Tetrahedron 65 (2009) 5244-5250

Contents lists available at ScienceDirect

Tetrahedron

Facile approach to diverse range of 1,3-diaza-heterocycles: angular/linear selectivity paradigm and a remarkable intramolecular methyl migration

Umesh A. Kshirsagar, Narshinha P. Argade*

Division of Organic Chemistry, National Chemical Laboratory, Pune 411 008, India

A R T I C L E I N F O

Article history: Received 12 February 2009 Received in revised form 24 April 2009 Accepted 24 April 2009 Available online 3 May 2009

ABSTRACT

Starting from cyclic anhydrides and *tert*-butyl 2-aminobenzylcarbamate, simple and efficient synthesis of diverse range of kinetically controlled angular and thermodynamically controlled linear tricyclic and tetracyclic 1,3-diaza-heterocycles have been described via the intramolecular cyclizations of the corresponding imides/anilic acid esters. The effect of imide stability on the angular/linear product selectivity has also been described. The kinetically controlled angular products were successfully transformed to the corresponding thermodynamically controlled linear products by refluxing in methanol or methanol and acetic acid mixture. An interesting in situ 1,2-intramolecular methyl group migration has also been described.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

A large number of biological activities have been conferred to heterocycles and they play a pivotal role as both pharmaceutical and agrochemical products.¹ Batracylin displays antitumor activity in vivo against murine leukemia P-388 and colon adenocarcinoma 38 cell lines that are resistant to adriamycin, cisplatin, and methotrexate.^{2,3}

However, because of the high toxicity of batracylin, it has never been approved for further clinical trials in human beings.^{4a} In this context, new approaches to provide a wide variety of analogs of the antitumor agent batracylin have been reported in the literature by using intramolecular aza-Wittig reactions, Mitsunobu coupling reactions and condensation of *o*-aminobenzylamine with *o*-cyanomethylbenzoic acid but with some limitations.⁴ In continuation of our studies on the cyclic anhydrides chemistry to design the bioactive natural and unnatural heterocyclic compounds,⁵ we reasoned and planned to study the nucleophilic reactions of several cyclic anhydrides with *tert*- butyl 2-aminobenzylcarbamate to provide an avenue to both angular and linear 1,3-diaza-heterocycles in line with their selective formation with respect to the thermodynamic stability. Now, starting from imides/anilic acid esters, we report herein a simple and efficient access to several angular/linear 1,3-diazatricyclic/tetracyclic batracylin analogs along with a very interesting case of intramolecular methyl group migration (Schemes 1 and 2).

2. Results and discussion

The reactions of *tert*-butyl 2-aminobenzylcarbamate (1) with succinic anhydride (2a), glutaric anhydride (2b), maleic anhydride (2c), phthalic anhydride (2f), and homophthalic anhydride (2g) in diethyl ether at room temperature furnished the required anilic acids 3a, 3b, 3c, 3f, and 3g, respectively, in very good yields. The reaction of tert-butyl 2-aminobenzylcarbamate (1) with methylmaleic anhydride (2d) was not completely regioselective and as expected, the mixture of two regioisomers [major (attack at unhindered carbonyl): minor (attack at hindered carbonyl)=85:15] in quantitative yield was obtained. One recrystalization of the above mixture from ethyl acetate provided the desired major isomer 3d in good yield (71%). The reaction of tert-butyl 2-aminobenzylcarbamate (1) with dimethylmaleic anhydride (2e) directly furnished the expected imide 5e in quantitative yield via the unisolable intermediate anilic acid 3e. The anilic acids 3a, 3b, 3c, **3d**, and **3g** on treatment with requisite amount of diazomethane in diethyl ether at 0 °C in 30–40 min furnished the corresponding methyl esters 4a, 4b, 4c, 4d, and 4g in high yields. The reaction of phthalanilic acid **3f** with diazomethane directly provided the

^{*} Corresponding author. Tel.: +91 20 25902333; fax: +91 20 25902629. *E-mail address*: np.argade@ncl.res.in (N.P. Argade).

^{0040-4020/\$ -} see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.04.088

Z = a, -CH₂-CH₂-; b, -CH₂-CH₂-; c, -CH=CH-; d, -CH=CCH₃-; e, -CH₃C=CCH₃-; f, o-C₆H₄-; g, o-CH₂-C₆H₄-

Scheme 1. General theme for synthesis of linear and angular 1,3-diaza-heterocycles. Reagents and conditions: (i) Et₂O, 0 °C to rt, 3 h; (ii) CH₂N₂, Et₂O, 0 °C, 30 min; (iii) EtOH, reflux, 1 h; (iv) Et₃N, DCM, rt, 5 h; (v) TFA, DCM, rt, 5 h; (vi) TFA, DCM, rt, 5 h; (vii) ACOH, MeOH, reflux, 24/48 h.

more stable ring closed product, the imide 5f in 97% yield and the conditions to obtain the phthalanilic esters are still elusive. In our hands, the dehydrative cyclizations of 3a/b and the intramolecular cyclizations of 4a/b to obtain the corresponding succinimide/glutarimide **5a/b** under the several known standard reaction conditions met with failure and we always ended up with corresponding starting materials. Our studies revealed that the formed imides **5a/b** (by TLC) are unstable and they undergo an in situ facile ring opening with the anchimeric assistance of the nitrogen lone pair from the suitably ortho-substituted -CH₂NHBoc moiety. The base catalyzed intramolecular cyclizations of esters 4c, 4d, and 4g, respectively, furnished the corresponding imides 5c, 5d, and 5g in very good yields. Having prepared several imides and esters, we planned to systematically study the Boc-deprotection and intramolecular double cyclizations of these advanced starting materials to obtain the corresponding desired angular/linear 1,3-diaza-heterocycles, respectively (Scheme 1 and Table 1).

Scheme 2. Proposed mechanisms for the observed 1,2-methyl shift. Reaction condition: (i) AcOH/MeOH, reflux, 15 days (96%).

The trifluoroacetic acid induced Boc-deprotection of succinanilic ester 4a in CH₂Cl₂ at room temperature directly furnished the pyrrolidinoquinazoline 7a in 91% yield via dehydrative cyclization to form unisolable intermediate 8a followed by an intramolecular lactamization route. The Boc-deprotection of glutaranilic ester 4b in CH₂Cl₂ at room temperature furnished the intermediate quinazoline 8b in quantitative yield via intramolecular monocyclizarefluxing tion route, which in methanol furnished intramolecularly ring closed final product piperidinoquinazoline 7b in 87% yield. These observations revealed that 4a passes through an unisolable intermediate 8a to directly furnish the product 7a. Itermediate 8a is less stable relative to 7a than 8b is to **7b**. We failed to obtain the corresponding imide intermediates **5a**/ **b** and in our hands the intermediate compounds **8a/b** furnished only the linear products 7a/b, hence we could not prepare the angular products 6a/b.

The Boc-deprotection of maleanilic ester 4c in CH₂Cl₂ at room temperature directly furnished the linear product 7c via the double intramolecular cyclization pathway. The Boc-deprotection of maleimide **5c** under the similar reaction conditions also furnished only linear product **7c**. We feel that, the formation of angular product **6c** via proposed imide 9, exclusively provides thermodynamically more stable product **7c** in quantitative yield via opening and closing of the ring 'C'. The corresponding maleanilic acid **3c** on treatment with trifluoroacetic acid underwent decomposition. The Bocdeprotection of maleanilic ester 4d exclusively furnished the column separable mixture of the ring closed angular products 6d/d' in 85% yield with 13:7 ratio and it could be an effect of the methyl group conferring more stability to the possible imide intermediate 5d/9. The imide 5d on Boc-deprotection also provided the mixture of ring closed angular products 6d/d' in same yield but at this time with a 1:1 ratio. As expected, in ¹H NMR spectra, the β -vinylic proton signal in **6d** (δ 6.69) was more deshielded than the α -vinylic proton in the corresponding **6d**' (δ 6.33). The column purified product 6d on refluxing in methanol for 75 h gave corresponding thermodynamically more stable linear product 7d in high yield via the 'C' ring opening and closing pathway. However, the corresponding unhindered regioisomer 6d' under the same set of reaction conditions was transformed into 7d' but only to the extent of 11% in 75 h. As expected, in ¹H NMR spectra, the β -vinylic proton signal in **7d** (δ 6.83) was more deshielded than the α -vinylic proton in the corresponding **7d**' (δ 6.27). The relatively slow conversion of unhindered 6d' to 7d' can be attributed to the hyperconjugative

Table 1

Nucleophilic reactions of cyclic anhydrides with *tert*-butyl 2-aminobenzylcarbamate (1): synthesis of angular/linear 1,3-diaza-heterocycles from the corresponding esters/ imides: 4a to 7a, 4b to 8b to 7b, 4c/5c to 7c, 4d/5d to 6d/6d' to 7d/7d', 5e to 6e to 7e, 5f to 7f, and 4g/5g to 7g synthetic transformations

Sr. No.	Anhydride	Anilic acid/ester	Imide	Angular product	Linear product
i	0 0 0 2a	NHBoc 0 N + 0 0 0 0 0 0 0 0	NHBoc O N Sa (Unstable)	6a (Not prepared)	0 N 7a (91%)
ii	o o 2b	NHBoc O O N H 3b: R = H (93%) 4b: R = Me (95%)	NHBoc O N Sb (Unstable)	6b (Not prepared)	0 N 7b (87%)
ili	0 0 0 2c	NHBoc O O N H 3c: R = H (98%) 4c: R = Me (80%)	NHBoc 0 0 5c (75%)	O 6c (Unisolable)	0 N 7c (90%)
iv	o o o 2d	NHBoc 0 0 0 0 0 0 0 0 0 0 0 0 0	NHBoc 0 N 0 5d (90%)	6d: X = Me, Y = H (55%) 6d': X = H, Y = Me (30%)	O A B C X Y 7d: X = Me, Y = H (99%) 7d': X = H, Y = Me (87%)
v	o o 2e	NHBoc O O H H 3e (Unisolable)	NHBoc O N O 5e (95%)	6e (94%)	0 N N 7e (~100%)
vi	o o 2f	NHBoc O COOR H 3f: R = H (95%) 4f: R = Me (Unisolable)	NHBoc 0 N 0 5f (97%)	6f (Unisolable)	O N N 7f (85%)
vii	o 2g	NHBoc 0 NHBoc 0 COOR 3g: R = H (90%) 4g: R = Me (93%)	NHBoc O N O 5g (87%)	6g (Unisolable)	о А В С D Н 7g (87%)
	Ĺ	NH N [8a] OMe 8b (94%)	OMe NH		

[9] (Z = Imide backbone)

influence of the β -methyl group in **6d**' on the reactivity of the lactam carbonyl group. The angular product **6d**, on treatment with methanol plus acetic acid at reflux temperature exclusively gave the desired linear product 7d in 24 h in quantitative yield. The pure 6d' under the same conditions gave the desired 7d' with 87% yield in 24 h. We presume that both of the mentioned conversions take place via 'C' ring opening and closing. Surprisingly, during these studies on conversion of pure 6d' to 7d' we also noticed the formation of a small amount of compound 7d (detection by TLC, 7% by ¹H NMR). We were very curious about the formation of **7d** in conversion of **6d**['] to **7d**['] and therefore we refluxed the pure **7d**['] in methanol plus acetic acid for 5/10/15 days and obtained the rearranged product 7d in 52/77/96% yields, respectively, with the change in methyl group position. To explain the observed methyl shift in the conversion of **7d**' to **7d**, two plausible mechanisms are depicted in Scheme 2 (path A/B). The path A with the cleavage of ring 'B' by imine hydrolysis to form the unisolable imide intermediate 11 and an in situ intramolecular ring closing with the other carbonyl group appears simpler and straightforward. We strongly believe that the formation of the free imide intermediate 11 should lead to a mixture of 7d and 7d', as the methyl group on the imide moiety is not expected to control the complete regioselectivity. The slow rate of conversion of 6d' to 7d' in refluxing methanol due to the hyperconjugative effect of the methyl group and the exclusive transformation of 6d to 7d in refluxing methanol plus acetic acid in 24 h support the mechanistic path B, which does not demand the cleavage of ring 'B'. As depicted in path B, the proton shift from the methyl group to the carbonyl group followed by cyclopropane ring formation is possible. Its cleavage with the abstraction of the more acidic α -proton can also lead to the net methyl shift from the β -carbon to the α -carbon for thermodynamic reasons. In a control experiment, the pure linear product 7d remained completely unreacted in refluxing methanol plus acetic acid mixture for 72 h and we did not observe any methyl group shuffling. The above observation also supports the mechanistic path B. We feel that the proposed 1,2-methyl shift via the cyclopropane ring formation is important from a mechanistic point of view and appears to be very amenable to isotopic labeling.⁶ The Boc-deprotection of the 2,3-dimethyl substituted imide 5e on intramolecular condensation exclusively formed the angular product 6e in 94% yield. Interestingly, the reaction of equimolar amounts of o-aminobenzylamine and dimethylmaleic anhydride (2e) in ethanol at room temperature or in refluxing THF also exclusively furnished only the angular product 6e in high yield. Herein, the observed selectivity with the presence of two free -NH₂ groups (aromatic/aliphatic) is notable. The angular product 6e in refluxing methanol remained completely unreacted for the span of 5 days. However, the same reaction in the presence of a catalytic amount of acetic acid furnished thermodynamically more stable linear product **7e** with $\sim 100\%$ yield in 48 h via the ring opening and closing mechanism.

The trifluoroacetic acid induced Boc-deprotection of phthalimide **5f** in CH₂Cl₂ at room temperature also formed the linear product **7f** in 85% yield via deprotection, ring closing to **6f** and then the ring opening and ring closing sequence. The Boc-deprotection of homophthalanilic ester **4g** in CH₂Cl₂ at room temperature directly provided the isoquinolinodihydroquinazoline **7g** in 87% yield. Herein, both the intramolecular cyclizations to form the unisolable isoquinolinone intermediate **10** and the prototopic shift to confer the quasi-aromatic character on ring 'C' took place in one pot for thermodynamic reasons. The corresponding imide **5g** on Boc-deprotection also formed only the linear product **7g** in high yield via the unisolable intermediate **6g**.

In all of the studied examples, as expected the linear products had higher melting points than the corresponding angular products. The analytical and spectral data for all the compounds synthesized were in complete agreement with the assigned structures/reported data.⁴ The angular and linear products were also clearly distinguished from each other on the basis of ¹H NMR data. In all of the angular products **6d/6d'/6e**, one of the aromatic proton signals was more deshielded (ca. δ 8.38) due to the close proximity with the lactam carbonyl group.

3. Conclusion

In summary, we have systematically studied the nucleophilic reactions of several cyclic anhydrides with tert-butyl 2-aminobenzylcarbamate and provided a new practical route to the 1,3diazatricyclic/tetracyclic heterocycles in high yields. Our present study clearly reveals that in all the cases, the anilic acid esters exclusively provide thermodynamically more stable linear 1,3-diazaheterocycles, while only the methyl and dimethyl substituted maleimides exclusively provide the corresponding kinetically controlled angular 1,3-diaza-heterocycles. In all of the other imides studied, the formed angular products rearranged to the corresponding more stable linear products. The serendipitously witnessed intramolecular shuffling of the methyl group is also noteworthy and important from the basic chemistry points of view, but the two different mechanistic aspects discussed on observed methyl migration are only the proposals. We feel that our present simple and efficient general approach to these 1,3-diaza-heterocycles will be useful to design the focused libraries of analogs and congeners of such type of new heterocyclic systems for SAR studies.

4. Experimental section

4.1. General

Melting points are uncorrected. ¹H NMR spectra were recorded in CDCl₃ and DMSO- d_6 using TMS as an internal standard on 200 and 400 MHz spectrometers. ¹³C NMR spectra were recorded on 200, 400, and 500 NMR spectrometers (50, 100, and 125 MHz, respectively). IR spectra were recorded on an FT-IR spectrometer. Elemental analyses were obtained by using Flash EA 1112 series and Elementar Vario EL analyser. Column chromatographic separations were done on silica gel (60–120 mesh). Commercially available anhydrides and trifluoroacetic acid, were used. *tert*-Butyl 2-aminobenzylcarbamate (**1**) was prepared from commercially available *o*-aminobenzylamine using known procedure.⁷

4.2. General procedure for the preparation of anilic acids (3a–d, 3f, 3g)

To a stirred solution of anhydride (2.00 mmol) in diethyl ether (15 mL) at 0 °C was added a solution of *tert*-butyl 2-aminobenzylcarbamate (**1**, 2.00 mmol) in diethyl ether (10 mL) in a dropwise fashion over a period of 10 min and the reaction mixture was further stirred at room temperature for 3 h. The precipitated product was filtered, washed with ether (25 mL) and dried under vacuum to obtain the corresponding anilic acid in quantitative yield.

4.2.1. 4-(2-((tert-Butoxycarbonylamino)methyl)phenylamino)-5oxobutanoic acid (**3a**)

Mp 134–136 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.43 (s, 9H), 2.70–2.90 (m, 4H), 4.25 (d, *J*=6 Hz, 2H), 5.16 (br s, 1H), 7.07 (t, *J*=8 Hz, 1H), 7.14 (t, *J*=8 Hz, 1H), 7.32 (dd, *J*=8 and 2 Hz, 1H), 8.12 (d, *J*=8 Hz, 1H), 9.74 (br s, 1H); ¹³C NMR (CD₃OD, 50 MHz) δ 28.7, 30.1, 32.0, 41.5, 80.6, 126.1, 126.9, 128.9, 130.4, 134.3, 136.5, 158.9, 173.6, 176.4; IR (Nujol) ν_{max} 3360, 2700–2500, 1711, 1697, 1661 cm⁻¹. *R*_f(70% EtOAc/petroleum ether) 0.45. Anal. Calcd for C₁₆H₂₂N₂O₅: C, 59.62; H, 6.88; N, 8.69. Found: C, 59.55; H, 6.96; N, 8.71.

4.2.2. 5-(2-((tert-Butoxycarbonylamino)methyl)phenylamino)-5oxopentanoic acid (**3b**)

Mp 113–115 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.43 (s, 9H), 2.08 (quint, *J*=8 Hz, 2H), 2.50 (t, *J*=8 Hz, 2H), 2.56 (t, *J*=8 Hz, 2H), 4.25 (d, *J*=6 Hz, 2H), 5.16 (br s, 1H), 7.05 (t, *J*=8 Hz, 1H), 7.15 (d, *J*=6 Hz, 1H), 7.30 (dt, *J*=8 and 2 Hz, 1H), 8.16 (d, *J*=8 Hz, 1H), 9.56 (br s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 20.6, 28.3, 33.2, 36.0, 41.6, 80.7, 122.8, 124.3, 128.8 (two carbons), 130.2, 136.5, 157.3, 171.8, 178.0; IR (Neat) v_{max} 3329, 2974, 2700–2500, 1713, 1682, 1659 cm⁻¹. *R*_f (75% EtOAc/Petroleum Ether) 0.52. Anal. Calcd for C₁₇H₂₄N₂O₅: C, 60.70; H, 7.19; N, 8.33. Found: C, 60.51; H, 7.04; N, 8.29.

4.2.3. (Z)-4-(2-((tert-Butoxycarbonylamino)methyl)phenylamino)-4-oxobut-2-enoic acid (**3c**)

Mp 140–142 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.45 (s, 9H), 4.28 (d, *J*=8 Hz, 2H), 5.45 (br t, *J*=8 Hz, 1H), 6.48 (d, *J*=14 Hz, 1H), 6.72 (d, *J*=12 Hz, 1H), 7.15–7.29 (m, 2H), 7.34–7.44 (m, 1H), 8.18 (d, *J*=8 Hz, 1H), 11.19 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 50 MHz) δ 28.5, 40.1, 78.6, 125.0, 125.9, 127.5, 128.4, 130.3, 132.9, 133.8, 134.8, 156.5, 164.2, 167.0; IR (Nujol) ν_{max} 3487, 3057, 2700–2500, 1707, 1636 cm⁻¹. *R*_f (70% EtOAc/petroleum ether) 0.38. Anal. Calcd for C₁₆H₂₀N₂O₅: C, 59.99; H, 6.29; N, 8.74. Found: C, 60.08; H, 6.13; N, 8.65.

4.2.4. (Z)-4-(2-((tert-Butoxycarbonylamino)methyl)phenylamino)-2-methyl-4-oxobut-2-enoic acid (**3d**)

Mp 111–113 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.46 (s, 9H), 2.24 (s, 3H), 4.29 (d, *J*=8 Hz, 2H), 5.37 (br t, *J*=6 Hz, 1H), 6.76 (s, 1H), 7.02–7.26 (m, 2H), 7.32–7.44 (m, 1H), 8.17 (d, *J*=8 Hz, 1H), 10.86 (br s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 24.1, 28.3, 41.5, 81.3, 123.3, 126.2, 127.9, 129.0, 129.9, 130.8, 135.0, 146.4, 158.0, 165.2, 165.9; IR (CHCl₃) v_{max} 3389, 1720, 1715, 1697, 1645 cm⁻¹. *R*_f (75% EtOAc/petroleum ether) 0.42. Anal. Calcd for C₁₇H₂₂N₂O₅: C, 61.07; H, 6.63; N, 8.38. Found: C, 60.92; H, 6.54; N, 8.27.

4.2.5. 2-(2-((tert-Butoxycarbonylamino)methyl)phenylcarbamoyl)benzoic acid (**3f**)

Mp 155–157 °C; ¹H NMR (DMSO-*d*₆, 200 MHz) δ 1.35 (s, 9H), 4.21 (d, *J*=6 Hz, 2H), 7.12–7.40 (m, 4H), 7.45–7.75 (m, 4H), 7.88 (d, *J*=8 Hz, 1H), 9.94 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 50 MHz) δ 28.5, 40.1, 78.4, 125.8 (two carbons), 127.3, 128.2 (two carbons), 129.7, 129.8, 130.3, 132.0, 134.4, 135.7, 139.2, 156.5, 168.0, 168.2; IR (Nujol) v_{max} 3350, 3288, 2700–2500, 1707, 1690, 1657 cm⁻¹. *R*_f (80% EtOAc/ petroleum ether) 0.51. Anal. Calcd for C₂₀H₂₂N₂O₅: C, 64.85; H, 5.99; N, 7.56. Found: C, 64.98; H, 5.87; N, 7.60.

4.2.6. 2-(2-((tert-Butoxycarbonylamino)methyl)phenylamino)-2-oxoethyl)benzoic acid (**3g**)

Mp 148–150 °C; ¹H NMR (DMSO-*d*₆, 200 MHz) δ 1.39 (s, 9H), 4.10 (s, 2H), 4.12 (d, *J*=8 Hz, 2H), 7.05–7.28 (m, 2H), 7.30–7.60 (m, 5H), 7.89 (dd, *J*=8 and 2 Hz, 1H), 9.61 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 50 MHz) δ 28.5, 40.1, 41.9, 78.5, 124.7, 125.0, 127.2, 127.3, 128.3, 130.7, 131.2, 132.1, 132.7, 133.1, 136.0, 137.3, 156.6, 168.9, 169.7; IR (Nujol) ν_{max} 3346, 3300, 1700, 1693, 1670 cm⁻¹. *R*_f (75% EtOAc/petroleum ether) 0.49. Anal. Calcd for C₂₁H₂₄N₂O₅: C, 65.61; H, 6.29; N, 7.29. Found: C, 65.55; H, 6.40; N, 7.16.

4.3. General procedure for the preparation of anilic esters (4a–d, 4g)

An ether solution of diazomethane was added dropwise to a suspension of acid (2.00 mmol) in diethyl ether (15 mL) at 0 °C until the acid dissolved with persistence of light yellow color. The reaction mixture was stirred further 30 min at 0 °C. The solvent was removed under reduced pressure and silica gel column chromatographic purification of the resulting residue using ethyl acetate-petroleum ether as an eluent afforded the corresponding pure ester product. The reaction of **3f** with diazomethane directly furnished the corresponding imide **5f** in 97% yield.

4.3.1. Methyl 4-(2-((tert-butoxycarbonylamino)methyl)phenylamino)-4-oxobutanoate (**4a**)

Thick oil; ¹H NMR (CDCl₃, 200 MHz) δ 1.44 (s, 9H), 2.65–3.85 (m, 4H), 3.69 (s, 3H), 4.25 (d, *J*=8 Hz, 2H), 5.17 (br t, *J*=6 Hz, 1H), 7.02 (dt, *J*=8 and 2 Hz, 1H), 7.13 (dd, *J*=8 and 2 Hz, 1H), 7.28 (dt, *J*=8 and 2 Hz, 1H), 8.16 (d, *J*=8 Hz, 1H), 9.51 (br s, 1H); ¹³C NMR [CDCl₃: CCl₄ (4:1), 50 MHz] δ 28.3, 29.1, 31.5, 41.5, 51.6, 80.3, 122.7, 124.1, 128.6, 128.8, 130.2, 136.6, 157.2, 170.4, 173.1; IR (CHCl₃) ν_{max} 3447, 3327, 1738, 1688, 1682 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.56. Anal. Calcd for C₁₇H₂₄N₂O₅: C, 60.70; H, 7.19; N, 8.33. Found: C, 60.57; H, 7.03; N, 8.24.

4.3.2. Methyl 5-(2-((tert-butoxycarbonylamino)methyl)phenylamino)-5-oxopentanoate (**4b**)

Mp 73–75 °C; ¹H NMR (CDCl₃, 400 MHz) δ 1.44 (s, 9H), 2.08 (quint, *J*=8 Hz, 2H), 2.46 (t, *J*=8 Hz, 2H), 2.52 (t, *J*=8 Hz, 2H), 3.67 (s, 3H), 4.24 (d, *J*=8 Hz, 2H), 5.25 (br s, 1H), 7.04 (t, *J*=8 Hz, 1H), 7.14 (d, *J*=8 Hz, 1H), 7.29 (t, *J*=8 Hz, 1H), 8.17 (d, *J*=8 Hz, 1H), 9.50 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.8, 28.3, 33.3, 36.2, 41.6, 51.5, 80.6, 122.5, 124.0, 128.5, 128.8, 130.3, 136.7, 157.2, 171.4, 173.6; IR (CHCl₃) v_{max} 3323, 3277, 1734, 1686, 1676 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.53. Anal. Calcd for C₁₈H₂₆N₂O₅: C, 61.70; H, 7.48; N, 7.99. Found: C, 61.77; H, 7.39; N, 8.04.

4.3.3. (Z)-Methyl 4-(2-((tert-butoxycarbonylamino)methyl)phenylamino)-4-oxobut-2-enoate (**4c**)

Mp 93–95 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.42 (s, 9H), 3.82 (s, 3H), 4.28 (d, *J*=6 Hz, 2H), 5.18 (br t, *J*=6 Hz, 1H), 6.25 (d, *J*=12 Hz, 1H), 6.54 (d, *J*=12 Hz, 1H), 7.09 (dt, *J*=8 and 2 Hz, 1H), 7.21 (dd, *J*=8 and 2 Hz, 1H), 7.32 (dt, *J*=8 and 2 Hz, 1H), 8.17 (d, *J*=8 Hz, 1H), 10.05 (br s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 28.3, 41.5, 52.2, 80.5, 123.1, 124.8, 127.8, 128.8, 129.4, 130.2, 133.9, 136.0, 157.1, 162.9, 166.9; IR (Nujol) ν_{max} 3342, 3234, 1732, 1690, 1641 cm⁻¹. *R*_f (35% EtOAc/petroleum ether) 0.51. Anal. Calcd for C₁₇H₂₂N₂O₅: C, 61.07; H, 6.63; N, 8.38. Found: C, 61.23; H, 6.54; N, 8.41.

4.3.4. (Z)-Methyl 4-(2-((tert-butoxycarbonylamino)methyl)phenylamino)-2-methyl-4-oxobut-2-enoate (**4d**)

Mp 105–107 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.45 (s, 9H), 2.10 (s, 3H), 3.86 (s, 3H), 4.27 (d, *J*=8 Hz, 2H), 5.13 (br t, *J*=6 Hz, 1H), 6.18 (q, *J*=2 Hz, 1H), 7.04 (t, *J*=8 Hz, 1H), 7.14 (dd, *J*=8 and 2 Hz, 1H), 7.30 (dt, *J*=8 and 2 Hz, 1H), 8.28 (d, *J*=8 Hz, 1H), 9.61 (br s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 20.5, 28.3, 41.6, 52.3, 80.7, 122.5, 124.2 (two carbons), 128.5, 128.9, 130.2, 136.5, 142.6, 157.3, 162.9, 170.5; IR (Nujol) ν_{max} 3369, 3346, 1736, 1678, 1663 cm⁻¹. *R*_f (40% EtOAc/petroleum ether) 0.58. Anal. Calcd for C₁₈H₂₄N₂O₅: C, 62.05; H, 6.94; N, 8.04. Found: C, 62.10; H, 7.00; N, 8.21.

4.3.5. Methyl 2-(2-((tert-butoxycarbonylamino)methyl)phenylamino)-2-oxoethyl)benzoate (**4g**)

Mp 117–119 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.43 (s, 9H), 3.92 (s, 3H), 4.12 (s, 2H), 4.21 (d, *J*=6 Hz, 2H), 5.15 (br t, *J*=6 Hz, 1H), 7.06 (dt, *J*=8 and 2 Hz, 1H), 7.23 (d, *J*=8 Hz, 2H), 7.27–7.41 (m, 1H), 7.43–7.57 (m, 2H), 7.89–8.03 (m, 2H), 9.26 (br s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 28.3, 41.4, 42.9, 52.3, 79.9, 123.2, 124.5, 127.2, 128.4, 129.5, 129.6, 130.1, 130.9, 132.2, 132.6, 136.3, 136.8, 156.6, 168.3, 169.8; IR (Nujol) ν_{max} 3341, 3246, 1719, 1674, 1605 cm⁻¹. *R*_f (50% EtOAc/petroleum ether) 0.59. Anal. Calcd for C₂₂H₂₆N₂O₅: C, 66.32; H, 6.58; N, 7.03. Found: C, 66.29; H, 6.56; N, 6.88.

4.3.6. tert-Butyl 2-(1,3-dioxoisoindolin-2-yl)benzylcarbamate (5f)

Mp 98–100 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.34 (s, 9H), 4.23 (d, J=4 Hz, 2H), 4.95 (br s, 1H), 7.18–7.26 (m, 1H), 7.37–7.48 (m, 2H), 7.49–7.58 (m, 1H), 7.74–7.85 (m, 2H), 7.90–8.01 (m, 2H); ¹³C NMR (CDCl₃, 50 MHz) δ 28.2, 40.9, 79.3, 123.8, 128.6, 129.1, 129.8, 130.0, 130.3, 131.9, 134.3, 137.3, 155.6, 167.6; IR (Nujol) ν_{max} 3327, 1744, 1713, 1684 cm⁻¹. R_f (30% EtOAc/petroleum ether) 0.63. Anal. Calcd for C₂₀H₂₀N₂O₄: C, 68.17; H, 5.72; N, 7.95. Found: C, 67.99; H, 5.64; N, 8.05.

4.4. General procedure for the preparation of imides (5c/d, 5g)

To a stirred solution of ester (1.00 mmol) in dry DCM (10 mL) was added triethylamine (1.00 mmol) at room temperature and the reaction mixture was stirred for 5 h. Then the solvent was removed under reduced pressure and silica gel column chromatographic purification of the resulting residue using ethyl acetate–petroleum ether as an eluent afforded the corresponding pure imide product. The reaction of *tert*-butyl 2-aminobenzylcarbamate (1) with dimethylmaleic anhydride (**2e**) in ethanol under reflux for 1 h time provided the corresponding imide **5e** in 95% yield.

4.4.1. tert-Butyl 2-(2,5-dioxo-2H-pyrrol-1(5H)-yl)benzylcarbamate (**5c**)

Mp 104–106 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.41 (s, 9H), 4.18 (d, *J*=6 Hz, 2H), 4.85 (br s, 1H), 6.86 (s, 2H), 7.08–7.18 (m, 1H), 7.34–7.52 (m, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 28.3, 41.0, 79.5, 128.7, 129.1, 129.6, 129.7, 130.2, 134.4, 137.4, 155.5, 169.8; IR (CHCl₃) v_{max} 3445, 1776, 1715 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.53. Anal. Calcd for C₁₆H₁₈N₂O₄: C, 63.57; H, 6.00; N, 9.27. Found: C, 63.42; H, 6.11; N, 9.39.

4.4.2. tert-Butyl 2-(3-methyl-2,5-dioxo-2H-pyrrol-1(5H)yl)benzylcarbamate (5d)

Thick oil; ¹H NMR (CDCl₃, 200 MHz) δ 1.42 (s, 9H), 2.19 (d, *J*=2 Hz, 3H), 4.19 (d, *J*=6 Hz, 2H), 4.91 (br t, *J*=6 Hz, 1H), 6.50 (q, *J*=2 Hz, 1H), 7.08–7.17 (m, 1H), 7.33–7.53 (m, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 11.2, 28.3, 40.9, 79.4, 127.6, 128.6, 129.0, 129.6, 129.9, 130.2, 137.3, 146.2, 155.6, 170.0, 170.9; IR (Nujol) ν_{max} 3389, 3368, 1715 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.56. Anal. Calcd for C₁₇H₂₀N₂O₄: C, 64.54; H, 6.37; N, 8.85. Found: C, 64.55; H, 6.49; N, 8.72.

4.4.3. tert-Butyl 2-(3,4-dimethyl-2,5-dioxo-2H-pyrrol-1(5H)yl)benzylcarbamate (**5e**)

Thick oil; ¹H NMR (CDCl₃, 200 MHz) δ 1.42 (s, 9H), 2.06 (s, 6H), 4.16 (d, *J*=6 Hz, 2H), 4.93 (br t, *J*=4 Hz, 1H), 7.05–7.15 (m, 1H), 7.31–7.54 (m, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 8.9, 28.3, 40.9, 79.3, 128.5, 128.9 (two carbons), 129.4, 130.2, 137.3, 137.8, 155.7, 171.3; IR (CHCl₃) ν_{max} 3443, 1765, 1713 cm⁻¹. *R*_f(25% EtOAc/petroleum ether) 0.56. Anal. Calcd for C₁₈H₂₂N₂O₄: C, 65.44; H, 6.71; N, 8.48. Found: C, 65.55; H, 6.82; N, 8.53.

4.4.4. tert-Butyl 2-(1,3-dioxo-3,4-dihydroisoquinolin-2(1H)yl)benzylcarbamate (**5**g)

Mp 290–292 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.26 (s, 9H), 3.99– 4.45 (m, 4H), 4.78 (br t, *J*=4 Hz, 1H), 7.08–7.18 (m, 1H), 7.35 (d, *J*=8 Hz, 1H), 7.39–7.52 (m, 4H), 7.64 (dt, *J*=8 and 2 Hz, 1H), 8.23 (dd, *J*=8 and 2 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 28.1, 36.9, 41.4, 79.2, 125.2, 127.3, 127.6, 128.9, 129.3, 129.4 (two carbons), 130.4, 134.0, 134.2, 134.7, 136.2, 155.5, 165.2, 170.2; IR (Nujol) ν_{max} 3368, 1701, 1663, 1609 cm⁻¹. *R*_f (40% EtOAc/petroleum ether) 0.70. Anal. Calcd for C₂₁H₂₂N₂O₄: C, 68.84; H, 6.05; N, 7.65. Found: C, 68.68; H, 6.17; N, 7.53.

4.5. General procedure for the preparation of quinazolin-1one (6d/d', 6e, 7a–c, 7f, 7g, 8b)

To a stirred solution of imide/ester (2.00 mmol) in dry DCM (15 mL) was added trifluoroacetic acid (10 mmol) and the reaction

mixture was stirred at room temperature for 5 h. The reaction mixture was basified slowly with saturated solution of NaHCO₃ (10 mL) and extracted with DCM (25 mL×3). The combined organic layer was washed with brine (20 mL) and dried over Na₂SO₄. The concentration of organic layer in vacuo followed by silica gel column chromatographic purification of the resulting residue using ethyl acetate–petroleum ether as an eluent afforded the corresponding pure quinazolinone product. The compound **8b** on refluxing methanol for 5 h time furnished desired ring closed product **7b** in 87% yield.

4.5.1. 2-Methylpyrrolo[1,2-a]quinazolin-1(5H)-one (6d)

Mp 93–96 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.12 (d, *J*=2 Hz, 3H), 5.00 (s, 2H), 6.69 (br s, 1H), 7.04–7.18 (m, 2H), 7.27 (dt, *J*=6 and 2 Hz, 1H), 8.39 (d, *J*=8 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 11.1, 50.5, 115.3, 120.1, 124.8, 125.6, 127.9, 128.7, 132.3, 142.4, 151.5, 168.5; IR (CHCl₃) ν_{max} 1720, 1678, 1640 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.57. Anal. Calcd for C₁₂H₁₀N₂O: C, 72.71; H, 5.09; N, 14.13. Found: C, 72.48; H, 5.01; N, 14.22.

4.5.2. 3-Methylpyrrolo[1,2-a]quinazolin-1(5H)-one (6d')

Mp 155–158 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.21 (d, *J*=2 Hz, 3H), 5.04 (s, 2H), 6.33 (q, *J*=2 Hz, 1H), 7.06–7.19 (m, 2H), 7.20–7.33 (m, 1H), 8.37 (d, *J*=8 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 11.2, 50.6, 115.3, 119.4, 124.8, 125.6, 126.9, 128.0, 132.6, 145.9, 153.2, 167.7; IR (CHCl₃) ν_{max} 1722, 1676, 1630 cm⁻¹. *R*_f(30% EtOAc/petroleum ether) 0.59. Anal. Calcd for C₁₂H₁₀N₂O: C, 72.71; H, 5.09; N, 14.13. Found: C, 72.79; H, 5.03; N, 14.02.

4.5.3. 2,3-Dimethylpyrrolo[1,2-a]quinazolin-1(5H)-one (6e)

Mp 117–119 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.01 (s, 3H), 2.09 (s, 3H), 4.98 (s, 2H), 7.09 (d, *J*=4 Hz, 2H), 7.26 (dt, *J*=8 and 2 Hz, 1H), 8.37 (d, *J*=8 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 8.7, 9.0, 50.3, 115.1, 119.7, 124.4, 125.6, 127.9, 132.5, 135.4, 137.9, 152.7, 168.7; IR (Nujol) ν_{max} 1726, 1715, 1682, 1665 cm⁻¹. *R*_f (35% EtOAc/petroleum ether) 0.68. Anal. Calcd for C₁₃H₁₂N₂O: C, 73.57; H, 5.70; N, 13.20. Found: C, 73.77; H, 5.82; N, 13.07.

4.5.4. 2,3-Dihydropyrrolo[2,1-b]quinazolin-1(9H)-one (7a)

Mp 185–187 °C (lit.^{4c} 189–191 °C); ¹H NMR (CDCl₃, 200 MHz) δ 2.55–2.80 (m, 2H), 2.85–3.00 (m, 2H), 4.80 (s, 2H), 6.95–7.30 (m, 4H); ¹³C NMR (CDCl₃, 50 MHz) δ 26.1, 27.4, 41.5, 119.2, 126.0, 126.4 (two carbons), 128.8, 140.1, 157.0, 175.8; IR (CHCl₃) ν_{max} 1736, 1665, 1655, 1649 cm⁻¹. R_f (35% EtOAc/petroleum ether) 0.61. Anal. Calcd for C₁₁H₁₀N₂O: C, 70.95; H, 5.41; N, 15.04. Found: C, 71.11; H, 5.44; N, 15.15.

4.5.5. 7,8-Dihydro-6H-pyrido[2,1-b]quinazolin-9(11H)-one (7b)

Mp 101–103 °C; ¹H NMR (CDCl₃, 200 MHz) δ 1.99 (quint, *J*=6 Hz, 2H), 2.72 (t, *J*=6 Hz, 2H), 2.83 (t, *J*=6 Hz, 2H), 4.90 (s, 2H), 7.00–7.30 (m, 4H); ¹³C NMR (CDCl₃, 50 MHz) δ 17.7, 31.7, 33.1, 42.2, 122.1, 125.0, 125.7, 126.7, 128.5, 138.7, 152.4, 170.2; IR (CHCl₃) ν_{max} 1692, 1682, 1620, 1601 cm⁻¹. *R*_f (35% EtOAc/petroleum ether) 0.67. Anal. Calcd for C₁₂H₁₂N₂O: C, 71.98; H, 6.04; N, 13.99. Found: C, 72.06; H, 6.00; N, 14.05.

4.5.6. *Pyrrolo*[2,1-*b*]*quinazolin*-1(9H)-one (**7***c*)

Mp 128–130 °C; ¹H NMR (CDCl₃, 200 MHz) δ 4.85 (s, 2H), 6.61 (d, *J*=6 Hz, 1H), 7.05–7.47 (m, 4H), 7.48 (dd, *J*=8 and 2 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 40.4, 121.9, 127.0, 128.5, 128.8, 128.9, 129.8, 136.3, 140.3, 152.4, 169.5; IR (CHCl₃) v_{max} 1720, 1647, 1641 cm⁻¹. *R*_f (40% EtOAc/petroleum ether) 0.49. Anal. Calcd for C₁₁H₈N₂O: C, 71.73; H, 4.38; N, 15.21. Found: C, 71.82; H, 4.44; N, 15.13.

4.5.7. Isoindolo[1,2-b]quinazolin-12(10H)-one (7f)

Mp 175–177 °C (lit.^{4b} 175–177 °C); ¹H NMR (CDCl₃, 200 MHz) δ 5.00 (s, 2H), 7.13–7.40 (m, 3H), 7.50 (dd, *J*=8 and 2 Hz, 1H), 7.61–

7.77 (m, 2H), 7.85–7.96 (m, 1H), 8.01–8.12 (m, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 40.6, 121.3, 122.2, 123.2, 126.9, 127.7, 128.1, 128.8, 130.4, 132.1, 132.9, 134.4, 140.3, 148.9, 166.9; IR (Nujol) v_{max} 1726, 1651, 1597 cm⁻¹. R_f (35% EtOAc/petroleum ether) 0.59. Anal. Calcd for C₁₅H₁₀N₂O: C, 76.91; H, 4.30; N, 11.96. Found: C, 77.08; H, 4.41; N, 12.13.

4.5.8. 5H-Isoquinolino[3,2-b]quinazolin-11(13H)-one (7g)

Mp 290–292 °C (lit.^{4e} 308–310 °C); ¹H NMR (DMSO- d_6 , 200 MHz) δ 5.07 (s, 2H), 5.86 (s, 1H), 6.88 (d, J=8 Hz, 1H), 6.90 (t, J=8 Hz, 1H), 7.12 (t, J=8 Hz, 1H), 7.20 (t, J=8 Hz, 1H), 7.27 (d, J=8 Hz, 1H), 7.37 (d, J=8 Hz, 1H), 7.50 (dt, J=8 and 2 Hz, 1H), 8.03 (d, J=8 Hz, 1H), 9.72 (br s, 1H); ¹³C NMR (DMSO- d_6 , 50 MHz) δ 42.1, 83.3, 113.3, 117.1, 120.0, 121.0, 122.5, 124.3, 126.9, 127.5, 128.8, 132.8, 136.9, 139.0, 140.8, 161.5; IR (Nujol) v_{max} 1657, 1624, 1607 cm⁻¹. R_f (70% EtOAc/petroleum ether) 0.42. Anal. Calcd for C₁₆H₁₂N₂O: C, 77.40; H, 4.87; N, 11.28. Found: C, 77.43; H, 4.92; N, 11.35.

4.5.9. Methyl 4-(3,4-dihydroquinazolin-2-yl)butanoate (8b)

Mp 96–98 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.10 (quint, *J*=8 Hz, 2H), 2.44 (t, *J*=8 Hz, 2H), 2.76 (t, *J*=8 Hz, 2H), 3.59 (s, 3H), 4.78 (s, 2H), 6.98 (d, *J*=8 Hz, 1H), 7.11–7.17 (m, 1H), 7.21 (d, *J*=4 Hz, 2H), 9.88 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.4, 31.2, 32.7, 42.5, 51.7, 116.8, 117.5, 126.2, 127.0, 129.0, 131.6, 162.5, 172.8; IR (Nujol) v_{max} 3194, 1735, 1641 cm⁻¹. *R*_f (80% EtOAc/petroleum ether) 0.43. Anal. Calcd for C₁₃H₁₆N₂O₂: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.09; H, 6.82; N, 12.17.

4.6. General procedure for the conversion of angular to linear quinazolin-1-one (7d, 7d', 7e)

To a stirred solution of angular quinazolin-1-one (1.00 mmol) in methanol (10 mL) was added acetic acid (0.10 mL) and the resulting reaction mixture was refluxed for 24/48 h. Then the reaction mixture was allowed to cool at 25 °C and the solvent was evaporated under reduced pressure. The silica gel column chromatographic purification of the resulting residue using ethyl acetate–petroleum ether as an eluent afforded the corresponding pure quinazolinone product. The transformation of **7d**′ to **7d** was completed using the above procedure in 15 days time with 96% yield.

4.6.1. 2-Methylpyrrolo[2,1-b]quinazolin-1(9H)-one (7d)

Mp 150–152 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.15 (d, *J*=2 Hz, 3H), 4.82 (s, 2H), 6.83 (q, *J*=2 Hz, 1H), 7.10–7.50 (m, 4H); ¹³C NMR (CDCl₃, 50 MHz) δ 11.1, 40.4, 121.8, 126.9, 127.9, 128.5, 128.7, 129.8, 140.5, 140.7, 151.9, 170.3; IR (Nujol) v_{max} 1721, 1650, 1634, 1460 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.57. Anal. Calcd for

C₁₂H₁₀N₂O: C, 72.71; H, 5.09; N, 14.13. Found: C, 72.66; H, 4.83; N, 14.02.

4.6.2. 3-Methylpyrrolo[2,1-b]quinazolin-1(9H)-one (7d')

Mp 165–168 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.29 (d, *J*=2 Hz, 3H), 4.82 (s, 2H), 6.27 (q, *J*=2 Hz, 1H), 7.13–7.38 (m, 3H), 7.48 (dd, *J*=8 and 2 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 11.4, 40.5, 122.1, 124.7, 126.9, 128.2, 128.7, 128.8, 140.5, 147.8, 153.2, 169.7; IR (Nujol) v_{max} 1718, 1648, 1634, 1461 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.59. Anal. Calcd for C₁₂H₁₀N₂O: C, 72.71; H, 5.09; N, 14.13. Found: C, 72.85; H, 5.11; N, 14.04.

4.6.3. 2,3-Dimethyllpyrrolo[2,1-b]quinazolin-1(9H)-one (7e)

Mp 170–172 °C; ¹H NMR (CDCl₃, 200 MHz) δ 2.02 (d, *J*=2 Hz, 3H), 2.17 (d, *J*=2 Hz, 3H), 4.79 (s, 2H), 7.11–7.37 (m, 3H), 7.47 (dd, *J*=8 and 2 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 8.7, 9.0, 40.4, 122.1, 126.8, 127.6, 128.4, 128.6, 133.7, 139.5, 140.7, 153.1, 170.7; IR (Nujol) v_{max} 1712, 1638, 1599, 1459 cm⁻¹. *R*_f (30% EtOAc/petroleum ether) 0.66. Anal. Calcd for C₁₃H₁₂N₂O: C, 73.57; H, 5.70; N, 13.20. Found: C, 73.44; H, 5.61; N, 13.35.

Acknowledgements

U.A.K. thanks CSIR, New Delhi, for the award of a research fellowship. N.P.A. thanks the Department of Science and Technology, New Delhi, for financial support.

References and notes

- (a) Comprehensive Natural Products Chemistry; Barton, D. S., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon: London, 1999; Vols. 1–8; (b) Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic: New York, NY, 1962–2004; Vols. 1–86; (c) Advances in Drug Research; Testa, B., Mayer, U. A., Eds.; Academic: New York, NY, 1966–1996; Vols. 1–30.
- (a) Kabbe, H. J. Justus Liebigs Ann. Chem. 1978, 398; (b) Wang, H.; Mao, Y.; Zhou, N.; Hu, T.; Hsieh, T.-S.; Liu, L. F. J. Biol. Chem. 2001, 276, 15990.
- (a) Plowman, P.; Paull, K. D.; Atassi, G.; Harrison, S. D., Jr.; Dykes, D. J.; Kabbe, H. J.; Narayanan, V. L.; Yoder, O. C. *Invest. New Drugs* **1988**, *6*, 147; (b) Atassi, G.; Dumont, P.; Kabbe, H. J.; Yoder, O. *Drugs Exp. Clin. Res.* **1988**, *14*, 571 and references cited therein 3a,b.
- (a) Martinez-Viturro, C. M.; Dominguez, D. Tetrahedron Lett. 2007, 48, 4707; (b) Martinez-Viturro, C. M.; Dominguez, D. Tetrahedron Lett. 2007, 48, 1023; (c) Potikha, L. M.; Shkol'naya, N. V.; Kovtunenko, V. A. Chem. Nat. Comp. 2006, 42, 571; (d) Eguchi, S.; Takeuchi, H. J. Chem. Soc., Chem. Commun. 1989, 602; (e) Schefezik, V. E. Liebigs Ann. Chem. 1969, 729, 83 and references cited therein 4a-e.
- 5. Haval, K. P.; Argade, N. P. J. Org. Chem. 2008, 73, 6936 and references cited therein.
- 6. For the earlier example on 1,2-methyl migration via the cyclopropane ring intermediate see Hayasaka, K.; Ohtsuka, T.; Shirahama, H.; Matsumoto, T. *Tetrahedron Lett.* **1985**, *26*, 873.
- 7. Petasis, N. A.; Yao, X.; Raber, J. C. U.S. 6,927,294, 09 Aug 2005.