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Asymmetric Catalysis DOI: 10.1002/anie.200((will be filled in by the editorial staff))

Organocatalytic Enantioselective Conia-Ene-Type Carbocyclization of 
Ynamide-Cyclohexanones: Regiodivergent Synthesis of Morphans and 
Normorphans 

Yin Xu, Qing Sun, Tong-De Tan, Ming-Yang Yang, Peng Yuan, Shao-Qi Wu, Xin Lu,* Xin Hong, and 

Long-Wu Ye* 

Abstract: Catalytic carbocyclization of alkynyl carbonyls has attracted 

considerable interest in organic synthesis because of its high bond-

forming efficiency and atom economy in the formation of 

functionalized cyclic compounds. However, examples of such an 

asymmetric version are quite scarce, and have so far been limited to 

transition metal catalysts. Described herein is an organocatalytic 

enantioselective desymmetrizing cycloisomerization of arylsulfonyl-

protected ynamide-cyclohexanones, which represents the first metal-

free asymmetric Conia-ene-type carbocyclization. This method allows 

the highly efficient and atom-economical construction of a range of 

valuable morphans with wide substrate scope and excellent 

enantioselectivity (up to 97% ee). In addition, such a 

cycloisomerization of alkylsulfonyl-protected ynamide-

cyclohexanones can lead to the divergent synthesis of normorphans 

as the main products with high enantioselectivity (up to 90% ee). 

Moreover, theoretical calculations are employed to elucidate the 

origins of regioselectivity and enantioselectivity. 

Introduction 

The structurally diverse and interesting family of bridged N-
heterocycles, such as morphans and normorphans, are important 
structural motifs that have been found in a number of bioactive 
molecules and natural products (Figure 1).[1,2] Although many 
impressive strategies have been established for their construction 
in the past decades,[3,4] the practical synthesis of these 
medicinally significant structures remains an intriguing objective 
for the synthetic community, especially those with high 
enantioselectivity. To date, successful examples of asymmetric 
assembly of morphans and normorphans have been quite 

scarce,[3d,4c] and these methods often suffer from limited substrate 
scope, inaccessible starting materials and low efficiency. 
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Figure 1. Morphans and normorphans in bioactive molecules and natural 

products. 

Recently, catalytic carbocyclization of alkynyl carbonyls or 
alkynyl silyl enol ethers has attracted considerable interest in 
organic synthesis because of its high bond-forming efficiency and 
atom economy in the formation of functionalized cyclic 
compounds.[5-8] Despite these significant achievements, examples 
of such an asymmetric version are quite scarce.[9-11] In 2005, 
Toste et al. reported the first enantioselective intramolecular 
Conia-ene reaction of alkynyl β-dicarbonyl compounds by 
employing a Pd(II)/Yb(III) dual catalyst (Scheme 1a).[9a] On the 
basis of this work, the relevant Conia-ene-type carbocyclizations 
were further nicely explored by Shibasaki[9b] and Shibata,[9c] 
respectively, via a similar bimetallic cooperative catalysis. In 
addition, the enantioselective metallo-organocatalyzed 
carbocyclization was realized by Michelet/ Ratovelomanana-Vidal 
and Enders (Scheme 1b).[10] Very recently, Dixon et al. 
demonstrated an elegant protocol for the chiral silver complex 
and chiral amine co-catalyzed desymmetrization of 4-
propargylamino cyclohexanones that led to enantioenriched 
morphans (Scheme 1c).[11] Although notable successes have 
been achieved, these asymmetric carbocyclization reactions have 
so far been limited to transition metal catalysts, especially the 
chiral metal complexes, and such a metal-free protocol has not 
been reported to date. 

Ynamides are special alkynes bearing an electron-
withdrawing group on the nitrogen atom, and have proven to be 
versatile building blocks in organic synthesis over the past 
decade.[12] Importantly, the nitrogen atom is able to impose an 
electronic bias, almost invariably rendering regioselective 
nucleophilic α-addition by a diverse range of nucleophiles via 
keteniminium intermediates under transition metal and Brønsted 
acid catalysis. As a continuation of our work on developing 
ynamide chemistry for heterocycle synthesis,[13] we herein report 
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the realization of an organocatalytic enantioselective 
desymmetrizing cycloisomerization of arylsulfonyl-protected 
ynamide-cyclohexanones, which represents the first example of a 
completely metal-free asymmetric Conia-ene-type 
carbocyclization. In addition, a rare cyclization on the β-position of 
the ynamide is also achieved.[14] This protocol allows the highly 
efficient and atom-economical construction of various valuable 
morphans with wide substrate scope and excellent 
enantioselectivity (Scheme 1d). Moreover, a similar 
cycloisomerization of alkylsulfonyl-protected ynamide-
cyclohexanones can lead to the divergent synthesis of 
normorphans as the main products with high enantioselectivity. 
Theoretical calculations are employed to elucidate the origins of 
regioselectivity and enantioselectivity. In this paper, we wish to 
report the results of our detailed investigations of this 
organocatalytic enantioselective carbocyclization of ynamide-
cyclohexanones, including substrate scope, synthetic applications, 
biological tests, and mechanistic studies. 

 

Scheme 1. Asymmetric catalytic carbocyclization of alkynyl carbonyls. 

Results and Discussion 

Cyclohexanone-tethered ynamide 1a was chosen as the 
model substrate for our initial study, and selected results are 
listed in Table 1.[15,16] To our delight, the desymmetrizing 
cycloisomerization of 1a proceeded smoothly in the presence of 
only proline 3a as catalyst, and importantly, the corresponding 
morphan 2a was formed in 50% yield via an unusual addition on 
the β-position of the ynamide (Table 1, entry 1). Of note, previous 
silver-catalyzed carbocyclization of enol ether-tethered ynamides 
occurred exclusively at the α-position of the ynamide.[8a] Although 
the typically successful diarylprolinol silyl ether catalyst 3b was 
inefficient in this reaction (Table 1, entry 2), the sterically less 
demanding desilyloxy derivatives 3c-3d were found to be 
effective chiral organocatalysts (Table 1, entries 3–6), and 96% 
ee was obtained in the presence of 3d (Table 1, entries 5 and 6). 
Interestingly, the use of tertiary amines as additives significantly 
accelerated the reaction efficiency (Table 1, entries 3–6),[9f,17] 

whereas the use of only tertiary amine (without chiral secondary 
amine) gave no conversion at all, indicating no involvement of a 
racemic background reaction caused by the external base.[15] The 
tertiary amine here most likely serves as a base to promote the 
enamine formation via the reaction with 1a for the generation of 
the enolate species and the protonated amine. Gratifyingly, 
subsequent investigations on the reaction concentration and 
solvent (Table 1, entries 7–10) demonstrated that 2a was 
obtained in 95% yield with 95% ee by using PhCF3 (0.2 M) as 
solvent (Table 1, entry 10). It should be specially mentioned that 
the formation of normorphan 2a was detected in 35% yield in the 
presence of tBuOH/H2O (1:1) as solvent (Table 1, entry 11) while 
almost no 2a (<3%) was obtained in all of the other cases given 
above (Table 1, entries 1–10). 

Table 1. Optimization of reaction conditions.[a] 

 

Entry Catalyst Reaction conditions Yield [%][b] ee [%][c]

1

2

3

4[d]

5[d]

6[e]

7[e]

8[e]

9[e]

10[e]

11[e,f]

3a

3b

3c

3c

3d

3d

3d

3d

3d

3d

3d

toluene (0.05 M), 80 °C, 72 h

toluene (0.05 M), 80 °C, 72 h

toluene (0.05 M), 80 °C, 72 h

toluene (0.05 M), 80 °C, 48 h

toluene (0.05 M), 80 °C, 72 h

toluene (0.05 M), 80 °C, 72 h

toluene (0.10 M), 80 °C, 72 h

toluene (0.20 M), 80 °C, 72 h

PhCl (0.20 M), 80 °C, 72 h

PhCF3 (0.20 M), 80 °C, 36 h

tBuOH/H2O (1:1, 0.20 M), 80 °C, 64 h

50 (45)

<1 (90)

34 (60)

85 (<1)

10 (84)

20 (71)

35 (57)

72 (19)

83 (8)

95 (<1)

41 (<1)

<1

<1

86

85

96

96

95

95

87

95

93  

[a] Reaction conditions: 1a (0.1 mmol), catalyst (20 mol %), 
solvent (0.05-0.2 M), 80 °C, 36-72 h in vials. [b] Measured by 1H 
NMR using diethyl phthalate as internal standard; unreacted 
starting material in parenthesis. [c] Determined by HPLC analysis. 
[d] 20 mol % of iPr2EtN was used as additive. [e] 20 mol % of 
Et3N was used as additive. [f] 2a was formed in 35% NMR yield. 
Ts = 4-toluenesulfonyl. 

 

With the optimal reaction conditions in hand (Table 1, entry 
10), we then assessed the scope of this enantioselective 
organocatalytic desymmetrizing reaction for the synthesis of 
morphans 2 (Table 2). Besides the Ts-protected ynamide, the 
reaction also proceeded smoothly with MBS-, SO2Ph- and 2-
Naph-protected ynamides, affording the desired morphans 2b 
(68%, 91% ee), 2c (96%, 94% ee) and 2d (90%, 92% ee), 
respectively. In addition, various aryl-substituted ynamides 
bearing either electron-withdrawing or -donating groups were 
good substrates to afford products 2e–2m in 82−97% yields and 
88−97% ee, and especially ynamides with ortho-substituted aryl 
motifs were also tolerated. The reaction was also extended to the 
naphthyl-substituted ynamide to produce the corresponding 2n in 
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95% yield and 91% ee. Then, various alkyl-substituted ynamides 
were screened and the desired morphans 2o–2u were obtained 
in 84−92% yields and 87−95% ee. Notably, a range of functional 
groups were perfectly tolerated, including phenyl, alkenyl, and 
protected hydroxy. Moreover, this chemistry was also compatible 
with an alkenyl-substituted ynamide and even terminal ynamide 
to deliver the desired products 2v and 2w in good yields, albeit 
with a significantly reduced enantiocontrol in the latter case. Our 
attempts to extend the reaction to cyclobutanone-ynamide 1x, 
acyclic ketone-ynamide 1y and aldehyde-ynamide 1z have been 
unsuccessful as yet,[18] and attempts to prepare the heterocycle-
substituted ynamides failed.[15] Finally, the use of ent-3d as chiral 
organocatalyst also led to the efficient formation of the desired 
ent-2a with the opposite enantioselectivity (93% ee). Importantly, 
an unusual cyclization on the β-carbon of the ynamide was 
achieved in all these cases (attack on the α-carbon: <3%). Thus, 
this protocol provides a highly efficient and practical route for the 
synthesis of valuable enantioenriched morphans. 

Table 2. Reaction scope for the formation of chiral morphans 2.[a]  

 

O

N
PG

2a, PG = Ts, 91%, 95% ee
2b, PG = MBS, 68%, 91% ee
2c, PG = SO2Ph, 96%, 94% ee
2d, PG = SO2(2-Naph), 90%, 92% ee

O

N

2o, R = 87%, 93% ee[b,c]

O

N
Ts

2n, 95%, 91% ee[b]

O

N

2r, 88%, 92% ee[c]

O

N
Ts

2w, 70%, 61% ee[b,c]
O

N
Ts

2v, 74%, 90% ee[b,c]

O

N

2q, 87%, 95% ee[c]

3

Ts

TsPh Ts

O

N
Ts Ph

ent-2a, 90%, 93% ee[d]

O

N
Ts

RO 3

2s, R = Ac, 89%, 93% ee[c]

2t, R = Boc, 90%, 91% ee[c]

2u, R = TBS, 92%, 90% ee[c]

O

N

2p, 84%, 87% ee[b,c]

Ts

O

N
Ts

2e, R = 4-Cl, 86%, 88% ee
2f, R = 4-Br, 87%, 91% ee
2g, R = 3-F, 91%, 89% ee
2h, R = 4-Me, 94%, 97% ee
2i, R = 4-OMe, 91%, 94% ee
2j, R = 3-Me, 97%, 95% ee
2k, R = 3-OTBS, 87%, 88% ee
2l, R = 2-F, 86%, 95% ee
2m, R = 2-Cl, 82%, 90% ee

R

5

Ph

 
[a] Reaction conditions: 1 (0.2 mmol), 3d (0.04 mmol), Et3N (0.04 
mmol), PhCF3 (1 mL), 80 °C, 36 h, in vials; isolated yields are 
reported; ees are determined by HPLC analysis. [b] Time = 64 h. 
[c] [1] = 0.40 M. [d] Ent-3d was used. PG = protecting group, 
MBS = 4-methoxybenzenesulfonyl, Naph = naphthyl, TBS = 
tbutyldimethylsilyl, Ac = acetyl, Boc = tbutoxycarbonyl. 

Interestingly, when Ms-protected ynamide 4a was employed 
under the above optimized reaction conditions, the corresponding 
normorphan 5a was obtained as a major product with only E 
configuration of the double bond [eq. (1)],[19] which is distinctively 
different from the related silver-catalyzed protocol by Miesch 
where a Z configured exo double bond was formed through the 
favorable conformation of the keteneiminium intermediate.[8a] 
Further studies revealed that a higher ratio of 5a/5a was obtained 
in the presence of pyrrolidine as catalyst and tBuOH as solvent 
while chiral normorphan 5a was formed in 58% NMR yield with 
90% ee by employing 3d as chiral catalyst under the optimized 
reaction conditions.[15]  

 

Inspired by these results, we also examined the scope of this 
enantioselective organocatalytic desymmetrizing reaction for the 
synthesis of normorphans 5. As depicted in Table 3, the reaction 
occurred well with a variety of aryl-substituted ynamides 4, 
including isopropylsulfonyl-protected ynamide 4i, leading to the 
formation of the corresponding functionalized normorphans 5a–5i 
in moderate to excellent yields with 76−90% ee. Instead, when 
the alkyl-substituted ynamide 4 (R = alkyl) was employed, the 
formation of the corresponding morphan 5′ as main product was 
observed.[15] In addition, excellent E/Z ratios (>50:1) of the newly 
generated olefin moieties were observed in all cases. Of note, all 
the regioisomers were readily isolated by column chromatography, 
and higher 5/5′ ratios could be obtained in case of aryl-substituted 
ynamides with electron-withdrawing groups. The absolute 
configuration of 5h was established by X-ray diffraction analysis 
(Figure 2).[20] 

Table 3. Reaction scope for the formation of chiral normorphans 5.[a]  

 

5a, 53%, 90% ee
(5a:5a' = 1.6:1)

N
Ph

Ms

O

H

N
Ms

O

H

R

5b, R = Cl, 65%, 83% ee (5b:5b' = 2.4:1)
5c, R = Br, 73%, 81% ee (5c:5c' = 2.9:1)
5d, R = Ac, 92%, 76% ee (5d:5d' > 20:1)N

Ms

O

H

R

5e, R = F, 76%, 83% ee (5e:5e' = 5.3:1)
5f, R = Cl, 80%, 82% ee (5f:5f' = 5.5:1)
5g, R = Br, 81%, 82% ee (5g:5g' = 5.3:1)
5h, R = Me, 53%, 88% ee (5h:5h' = 1.3:1) 5i, 51%, 87% ee

(5i:5i' = 1.5:1)

N
Ph

O

H
iPrO2S

 
[a] Reaction conditions: 4 (0.2 mmol), 3d (0.04 mmol), 
tBuOH/H2O (1/1; 1 mL), 80 °C, 64 h, in vials; isolated yields are 
reported; ees are determined by HPLC analysis. Ms = 
methanesulfonyl. 
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Figure 2. Structure of compound 5h in its crystal. 

Further synthetic transformations of the as-synthesized chiral 
morphans and normorphans were then explored (Scheme 2). For 
example, chiral morphan 2a, prepared on a gram scale in 90% 
yield with 95% ee, could be readily converted into the desired 
products 2aa (92%, 93% ee) and 2ab (83%, 93% ee), 
respectively, by treatment with NaBH4 and MeMgBr. Interestingly, 
the use of NBS and Selectfluor led to the selective 
difunctionalization of the double bond from the less hindered face 
to produce the corresponding 2ac and 2ad with three contiguous 
stereocenters in good yields. In addition, facile hydrogenation of 
the double bond afforded the desired 2ae in 80% yield with 93% 
ee. Moreover, the synthesis of indole-fused morphan 2af was 
achieved in 96% yield upon exposure to PhNHNH2 and TsOH 
(Scheme 2a). The absolute configurations of 2ad and 2ae were 
confirmed by X-ray diffraction analysis (Figures 3 and 4),[20] which 
also determined the absolute configuration of morphans 2. The 
synthesis of anti-inflammatory agent 2wb[1c] was also achieved 
starting from morphan 2w through reduction of the alkenyl and 
carbonyl groups, followed by oxidation of the methylene group 
adjacent to the nitrogen and deprotection of the Ts group  
(Scheme 2b). Finally, the reduction and oxidation of the double 
bond of normorphan 5a afforded the corresponding 5aa (75%, 
89% ee) and 5ab[2a,21] (58%, 90% ee), respectively; the latter 
could be further transformed into the corresponding 5ac (29%, 2 
steps, 91% ee) and 5ad (90%; Scheme 2c). Importantly, the 
enantioselectivities were well maintained and excellent 
diastereoselectivities (dr > 20:1) were achieved in all these 
transformations. 

 

Figure 3. Structure of compound 2ad in its crystal. 

 

Figure 4. Structure of compound 2ae in its crystal. 

N
Ph Ts

2a
(1.06 g, 90%, 95% ee)

1a (3.2 mmol, 1.18 g)

iii)
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Bn

1) (CH2SH)2 (1.2 equiv)

BF3 Et2O (1.2 equiv), DCM
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EtOH, 80 °C
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1) RuCl3 (20 mol %)

NaIO4 (3 equiv)
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anti-inflammatory agent
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O
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5ac, 29% (2 steps)

91% ee

N
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BF3 Et2O (1.2 equiv), DCM

2) Raney Ni (< 50 m)
EtOH, 80 °C

B2H6 THF (4 equiv)
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N
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O
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O

X OMe

NHNTs

O

H
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Scheme 2. Gram scale reaction and synthetic applications. Reagents and 

conditions: i) NaBH4 (1.2 equiv), MeOH, 0 °C, 0.5 h; ii) MeMgBr (2 equiv), THF, 

0 °C, 4 h; iii) NBS (2 equiv), DCM/MeOH (1:1), RT, 5 min; iv) Selectfluor (2 

equiv), MeCN/MeOH (2:1), -40 °C, 11 h; v) 10 % Pd/C, H2 (2 M Pa), EtOAc, RT, 

24 h; vi) PhNHNH2 (2 equiv), TsOH (2 equiv), toluene, 80 °C, 6 h. 

Moreover, we also tested the newly synthesized morphans 
and normorphans for their bioactivity as antitumor agents. The 
cytotoxic effects of these compounds were evaluated against a 
panel of cancer cells, including breast cancer cells MDA-MB-231 
and MCF-7, melanoma cells A375, and esophageal cancer cells 
SK-GT-4 and KYSE-450, based on cell viability assays.[15] Our 
preliminary studies revealed that almost half of these morphans 
exhibited significant cytotoxic effects on MDA-MB-231 and A375, 
and a few morphans exhibited cytotoxic effects on SK-GT-4 and 
KYSE-450, whereas the normorphan derivatives displayed weak 
antitumor activity against these five cell lines. 

On the basis of the previous results[8-11] and density 
functional theory (DFT) computations,[15] plausible mechanisms 
for regiodivergent synthesis of morphans and normorphans are 
illustrated in Scheme 3. Initially, an amine-ketone condensation 
between pyrrolidine 3d and the ynamide-tethered cyclohexanone 
via intermediate A gives the enamine intermediate B. The 
nucleophilic carbon site of its enamine group can attack either the 
β or α position of the ynamide group to form vinyl anion 
intermediates C or C', respectively.[22] As Ts is more electron-
withdrawing than Ms, the β and α carbon of the Ts-containing 
ynamide are both positively charged and the nucleophilic attack 
favors the β site to form a sterically less strained 6-membered-
ring intermediate C that leads eventually to morphan 2a. In the 
case of PG=Ms, the β carbon is negatively charged, and the 
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nucleophilic addition thus favors the positively charged α carbon 
site to form a sterically more strained five-membered-ring 
intermediate C', precursor of normorphan 5a. The observed 
protecting-group-dependent regiodivergence can be attributed to 
the stronger electron-withdrawing capability of Ts than Ms in the 
ynamide substrate. Furthermore, more detailed DFT 
computations showed that the regioselectivity of cyclization is 
much more sensitive on the polarity of solvent in the case of 
PG=Ts than in the case of PG=Ms.[15] 

 

 

 

Scheme 3. Plausible reaction mechanism. Relative free energies (∆G, kcal/mol) 

of key intermediates and transition states are computed at the SMD-M06-2X/6-

311+G(d,p)//SMD-M06-2X/6-31G(d) level for reactions in solvent (PhCF3 for the 

case of PG=Ts and tBuOH/H2O (1:1) for the case of PG=Ms) at 298 K. Data for 

the case of PG=Ms are given in parentheses. The structures of key 

intermediates B as well as Mulliken charges (q) on selected atoms are also 

shown. 

To understand the origin of enantioselectivity, the C−C bond 
formation transition states (Figure 5) leading to the final product 
morphan 2a and its enantiomer were carefully explored. Among 
them, the transition states TSC and TSC2 having the bulky 
bis(aryl)methyl group and ynamide phenyl moiety located at the 
opposite side of the enamine plane are lower in free energy than 
TSC1 and TSC3 that have the bis(aryl)methyl group and ynamide 
phenyl moiety located at the same side of the enamine plane. 
More delicately, TSC2 has a shorter C-HH-C distance than TSC 
does (1.98 vs 2.11 Å), hinting the former having stronger C-HH-
C steric repulsion. As such, TSC is the lowest in free energy, 
giving rise to a 2.8 kcal/mol (TSC vs TSC2) preference for the 

generation of major enantiomer. In short, the observed 
enantioselectivity is dominated by steric effects. 

 

Figure 5. Optimized structures (key bond lengths in Å) and relative free 

energies (∆G, kcal/mol) of the C−C bond formation transition states leading to 

2a and its enantiomer from 1a catalyzed by 3d. 

Conclusions 

In summary, we have developed an organocatalytic 
enantioselective desymmetrizing cycloisomerization of 
arylsulfonyl-protected ynamide-cyclohexanones, allowing the 
highly efficient and atom-economical construction of a range of 
valuable morphans with wide substrate scope and excellent 
enantioselectivity (up to 97% ee). To our best knowledge, this 
protocol not only represents the first metal-free asymmetric 
Conia-ene-type carbocyclization, but also constitutes the first 
ynamide reaction catalyzed only by amine, which is transition 
metal- and Brønsted acid-free. In addition, a rare cyclization on 
the β-position of the ynamide is achieved. Moreover, such a 
cycloisomerization of alkylsulfonyl-protected ynamide-
cyclohexanones can lead to the divergent synthesis of various 
normorphans as main products with high enantioselectivity (up to 
90% ee). Further transformations and biological tests of these 
bridged N-heterocycles have been conducted, highlighting the 
potential utility of this chemistry. DFT studies are employed to 
elucidate the origins of regioselectivity and enantioselectivity, and 
it is revealed that both protecting group of the substrate and 
reaction solvent are the key factors governing regiocontrol. The 
present protocol offers new opportunities for the development of 
novel reactions of ynamides, especially those based on 
asymmetric catalysis.[23]
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 Asymmetric Catalysis 

An organocatalytic enantioselective desymmetrizing cycloisomerization of 
arylsulfonyl-protected ynamide-cyclohexanones is disclosed for practical and atom-
economical assembly of morphans with excellent enantioselectivity, which represents 
the first metal-free asymmetric Conia-ene-type carbocyclization. In addition, such a 
cycloisomerization of alkylsulfonyl-protected ynamide-cyclohexanones can lead to the 
divergent synthesis of normorphans as the main products with high enantioselectivity. 
Moreover, theoretical calculations are employed to elucidate the origins of 
regioselectivity and enantioselectivity. 
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