alkynes (Scheme 1d)¹⁴ herein, we wish to explore the base-mediated hydroamination of *N*-heterocycles with olefins including acrylates, olefins, and sulfones (Scheme 1e). To probe the viability of CB1 cannabinoid receptors and Dimebon.

We commenced our investigation on the basis of our previous reports on the hydroamination.^{14c} When indole (**1a**) was reacted with phenyl styrene (**2a**) in the presence of 1.0 equiv of KOH in DMSO at 120 °C for 10 h, no progress in the reaction was observed (Table 1, entry 1). Stirring the reaction for a longer time made no significant improvement on the reaction (entry 2). Increase in the amount of base from 2.0 equiv to 3.0 equiv, afforded the 66% yield of *N*-alkylated product **3a** (entries 3-5). Altering the reaction time increases the yield of product **3a** (entry 6-7). Further monitoring the reaction at different temperature afforded the lower yield of product **3a** (entry 8-9). Use of other bases such as NaOH, CsOH provided the product **3a** in lower yield (entries 10-11). Screening of various solvents such as DMF, NMP. DMA and toluene revealed that DMF was the only solvent

WILEY-VCH

suitable for this transformation albeit in lower yield as compared to DMSO (entries 12-15). In the absence of base, no reaction was observed (entry 16).

Previous Work

(e) Present Work

Scheme 1. Synthesis of N-Alkylated Heterocycles

Table 1. Optimization of reaction conditions.^a

	►	Ū,↓Ņ⁺,/~<	Time, Ter	np.	N Ph
н 3а'		1a 2	a		3a
entry	solvent	Base	temp	t	yield ^b
		(equiv)	(°C)	(h)	(%) 3a
1	DMSO	KOH (1.0)	120	10	0
2	DMSO	KOH (1.0)	120	20	Traces
3	DMSO	KOH (2.0)	120	20	20
4	DMSO	KOH (2.5)	120	20	40
5	DMSO	KOH (3.0)	120	20	66
6	DMSO	KOH (3.0)	120	36	80
7	DMSO	KOH (3.0)	120	42	81
8	DMSO	KOH (3.0)	140	24	65
9	DMSO	KOH (3.0)	100	36	63
10	DMSO	NaOH (3.0)	120	36	43
11	DMSO	CsOH (3.0)	120	36	37
12	DMF	KOH (3.0)	120	36	55
13	NMP	KOH (3.0)	120	36	NR
14	DMA	KOH (3.0)	120	36	NR
15°	Toluene	KOH (3.0)	120	36	NR
16	DMSO	-	120	36	NR

^[a] Reactions were performed using 0.50 mmol of **1a**, 0.10 mmol of styrene **2a**, 3.0 equiv of base in 2.0 mL solvent unless otherwise noted. ^[b] Isolated yield. ^[c] Without using KOH.

With the optimal reaction condition in hand, a diverse library of N-alkylated product 3a-o was prepared in 60-80% yields. The reaction of indole 1a with various styrenes 2a-e afforded the corresponding products 3a-e in good yields (Scheme 2). A good yield of product 3b and 3c were obtained with electron-withdrawing group substituted alkene 2b and 2c under the optimal condition. The reaction required 40 h, when styrenes embedded with electrondonating functional group 2d and 2e were employed under optimized reaction condition. When methyl substituted indole 1b-1c were subjected towards the hydroamination reaction, the desired products 3f-g were obtained in 68% and 70% yield, respectively. The reaction with 5-OMe indole 1d gave the desired product 3h in 68% yield. While good yields of product 3i-j were obtained when bromo and Nitro substituted indole 1e-f were used as substrate. Interestingly, the reaction proceeds smoothly with 7-(benzyloxy)-1H-indole (1g) and afforded the N- alkylated product 3k in 64% yield. The bromo substituted substrate, afforded hydroaminated product over arylation in 78% yield. The optimized reaction condition was compatible with azaindole (1h) also to give 3I in 69% yield. The reaction proceeded smoothly with carbazoles 1i and hydroxy substituted carbazoles 1j provided the alkylated products 3m-n in good yield, devoid of any reaction on free hydroxyl group present in the 1j. However, no reaction was observed with internal alkene, i.e. trans-stilbene 2f.

Scheme 2. Scope of Styrenes Reaction Conditions: The reactions were performed using *N*-heterocycle **1** (0.5 mmol), 1.0 mmol of Styrenes **2**, 3.0 equiv of KOH in 2.0 mL of DMSO at 120 $^{\circ}$ C.

reaction with *N*-methyl γ -carbolines **1p** and obtained the selective *N*-alkylated product **5n** in 68% yield. Aza-carbazole **1q** gave the *N*-alkylated product **5o** in good yield.

After the successful synthesis of linear alkylated products 5, next, we intended to synthesize branched *N*-alkyalted heterocycles **6a-q** *via* hydroamination with successive Michael addition. Using 3.0 equiv of acrylates **2** and KOH, the hydroaminated product **5** *in situ* underwent sequential Michael addition¹⁶ to afford the corresponding branched products **6a- 6q** in good to excellent yields (Scheme 4). The reaction of indole **1a** with methyl acrylate **4a**, ethyl acrylate **4f** and *n*-butyl acrylate **4g** provided the products **6a-c** in 72-80% yield. Methyl methacrylate **(4b)** was also found suitable, giving the desired product **6d** in good yield. Benzyloxy acrylate **4h** and phenyl acrylate **4i** were well tolerated under basic medium to furnish the desired products **6e-f** in 74-78% yields.

Scheme 4. Synthesis of *N*-pentanedioate substituted heterocycle. Reaction Conditions: The reactions were performed using *N*-heterocycle 1 (0.5 mmol), 1.5 mmol of olefin 4, 3.0 equiv of KOH in 2.0 mL of DMSO at 120 °C for 36 h.

Substituted indoles with electron-donating groups, such as methyl and methoxy groups, showed good reactivity in the reaction and provide the desired products **6g–6i** in 74–82% yields. Interestingly, 7-(benzyloxy)-1H-indole (**1g**) also found viable for the reaction and furnished the desired product **6j** in 65% yield. The reaction of substrate **1r** having free NH₂ under optimized reaction conditions, chemoselectively provided the product **6k** in 75% yield without affecting free amine group (entry 11). Electron-withdrawing group such as Br and NO₂ substituted indoles **1e-f** afforded the Michael addition products **6I-m** in moderate yields. Bromo-indazole **1m** gave the desired product **6n** in 76% yields. Switching from indole to carbazole scaffold,

Encouraged from the above results with styrenes, next we intended to explore the hydroamination of *N*heterocycles with acrylates **4a–e** in super basic medium (Scheme 3). The reaction of indole **1a** with methyl acrylate (**4a**) and methyl methacrylate (**4b**) provided the *N*-alkylated product **5b–5b** in 82–86% yield. Acrylonitrile **4c** was well tolerated under the screened reaction condition and afforded the desired product in good yield. The reaction with cyclohexyl acrylate **4d** provided the *N*-alkylated product **5d** in 80% yield. Carboxyl and phenoxyl substituted indole gave *N*-alkylated product in 72-76% yield.

Scheme 3. Scope of Indole/Carbazoles with Acrylates. Reaction Conditions: The reactions were performed using *N*-heterocycle 1 (0.5 mmol), 0.6 mmol of acrylate 4, 1.0 equiv of KOH in 2.0 mL of DMSO at 120 $^{\circ}$ C for 20 h.

The significant yield of product 5g was obtained when azaindole 1h was employed as a substrate. Interestingly, the reaction proceeds smoothly with indoline-2,3-dione (11) and afforded the N-alkylated indoline 5h in 65% yield. Inspired from above results, we next investigated other Nheterocycles 1m-q. When 6-bromo-1H-indazole (1m) was used as substrate, the desired N-alkylated product 5i in 78% yield. However, no reaction was observed when indole 1a was reacted with internal acrylate 4e. Similarly, unsubstituted carbazole (**1i**) and 1,2,3,4 tetrahydrocarbazole (1n) on reaction with methyl acrylate (2a) in super basic medium afforded the desired N-alkylated product 5k and 5l in 80 and 75% yields, respectively. To further extend the scope of substrate, next we utilized biologically active y-carbolines (10-p).15 The reaction with substrate having two NH free i.e. y-carboline 1o, provided the product 5m with alkylation on both nitrogens in 51% yield alongwith substrate 1o. After that, we preceded the

3

provided the fruitful yield. The reaction of carbazole **1i** with methyl acrylate **4a** afforded the product **6o** in 75% yield. We next extended the substrate scope by employing substituted carbazoles bearing hydroxy at C-2 position **1j**; 70% yield of product **6p** was obtained selectively. Furthermore, tetrahydro carbazole **1n** reacted smoothly with **4a** to provide the product **6q** in good yield.

Inspired from the reaction with styrenes and acrylates, next we planned to utilize electron-deficient vinyl sulfones **7** under the screened reaction condition and obtained the desired product **8a–b** in 72-78% yield (Scheme 5). Sulfones are biologically important synthons which on addition to any scaffold increase its medicinal prospects.¹⁷

Scheme 5. Reaction of N-heterocycle with phenyl vinyl sulfone

After successful accomplishment with olefins, we elaborated the protocol for the designing of new synthetic route for the medicinally important drug analogs. Firstly, we planned to synthesize the analog of allosteric modulators of CB1 Cannabinoid receptor in short reaction sequence (Scheme 6a). The reaction initiates with condensation reaction between methyl 3-(9H-carbazol-9-yl)propanoate (5k) and hydrazine hydrate in presence of methanol to give intermediate 9 in 87% yield. Further treating the intermediate 9 with 2-isothiocyanatopropane (10), generates thio-semicarbazides 11 in 89% yield which subsequently cyclized in basic medium to form the targeted analog of AZ-5 GAT236 (12) (Cannabinoid receptor) in 85% yield. Next, we synthesize Dimebon analog 13 by treating Nmethyl y-carboline 1p as substrate with methyl-substituted styrene 2d under screened reaction conditions for 42 h. The targeted product 13 was obtained in 60% yield in one-step.

(a) Synthesis of Cannabinoid receptor

lvachtchenko group has reported that the alkyl chain present in the products increases its affinity to 5-HT₆ and H₁ receptors.¹⁸

To support the selective formation of linear and branched hydroaminated product, we conducted deuterium labeling studies (Scheme 7). When we performed the reaction of indole with styrene using DMSO-d₆, product **3p** was obtained in 72% yield with the incorporation of two deuterium molecules at α-to phenyl ring. Then, the formation of deuterated products 5p in 82% yield after 20 h with 70% deuterium incorporation using DMSO-d₆ supported the initial protonation on the α-carbon adjacent to phenyl/ester group. Using excess of base in DMSOd₆, provided 76% yield of di-deuterated product **6r** after 36 h. These experiment suggests that the reactions proceed through hydroamination and the incoming protons were provided by the solvent (Scheme 7A). When we performed the reaction with Nmethyl indole 1s under basic medium, the expected C-3 alkylated product 14 was not formed (Scheme 7B). Based on the above evidence and literature¹⁴ a plausible mechanism was proposed which shows the exchange of deuterium with hydrogen in presence of KOH generated the DOH which activates the styrene that leads to the formation of hydroaminated product 3 (Scheme 7C).

A. Reaction in KOH/DMSO-d₆

C. Plausible Mechanistic Pathway

Scheme 7. Control Experiments

In conclusions, we have reported the selective hydroamination of indoles, carbazoles, aza-carbazoles and ycarbolines with styrenes, acrylates and sulfones in basic medium. The designed strategy was highly specific and directed through the olefins to furnish linear or branched N-alkylated heterocycles. This protocol provided the N-alkylated indoles exclusively with good to excellent yield without C-3 alkylation. We have constructed the diverse library of substituted Npentandioate heterocycles through hydroamination with sequential Michael addition under basic condition. The KOH/DMSO strategy was also compatible with vinyl phenyl sulfones. The developed protocol was then extended for the construction of Dimebon analogue in one-step and AZ-5 CB1

4

WILEY-VCH

Cannabinoid receptor through short reaction sequence in good yield. The method was well tolerated with variety of functional group which can be easily elaborated through organic functional group transformation. Further, deuterium-labelling experiments supported the mechanistic pathway.

Acknowledgements

The research work was supported by Council of Scientific and Industrial Research (CSIR) and University of Delhi. Sushmita is thankful to UGC for JRF, T.A. is thankful to UGC for Women Post-doctoral fellowship and K.M.S. is thankful to CSIR for SRF fellowship.

Keywords: Hydroamination • Indoles• Carbazoles • Styrenes • Acrylates

References

- (a) R. Hili, A. K. Yudin, *Nat. Chem. Biol.* 2006, *2*, 284; b) A. Ricci, 1st ed.; Wiley-VCH: Weinheim, Germany, 2007; c) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences; Wiley-VCH: Weinheim, 2008; d) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug discovery. *Curr. Opin. Chem. Biol.* 2010, *14*, 347.
- (a) J. Kim, M. Movassaghi, *Chem. Soc. Rev.* 2009, *38*, 3035; b) J. A. Joule, K. Mills, *Heterocyclic Chemistry*; John Wiley & Sons: New York, 2010; c) A. P. Taylor, R. P. Robinson, Y. M. Fobian, D. C. Blakemore, L. H. Jones, O. Fadeyi, *Org. Biomol. Chem.* 2016, *14*, 6611; d) S. Ponra, K. C. Majumdar, *RSC Adv.* 2016, *6*, 37784.
- (a) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, *Chem. Rev.* 2008, *108*, 3795; b) L. Huang, M. Arndt, K. Gooßen, H. Heydt, L. J. Gooßen, *Chem. Rev.* 2015, *115*, 2596; c) M. T. Pirnot, Y.-M. Wang, S. L. Buchwald, *Angew. Chem. Int. Ed.* 2016, *55*, 48; d) S. Park, S. J. Malcolmson, *ACS Catal.* 2018, *8*, 8468; e) F. Schroeter, S. Lerch, M. Kaliner, T. Strassner, *Org. Lett.* 2018, *20*, 6215.
- 4 (a) M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546;
 b) M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2004, 126, 2702;
 c) C. F. Bender, R. A. Widenhoefer, J. Am. Chem. Soc. 2005, 127, 1070;
 d) H. Ohmiya, T. Moriya, M. Sawamura, Org. Lett. 2009, 11, 2145;
 e) M. J. Goldfogel, C. C. Roberts, S. J. Meek, J. Am. Chem. Soc. 2014, 136, 6227;
 f) S. C. Ensign, E. P. Vanable, G. D. Kortman, L. J. Weir, K. L. Hull, J. Am. Chem. Soc. 2015, 137, 13748;
 g) X.-H. Yang, A. Lu, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 14049.
- (a) A. Swetha, M. R. Reddy, B. M. Babu, H. M. Meshram, *Tetrahedron Lett.* 2014, *58*, 4427; b) G. Bartoli, M. Bosco, A. Carlone, F. Pesciaioli, L. Sambri, P. Melchiorre, *Org. Lett.* 2007, *9*, 1403; c) C.-E. Yeom, M. J. Kim, B. M. Kim, *Tetrahedron*, 2007, *63*, 904; d) G. Bartoli, M. Bartolacci, M. Bosco, G. Foglia, A. Giuliani, E. Marcantoni, L. Sambri, E. Torregiani, *J. Org. Chem.* 2003, *68*, 4594.

- 6 (a) E. Song, H. Y. Kim, K. Oh, Org. Lett. 2017, 19, 5264–5267; b) P. T. Marcyk, S. P. Cook, Org. Lett. 2019, 21, 1547; c) Y. Xiong, G. Zhang, Org. Lett. 2019, 21, 7873; d) A. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib, T. C. Sherwood, R. R. Knowles, Science 2017, 355, 727; d) M. Villa, A. J. v. Wangelin, Angew. Chem. Int. Ed. 2015, 54, 11906; e) K. D. Hesp, M. Stradiotto, ChemCatChem 2010, 2, 1192.
- 7 (a) B. Biersack, *Cancer Drug Resist*, 2019, 2, 1; b) M. J. Sharma, M. S. Kumar, M. Murahari, Y. C. Mayur, *Arch Pharm Chem Life Sci.* 2019, 1.
- 8 (a) A. V. Ranade, G. A. Thakur, Design and Synthesis of Positive Allosteric Modulators of CB1 Cannabinoid Receptor, Master's Thesis Dissertation, Department of Pharmaceutical Sciences Bouvé College of Health Sciences, Northeastern University, **2013**; b) L. Daniel, Jr. Minor, S. N. Bagriantsev, A. R. Renslo, *US Pat. Appl.* 9, *862*, 684 B2, **2018**; c) T. I. El-Emarya, H. A. K. A. El-Aala, S. K. Mohamed, *Int. J. Pharm. Sci. Rev. Res.* **2018**, *53*, 7.
- 9 (a) K. Ishizumi, J. Katsube, UK Pat. Appl. GB 2025932 A, 1980, 6 pp;
 b) K. Ishizumi, J. Katsube, U.S. Patent US 4263304 A, 1981, 6 pp; c)
 I. Okun, S. E. Tkachenko, A. Khvat, O. Mitkin, V. Kazey, A. V. Ivachtchenko, *Curr. Alzheimer Res.* 2010, 7, 97
- (a) K. Ohkubo, M. Gotoh, Allergology International. 2003, 52, 131. (b)
 T. Ishizuka, T. Matsui, Y. Okamoto, A. Ohta, M. Shichijo, Cardiovasclar Drug Rev. 2004, 22, 71.
- 11 C. Brinkmann, A. G. M. Barrett, M. S. Hill, P. A. Procopiou, J. Am. Chem.Soc. 2012, 134, 2193.
- 12 C. S. Sevov, J. S. J. Zhou, Hartwig, F. J. Am. Chem. Soc. 2014, 136, 3200.
- 13 K. Yahata, Y. Kaneko, S. Akai, Org. Lett. **2020**, *22*, 598–603
- 14 (a) M. Patel, R. K. Saunthwal, A. K. Verma, Acc. Chem. Res. 2017, 50, 240; b) V. Garg, P. Kumar, A. K. Verma, J. Org. Chem. 2017, 82, 10247; c) V. Garg, Kumar, P. Verma, A. K. J. Org. Chem. 2018, 83, 11686; d) M. Patel, Sushmita, A. K Verma, J. Chem. Sci. 2018, 130, 1.
- (a) F. Pognan, J.-M. Saucier, C. Paoletti, L. Kaczmarek, P. Nantka-Namirski, M. Mordarski, W. A Peczynska-Czoch, *Biochem. Pharmacol.* 1992, 44, 2149; b) W. Peczynska-Czoch, F. Pognan, L. Kaczmarek, J. Boratynski, *J. Med. Chem.* 1994, 37, 3503; c) K. Bonjean, M. C. De Pauw Gillet, M. P. Defresne, P. Colson, C. Houssier, L. Dassonneville, C. Bailly, R. Greimers, C. Wright, L. J. Quetin, M. Tits, L. Angenot, *Biochemistry.* 1998, 37, 5136.
- (a) X. Sun, S. Sengupta, J. L. Petersen, H. Wang, J. P. Lewis, X. Shi, Org. Lett. 2007, 9, 4495; b) B. Wahl, Y. Philipson, H. Bonin, A. Mortreux, M. Sauthier, J. Org. Chem. 2013, 78, 1547; c) Z.-X. Jia, Y. -C. Luo, X. -N. Cheng, P.-F. Xu, Y. -C. Gu, J. Org. Chem. 2013, 78, 6488.
- 17 (a) O. P. Goel, R. Dembinski, Organic Preparations and Procedures International. 2015, 47, 220; b) H. Dong, R. T. Latka, T. G. Driver, Org. Lett. 2011, 13, 2726.
- 18 A. V. Ivachtchenko, E. B. Frolov, O. D. Mitkin, S. E. Tkachenko, I. M. Okun, A. V. Khvat, *Bio. Med. Chem. Lett.* **2010**, *20*, 78.

10.1002/ejoc.202000373

WILEY-VCH

Entry for the Table of Contents

COMMUNICATION

Hydroamination of Olefins Sushmita, Trapti Aggarwal, Kapil Mohan Saini and Akhilesh K. кон/ рмзо Verma Linear N-alkylated Branched N-alkylated Page No. – Page No. **Olefin-Oriented Selective** Synthesis of Linear and Branched *N*-Alkylated Heterocycles via Hydroamination Cannabinoid receptor Dimebon Analouge