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NONPARAMETRIC TEST FOR CAUSALITY WITH
LONG-RANGE DEPENDENCE1

BY JAVIER HIDALGO2

This paper introduces a nonparametric Granger-causality test for covariance stationary
linear processes under, possibly, the presence of long-range dependence. We show that
the test is consistent and has power against contiguous alternatives converging to the
parametric rate T�1 �2. Since the test is based on estimates of the parameters of the
representation of a VAR model as a, possibly, two-sided infinite distributed lag model, we

Ž .first show that a modification of Hannan’s 1963, 1967 estimator is root-T consistent and
asymptotically normal for the coefficients of such a representation. When the data are
long-range dependent, this method of estimation becomes more attractive than least
squares, since the latter can be neither root-T consistent nor asymptotically normal as is
the case with short-range dependent data.

KEYWORDS: Causality, long-range dependence, spectral analysis, distributed lag model,
consistent test.

1. INTRODUCTION

Ž .Since Granger 1969 , when analyzing relationships between economic vari-
ables, the concept of causality has been a basic subject routinely invoked in the
econometric�economic literature. Typically, tests for causality are commonly

Ž Ž ..performed in the context of unrestricted vector autoregressive VAR P mod-
Ž .els with P a finite known positive number. See among others, Granger 1969 or

Ž .Geweke 1982 when the data are short-range dependent, or for variables
Ž .showing stochastic-trend behavior, see Sims, Stock, and Watson 1990 or Toda

Ž . Ž .and Phillips 1993 . Some extensions are in Hosoya 1991 who analyses causality
for stationary short-range dependent processes that do not necessarily have a

Ž .VAR representation or Lutkepohl and Poskitt 1996 , and references therein,¨
who allow for an infinite order VAR model. However, the above models do not
cover the so-called long-range dependent processes that have attracted immense
attention in recent years in the econometric literature. The object of this paper
is thus to introduce and analyze a causality test that allows for long-range
dependence. In addition, the test does not rely on any specific finite parameteri-
zation of the model and covers processes that do not possess a finite order

Ž .vector autoregressive moving average VARMA representation such as Bloom-
Ž .field’s 1973 exponential model.

1Previous versions of this article have been circulated under the title ‘‘Estimation of Distributed
Lag Models with Long-range Dependence.’’

2 Ž .This article is based on research funded by the Economic and Social Research Council ESRC
reference number: R000238212. I thank Andrew Harvey, Peter Robinson, a co-editor, and two
referees for helpful comments which led to a much improved version of the article. Of course, any
remaining errors are the sole responsibility of the author.
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To fix ideas, let a bivariate observable covariance stationary vector w �t
Ž .y , x � satisfyt t

�

Ž . Ž .A L w � A w �� t�1, 2 . . . ,T ,Ýt j t�j t
j�0

where � is a bivariate martingale difference sequence and A is the identityt 0
matrix. The interest is in testing the null hypothesis H : y �x , that is y does0 t t t
not cause x , against the alternative hypothesis H : y �x , that is y causes x .t 1 t t t t

Ž .The main attributes of the test, described below, are: i it is nonparametric,
Ž .that is, we do not impose any specific parametric model for the data, ii it is

Ž . �1�2 Ž .consistent, iii it has power against T contiguous alternatives, and iv its
limit distribution can be obtained, say, from the distribution of the supremum of
the standard Brownian motion. Thus, the paper extends previous work in two
main directions. First, we allow for a general covariance stationary linear
process and second, since it is nonparametric, we avoid the danger of possible
misspecification.

Ž .Now we briefly discuss the main ideas of the test. Following Sims 1972 or
Ž .Hosoya 1977 , a test for H is equivalent to testing whether the coefficients0

Ž .c j are simultaneously equal to zero for all j�0 in
�

Ž . Ž .1.1 y � c j x �u ,Ýt t�j t
j���

� � �where, by construction, E u x , ���s�� �0, and x and u are, possibly,t s t t
long-range dependent processes. Alternatively, the null hypothesis H is equiva-0
lent to

0
Ž . Ž . � �c j�1 cos � j� �0 ��� 0, 1 ,Ý

j���

or

0�
�i� j�Ž . Ž . � �S* � �Re c j�1 e d� �0 ��� 0, 1 ,ÝH ž /ž /0 j���

Ž .where Re a denotes the real part of a complex number a. Therefore the
hypothesis testing can be described as

Ž . Ž . � � Ž . � �1.2 H : S* � �0 ��� 0, 1 against H : S* � �0 in 	� 0, 10 1

where 	 has Lebesgue measure greater than zero.
Ž . Ž .Given estimates of c j , say c j , and using Riemann’s discrete approximationˆ
Ž .of integrals by sums, S* � can be estimated by

� �M� 01
�i j� pŽ . Ž . Ž .1.3 S � �Re c j�1 eˆÝ ÝT ž /ž /M p�1 j���
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Ž .where � �� p�M, p�1, . . . , M, and M�M T is a number that increasesp
slowly with T , that is M�1 �MT�1 �0. The test can thus be based on whether

Ž . � �or not S � is significantly different than zero for all �� 0, 1 by theT
Ž .implementation of a functional of S � , say a Kolmogorov-Smirnov test.T

The remainder of the paper is organized as follows. In the next section, we
Ž .describe and motivate the estimation technique of the coefficients c j , whose

statistical properties are given in Section 4. Section 3 describes the statistical
framework. Also, since our statistics and proofs are based on the spectral density
matrix estimator of w and the cross-spectrum between x and u , we give somet t t
useful statistical properties of them. In Section 5, we study the properties of
Ž .1.3 and we provide the test for Granger-causality and its implementation. In
Section 6, we discuss the choice of M and how the results of Sections 4 and 5
are extended to general p-dimensional data. Finally, Section 7 gives a summary
of the paper. The proofs of the results are confined to Mathematical Appendix
A; they apply some technical Lemmas given in Mathematical Appendix B.

2. ESTIMATION PROCEDURE AND ITS MOTIVATION

Ž .In this section we describe the estimation technique of the coefficients c j in
Ž . Ž .1.1 and discuss why it is more desirable than least squares LSE estimates in
the presence of long-range dependence. To accomplish this, we adopt the
frequency domain approach whose merits have been proven to be numerous and
applied in several contexts. For example, it was used when testing for causality

Ž . Ž .in the pioneer work by Granger 1969 , or in Geweke 1986 to analyze the
Ž .neutrality of money. Recently, Hosoya 1995 has shown the usefulness of

spectral analysis in contrast to time domain methods when analyzing the
Ž .causality among economic variables; see also Geweke 1982 . Another example

is in the efficient estimation of the parameters in a regression model; see the
Ž .cornerstone work by Hannan 1963 , extended to more general models useful in

Ž . Ž .econometrics by Hannan and Terrell 1973 and recently by Robinson 1991
who also allowed for data dependent smoothing in the spectral estimation. One
rationale of the approach lies in that only minimal conditions of the process are
needed, like stationarity, and no explicit assumptions on its dynamic specifica-
tion are thus required.

Ž .In the frequency domain, the lag structure given in 1.1 is described by the
Ž . � Ž . �i j� Ž .frequency response function C � �Ý c j e , so c j is interpreted asj���
Ž . �1Ž . Ž .the jth Fourier coefficient of C � � f � f � , that is,x x y x

2��1 i j�Ž . Ž . Ž . Ž .2.1 c j � 2� C � e d�,H
0

Ž . Ž .where f � and f � are the indicated elements of the spectral densityy x x x
Ž .matrix, f � , of w defined from the relationshipw w t

Ž .Ž .E w �Ew w �Ew �Ž .1 1 j�1 1

�
�i j�Ž . Ž .� f � e d� j�0,�1,�2, . . . .H w w

��
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Ž . Ž Ž ..Due to this interpretation, Hannan 1963, 1967 see also Brillinger 1981
Ž . Ž . Ž .proposed to estimate c j by the sample discrete analogue of 2.1 ,

2 M�11
i j� pˆŽ . Ž .2.2 c j � C e ,˜ Ý p2 M p�0

ˆ �̂1 ˆ ˆ ˆwhere C � f f , and f and f are estimates of f and fp x x, p y x, p y x, p x x, p y x, p x x, p
Ž . Ž .respectively, where for a generic function g � , g denotes g � .p p

Ž . Ž .The motivation of the estimator in 2.2 , coined by Sims 1974 as HI
Ž .Hannan’s inefficient estimator, is threefold. First is the ability to estimate the

Ž . Ž .coefficients c j irrespective of the number of lags specified in 1.1 , which will
Ž . Ž .be relevant when analyzing the properties of S � defined in 1.3 . Second,T

since there is no gain by exploiting the information on the covariance structure
Ž .of the errors u , as Sims 1974 showed, the HI estimator becomes as efficient ast

Ž . Ž .the generalized least squares GLS estimator. This motivates the LSE of c j
Ž .given in Robinson 1979 , although under stronger assumptions than those we

want to impose in this paper.
Ž .Finally, the third motivation, which makes the estimates in 2.2 more appeal-

ing when the data are long-range dependent, is as follows. Assume, for exposi-
Ž .tional simplicity, that model 1.1 is

q

Ž . Ž . Ž .2.3 y � c j x �u t�1, . . . , T ,Ýt t�j t
j��r

where both q and r are finite and known a priori. When the data are
short-range dependent, it is known that, under suitable conditions, the LSE is
root-T consistent and asymptotically normal. However, under long-range depen-

Ž .dence, as Robinson 1994 observed, when the joint long-range dependence in
the regressor x and error u is sufficiently strong, that is the product of thet t
spectral density functions of x and u is not integrable, the LSE is no longert t
root-T consistent and more importantly, it loses the central limit theorem
property.

Ž .Motivated by this observation, Robinson and Hidalgo 1997 showed that a
Žclass of frequency-domain weighted LSE, including GLS with parametric error

.spectral density function as a special case, is root-T consistent, asymptotically
Ž .normal and Gauss-Markov efficient in model 2.3 . More generally, their results

Ž .are also valid when c j is known up to a set of parameters 
 , that is
Ž . Ž . Ž .c j �c j; 
 for all j, in 1.1 . The intuition why the estimator in Robinson and

Ž .Hidalgo 1997 is root-T consistent and asymptotically normal is because the
weighted function possesses a zero sufficiently strong to compensate for the
singularity of the spectral density function induced by the joint long-range

�1Ž . Ždependence of x and u . So, since f � possesses a zero at ��0 see C8t t x x
�̂1. Ž .below , we can expect that f becomes asymptotically a weighted functionx x, p

Ž .satisfying the conditions of Robinson and Hidalgo 1997 . In fact, it is shown in
Ž .Theorem 1 below that the modification of the HI estimator given in 4.1
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achieves root-T consistency and asymptotic normality, so that the HI estimator
is indeed a desirable estimator.

Ž .It is worth mentioning that Hidalgo and Robinson 1999 have recently
Ž .provided asymptotic justification of Hannan’s 1963 GLS estimate when the

Ž .spectral density f � is unknown and both x and u are, possibly, long-rangeuu t t
Ž .dependent. However, the last approach in the general framework of model 1.1

seems difficult to implement in empirical studies and based on the previous
comments, it is expected that there is no gain in efficiency. It should be noted

Ž . Ž .that when the singularities of f � and f � do not coincide, applyinguu x x
Ž .Robinson and Hidalgo’s 1997 results, under suitable conditions, the LSE will

be root-T consistent and asymptotically normal.

3. STATISTICAL FRAMEWORK AND ASYMPTOTIC PROPERTIES OF THE

SPECTRAL DENSITY MATRIX ESTIMATOR

Ž . Ž .As the estimator in 2.2 and the test for H and their proofs employ the0
Ž . Ž . Ž .estimate of the spectral density f � and the cross-spectra f � and f � , itx x y x u x

seems appropriate to examine the properties of the spectral density matrix
estimate of a, for example, 	-dimensional covariance stationary linear process

Ž .z . Let f � be the spectral density matrix of z defined from the relationt t

Ž . Ž . Ž .Ž .3.1 � j �E z �Ez z �Ez �Ž .1 1 j�1 1

�
�i j�Ž . Ž .� f � e d� j�0,�1,�2, . . . .H

��

Ž .Let z denote the g th element of z , the autocovariance spectrum function oft g t
Ž .Ž Ž .. Ž .z by � j f � and the cross-covariance cross-spectrum of z and z byt g g g g g t g th

Ž .Ž Ž ..� j f � .g h g h
Ž . � 4We wish to estimate f � on the basis of T observations Z � z , t�1, . . . , T .T t

Writing
T T1

i t� �i t� �Ž .I � � z e z e ,Ý Ýt tž / ž /2�T t�1 t�1

we estimate f by
m1

ˆŽ . Ž .3.2 f � � I � �� ,Ý ž /j2m�1 j��m

� � Ž .where m� T�4M with M as defined in Section 1 and� � 2� j �T , j�0,�j
� �1, . . . , � T�2 .

Ž̂ .To examine the properties of f � , let us introduce the following conditions

Ž . � .CONDITION C1: For g�1, . . . , 	 , there exist C � 0,� , d � 0, 1�2 and ��g g
Ž �0, 2 , such that

Ž . �2 d g Ž Ž � ..f � �C � 1�O � as ��0�g g g

Ž . � �and f � �0 for all �� 0,� .g g
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Ž .CONDITION C2: For g�1, . . . , 	 , f � is twice continuously differentiable in anyg g
open set outside the origin, and

j

�j�2 d gŽ . Ž .f � �O � as ��0� for j�1, 2.g gj
�

Let us define the coherence between z and z ast g th

Ž . Ž . 1�2 Ž . 1�2 Ž .R � � f � � f � f � .Ž .g h g h g g hh

� Ž . �CONDITION C3: For g�h�2, . . . , 	 , R � is twice continuously differentiableg h
Ž �in any open set outside the origin and for some �� 1, 2 ,

� Ž . Ž . � Ž � .R � �R 0 �O � as ��0� .g h g h

� 4CONDITION C4: z is a co	ariance stationary linear process defined ast

� �
2� �z � � � , � ��,Ý Ýt j t�j j

j�0 j�0

Ž . � �where � is the identity matrix, � are 	 �	 matrices, and D stands for the0 j
norm of the matrix D.

� 4CONDITION C5: � is a stochastic process with finite fourth moments, wheret
Ž � . Ž � � . Ž �. Ž � .E � FF �0, E � � FF �E � � �� a.s., E � � � FF ��t t�1 t t t�1 t t t j t j t j t�1 3, j , j , j1 2 3 1 2 3

� �such that � �� for all j , j , j where FF is the �-algebra of e	ents3, j , j , j 1 2 3 t1 2 3

generated by � , s
 t, and the joint fourth cumulant of � , j �1, . . . , 	 ands t j ii i

i�1, . . . , 4 satisfies

� , t � t � t � t ,j , j , j , j 1 2 3 41 2 3 4Ž .cum � , � , � , � �t j t j t j t j1 1 2 2 3 3 4 4 ½ 0, otherwise,

� �with��max � ��.j �1,, . . . , 	 , i�1, . . . , 4 j , j , j , ji 1 2 3 4

�Ž . Ž . � Ž � Ž . � .CONDITION C6: 
�
� � � �O � � �� as ��0� , where
�

i j�Ž .� � � � e ,Ý j
j�0

which is twice continuously differentiable in any open set outside the origin, and
�1�2Ž . Ž . Ž .f � � � , g�1, . . . , 	 , is a nonzero finite 	ector where � � denotes the gthg g g g

Ž .row of � � .

CONDITION C7: M 2�T �1�M�0.

Ž̂ .Prior to stating some results on the spectral matrix estimator, f � , some
discussion about our conditions is in order. Conditions C1�C3 deal with the

Ž .behavior of f � . For frequencies ��0� , they are the same used elsewhere
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Ž .by, say, Robinson 1995a, b and thus his comments apply here, while for
frequencies � in any open set outside the origin, they are standard. Conditions
C4 and C5 are restrictive in the linearity they impose, but not otherwise.
Although Condition C5 can be weakened to cover more general processes for

Ž .the innovation � as in Hosoya and Taniguchi 1982 , we keep it in its presentt
form to avoid extra notational complications of the rather lengthy proofs of
some of the results.

Examples of processes satisfying C1�C5 are as follows. Let � be a 	-dimen-t
sional unobservable covariance stationary linear process that possesses a contin-
uous and bounded away from zero spectral density matrix and consider the filter

�

Ž . Ž .3.3 z � G j � .Ýt t�j
j�0

Ž . Ž . � Ž . i j�Let G � denote the g th row of the matrix G � �Ý G j e such thatg j�0
Ž . d gG � � tends to a nonzero finite vector as ��0� , for g�1, . . . , 	 . Forg

instance, let � be a stationary invertible vector autoregressive moving averaget
Ž .VARMA process with iid innovations and let each z be formed by separatet g
fractional integration of the corresponding � element, so thatt

�d �d1 	i� i�Ž . Ž . Ž .G � �diag 1�e , . . . , 1�e .Ž .
Then C1�C5 hold. In the particular case of z being scalar, its spectral densityt
function is

22 i�Ž .� � e�2 di�Ž . Ž . � �3.4 f � � 1�e , ����
� ,i�Ž .2� � e

Ž . Ž .where 0
d�1�2, and where � � and � � are the MA and AR polynomials
Ž .respectively, having no zeroes in or on the unit circle. 3.4 is the familiar

Ž .fractional autoregressive moving average ARFIMA model; see for instance
Ž . Ž .Granger and Joyeux 1980 or Hosking 1981 . Another model that exhibits

Ž .long-range dependence is the fractional Gaussian noise fgn process introduced
Ž . Žby Mandelbrot and Van Ness 1968 , whose spectral density function see Sinai

Ž ..1976 is

�2�2 d2 �Ž .4� � 2 d �z 2Ž . Ž . Ž . Ž .3.5 f � � cos � d sin ��2 j�Ý3�2 d 2�Ž .2� j���

2 Ž Ž ..2 Ž .where � �E z �E z �� and � � denotes the gamma function. Fromz t t
Ž . Ž .3.4 and 3.5 , we observe that the ARFIMA and fgn models do not represent
the same process, although their spectral density functions behave as K��2 d as
��0� , for a generic finite positive constant K. For a review of these models,

Ž .see Beran’s 1994 monograph.
Ž .Condition C6, when ��0� , was assumed elsewhere in Robinson 1995b , so

his comments apply here also, while for frequencies � in any open set outside
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the origin, the condition is standard in spectral density matrix estimation. The
second part of the assumption is not strong; see for instance the comments

Ž . d g �1�2made after 3.3 , once � is identified as f up to constants. Finally,g g
Condition C7 gives the upper bound on the rate of M to infinity. In particular,
M cannot increase faster than T 1�2�� for any 0���1�2.

ˆ ˆŽ . Ž . Ž . Ž .Let f � denote the g, h th element of f � in 3.2 .g h

PROPOSITION 1: Assuming C1�C7, for g, h�1, . . . , 	 ,

Ž .M log T
	Ž . � �E � �O f if 1
p
M ,g h , p g h , pž /Tp

Ž . Ž .with the con	ention that O a �o a �0 if a�0 and where
m1

	 	ˆ Ž .� � f � f and f � � f � �� .Ý ž /g h , p g h , p g h , p g h g h j2m�1 j��m

PROOF: The proof is a straightforward application of Proposition 1 of Hidalgo
Ž . � � � �and Yajima 1998 when p satisfies 1
p� M� , where a denotes the integer

Ž . Ž .part of a, which applies Theorem 2 of Robinson 1995a , and by Proposition 1 c
Ž . � �of Hidalgo and Robinson 1999 when M� 
p
M for ��0. Q.E.D.

PROPOSITION 2: Assuming C1�C7, for a, b, g, h�1, . . . , 	 ,
�1 � Ž . � 1�2 1�2 1�2 1�2M T Cov � ,� �O f f f f .Ž .g h , p ab , p g g , p hh , p aa , p bb , p

PROPOSITION 3: Assuming C1�C7, for g, h�1, . . . , 	 ,
1�2�1�2 �1�2 1�2Ž .sup f f � �O PM �T .Ž .g g , p h h , p g h , p p

p�1, . . . , P

4. THE ASYMPTOTIC DISTRIBUTION OF THE HI ESTIMATOR

Ž .The HI estimator in 2.2 , similar to the technical problems encountered in
many other non�semi-parametric estimators, is quite difficult to analyze as it

ˆ Ž . Ž .stands since f 0 tries to estimate f 0 , which may be infinity. One way tox x x x
Ž .proceed is by trimming the term corresponding to p�0 from 2.2 . However, as

Ž .it will become clear when examining A.7 in Mathematical Appendix A, the
trimming introduces a bias problem that otherwise would not exist if the

Ž .frequency � �0 was included. Thus, we modify 2.2 to0

2 M�1�1
�1 i j� pˆ ˆŽ . Ž .4.1 c j � f f e ,ˆ Ý x x , p y x , p2 M p�1

where Ý2 M�1�a ei j� p means Ý2 M�1a ei j� p �a . Intuitively, we have replaced thep�1 p p�1 p 1
�̂1 ˆestimator of C by that of C , that is f f .0 1 x x, 1 y x, 1
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Ž .The asymptotic properties of the estimator given in 2.2 were first established
Ž .by Hannan 1967 for a finite, possibly of unknown order, distributed lag model

Ž . Ž .and Brillinger 1981 for the infinite distributed lag model, when both f � andx x
Ž .f � are bounded and bounded away from zero. Thus, the aim of this section,uu

due to the possible adverse properties of the LSE, is to show that the estimator
Ž .defined in 4.1 is root-T consistent and asymptotic normal under the presence

of, possibly, long-range dependence. Finally, it is worth noting that due to the
Ž . Ž . Ž . Ž . � �cyclical behavior of c j , that is, c j �c j�2 M , c j , j �M�1, . . . , cannotˆ ˆ ˆ

� Ž . �be estimated, although their contribution is negligible since Ý c j �� j � � M
Ž �2���2 . Ž �1�2 .O M �o T by C9 and C10 respectively given below.
Assume the following:

� 4 � 4 � 4CONDITION C8: w � y , x � and u are co	ariance stationary linear pro-t t t t
cesses defined as

� � � �
2 2u u� � � �w � � � , � �� and u � � � , � ��,Ý Ý Ý Ýt j t�j j t j u , t�j j

j�0 j�0 j�0 j�0

Ž . Ž . Ž .where � and � satisfy C5, f � and f � satisfy C1�C3 and f � andt u, t uu w w uu
� Ž .� Ž . � i j� uŽ .f � are bounded away from zero. Also, � � �Ý � e and � � �w w j�0 j
� u i j� � 4 � 4Ý � e satisfy C6 and x and u are mutually independent.j�0 j t t

Ž � �. Ž � ��3���2 .CONDITION C9: c j �O j for some 0���1.

CONDITION C10: M 2T�1 �M��4T�0 with � as in C9.

Ž .Condition C8 deals with the requirement of some smoothness of f � anduu
Ž .f � . The requirement of independence between x and u , as in Robinsonw w t t

Ž .and Hidalgo 1997 , is necessary for the proof of asymptotic normality. We
believe that it might be possible to relax it to some extent, but that will
enormously complicate the already technical proof given in Robinson and

Ž .Hidalgo 1997 . This certainly remains an open question. Condition C9 implies
Ž .that the first derivative of C � is Liptchitz continuous with Liptchitz parameter

Ž .in the interval 0, 1���2 . Condition C10 strengthens the admissible values of
M in C7. Specifically, the rate of increase of M to infinity cannot be slower than
T ��1�Ž4�� . for arbitrarily small ��0.

THEOREM 1: Assuming C8�C10, for any finite collection j , . . . , j :1 q
Ž . 1�2Ž Ž . Ž . Ž . Ž .. d Ž � 4 .i T c j �c j , . . . , c j �c j �� N 0,�� � whereˆ ˆ1 1 q q j j r , ll�1, . . . , qr ll

��1 �1 iŽ j �j .�r llŽ . Ž . Ž .� � 2� f � f � e d�,Hj j x x uur ll ��

Ž . Ž .which corresponds to the asymptotic co	ariance between c j and c j .ˆ ˆr ll
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ˆ ˆ �̂1 ˆ 2Ž . � �ii Let f � f � f f . A consistent estimator of � , r, ll�1, . . . , q,uu, p y y, p x x, p y x, p j jr ll

is
2 M�1�1

�1 iŽ j �j .�r ll pˆ ˆ� � f f e .Ýj j x x , p uu , pr ll 2 M p�1

Ž .Theorem 1 indicates that the results, obtained by Hannan 1967 and Brillinger
Ž .1981 for short-range dependent data, hold the same under long-range depen-

Ž . �2 d xdence. It is important to observe the following; because f � 
K� andx x
Ž . �2 duf � 
K� as ��0� by C8, where 0
d , d �1�2, the asymptoticuu x u

Ž .covariance structure of c j , when taken as a process indexed by j, behaves asˆ
that of a long-range dependent process with d�d �d . In particular, whenu x

Ž . Ž . Ž � Ž . Ž �1 .f � �Kf � for all �� �� ,� , c j is, asymptotically, an iid 0, Kˆx x uu
Ž . Ž .�1 �1Ž . Ž .Gaussian process. Generally, c j has a spectral density 2� f � f � .ˆ x x uu

5. A NONPARAMETRIC CAUSALITY TEST

Ž .If in 2.3 r was a known finite constant, a Wald test for H could easily be0
implemented from the results of Theorem 1. However, when there is no known

Ž . Ž .parameterization of the model, e.g. of c j in 1.1 , in terms of a finite set of
parameters, 
 , the results given in Theorem 1 cannot be implemented in a
straightforward manner. In this framework, one way of testing for Granger

Ž .causality might be by fitting an AR P model to w where P increases slowlyt
Ž .with T as in Lutkepohl and Poskitt 1996 . However, their results depend heavily¨

on the assumption that the data are short-range dependent. Specifically, their
Assumptions 1 and 2, and the assumption that the sample covariance of the data
converges to the population one at the rate T�1�2, are not necessarily the case
under long-range dependence. Moreover, the asymptotic distribution of the

Ž .sample covariance may not be a normal random variable; see Taqqu 1975 or
Ž . Ž .Hannan 1976 . Thus, we adopt the approach given in 1.3 . Given the estimates

Ž . Ž .of c j in 4.1 , consider

� �M� 01
�i j� pŽ . Ž . Ž .5.1 S � �Re c j�1 e .ˆÝ ÝT ž /ž /M p�1 j��M�1

Ž . Ž .S � forms the basis for the hypothesis testing in 1.2 as follows. In CorollaryT
1�2 w eak l y ˜Ž . Ž .1 below, we show that under H , T S � � B � , a Gaussian process0 T

with covariance structure

1 Ž .� min � , �1 2 �1Ž . Ž . Ž . Ž .5.2 K � , � � f � f � d�,H1 2 x x uu4� 0

w eak l y � �where ‘‘� ’’ denotes weakly convergence in DD 0, 1 equipped with the
Skorohod metric.

˜Ž . Ž .Since the function K �, � is nondecreasing and nonnegative, B � admits
Ž Ž .. Ž .the representation B K �, � in distribution, where B � is the standard
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� �Brownian motion in 0, 1 . This representation, Corollary 1 below and the
continuous mapping theorem yield

1�2 Ž .sup T S �T
� ��� 0, 1

� Ž . � 1�2 Ž . � Ž . �� sup B � �K 1, 1 sup B � in law.
� Ž .� � ��� 0, K 1, 1 �� 0, 1

Let us introduce the following condition.

� � 4 � � 4CONDITION C8�: C8 is satisfied and in addition x and u are uniformlyt t
integrable.

� � 4��Observe that a sufficient condition for the second part of C8� is that E xt
� � 4���E u �� for some ��0.t

COROLLARY 1: Assuming C8�, C9, and C10, under H ,0

weakly
1�2 ˜Ž . Ž .T S � � B � ,T

� � Ž .in DD 0, 1 with the Skorohod metric and co	ariance structure K � , � gi	en in1 2
Ž .5.2 .

Ž̂ . Ž .Let K �, � be the consistent estimate of K �, � ,

� �M�1
�1ˆ ˆ ˆŽ .K � , � � f f .Ý x x , p uu , p4M p�1

Then, Corollary 1 and the comments made above are useful for testing H . For0
1�2 Ž .example, the Kolmogorov-Smirnov test based on T S � would reject theT

�̂1�2 1�2� Ž . � Ž . � � �4null if sup K 1, 1 T S � , �� 0, 1 exceeds an appropriate criticalT
value obtained from the boundary crossing probabilities of a Brownian motion,

Žwhich are readily available on the unit interval. More generally see Koul and
Ž ..Stute 1999 as

weakly�1�1�2 1�2ˆ ˆŽ . Ž . Ž . Ž .K 1, 1 T S K � , � t � B �Ž .ž /T

ˆ �1 ˆŽ Ž .. Ž . � � � Ž . 4where K �, � t � inf �� 0, 1 , K �, � � t , the limiting distribution of
�̂1�2 1�2 ˆ �1Ž . ŽŽ Ž .. Ž ..any continuous functional of K 1, 1 T S K �, � t can be ob-T

Ž . � �tained from the distribution of the corresponding functional of B � on 0, 1 .
As in other problems involving testing, one key area of interest is to know the

properties of the tests under contiguous or Pitman alternatives. To this end, let
us introduce

0
�1�2Ž . Ž . Ž .H : c j�1 cos � j� �T h �� ,Ýa

j���
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Ž . � � � Ž . �where h � is a continuous function in 0,� such that 0� h � in a set
� �	� 0,� with positive Lebesgue measure.

COROLLARY 2: Assuming C8�, C9, and C10, under H ,a

�weakly
1�2 ˜Ž . Ž . Ž . Ž .5.3 T S � � B � � h �� d�.HT

0

Corollary 2 thus indicates that the test has power against contiguous alterna-
tives that converge to the null at the rate T�1�2. It therefore has no zero
asymptotic relative efficiency compared to rival parametric tests based on a

Ž .correct parameterization of 1.1 . From Corollary 2, we can easily show that the
test is consistent. For that purpose, consider

0
Ž . Ž . Ž .H : c j�1 cos � j� �h �� .Ý1

j���

From Corollary 1 we can then immediately prove that under H1

� weakly
1�2 1�2 ˜Ž . Ž . Ž .T S � �T h �� d� � B � ,HT

0

and thus the consistency of the test.
To finish this section, it is worth noting that as the Kolmogorov-Smirnov test

has somewhat poor finite sample properties, we may alternatively attempt to
1�2 Ž . Ž .bootstrap the statistic T S � , in a similar way to Hidalgo and Kreiss 1999 ,T

using a combination of the Wild and Moving Block Bootstraps. Specifically, let
Ž . �1 �1ll� ll T be a number such that ll � ll T �0. Consider L�T� ll�1 groups,

such that the qth group is formed from the observations

Ž . Ž .y , x �, . . . , y , x �.q q ll�q�1 ll�q�1

1�2 Ž .Then the bootstrap analogue of T S � isT

� �M�L 01
	 1�2�1�2Ž . Ž .S � �L Re ll c j�1ˆŽÝ Ý ÝT qžž Mq�1 p�1 j��M�1

Ž . �i j� p�c j�1 e �ˆ . q/ /
Ž . Ž . Ž .where � are iid 0, 1 random variables and c j�1 is identical to 4.1 butˆq q

using only the observations from the qth group.

6. IMPLEMENTATION OF THE TEST AND ITS EXTENSION TO

MULTIVARIATE DATA

Ž .In empirical studies to implement the test and estimate the parameters c j ,
Ž � �.we face the problem of how to choose M or m recall that M� T�4m . Based
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Ž .on the approach adopted to estimate the parameters c j , the choice of M can
be regarded as that of the number of leads�lags in the model

� �M� T�4 m

Ž . Ž . Ž .6.1 y � c j x �u t�1, . . . , T .˜Ýt t�j t
� �j��M�� T�4 m

Ž .One standard criterion for choosing M, and thus m, in 6.1 is the minimiza-
Ž .tion of the Akaike’s 1974 AIC criterion

Ž . 26.2 log � �2 M�TˆM

where, using Kolmogorov’s formula,

2 M�11
2 ˆ Ž .� �exp log f � ,ˆ Ý ž /M uu jž /4�M j�1

that is, the estimator of the one-step-prediction error based on the residuals

� �M� T�4 m

Ž .y � c j x .ˆÝt t�j
� �j��M�� T�4 m

The motivation of the AIC criterion is twofold. First, it gives an approximately
unbiased measure for the prediction error and secondly, it provides an asymp-

Žtotic unbiased ‘‘estimate’’ of the Kullback-Leibler information using its Whittle’s
.approximation ,

Ž .�T f �
Ž . Ž . Ž .KL f , g �2T log 2� � log g � � d�,H ž /Ž .2� g ���

where f and g are the true and candidate spectral density functions for a given
data set.

Ž .An alternative criterion to the AIC given in 6.2 , which can be used, is based
� �on the choice of m� T�4M that minimizes the cross-validation criterion

� �T�2 m Ž .I �uu , m jˆˆmŽ . Ž .6.3 QQ � log f � � ,Ým uu , Ž j. j m½ 5ˆ Ž .f �j�1 uu , Ž j. j

m̂Ž . Ž . Ž .where I � is the periodogram of the residuals in 6.1 and f � �uu, m ll uu, Ž j. jˆˆ 2m mˆ ˆ ˆŽ . Ž . Ž .f � � C � f � is the one-leave-out estimate of the spectral den-y y, Ž j. j j x x, Ž j. j
Ž .sity function of u given in part ii of Theorem 1: that ist

m1 2
m̂ ˆŽ . Ž .f � � I � �� � C � I � �� .Ý ž / ž /uu , Ž j. j y y ll j j x x ll jž /2m�1

ll��m , ll�0

Ž .The motivation of the above criteria Q in 6.3 is that, as shown by, form
ˆŽ . Ž .example, Hurvich and Beltrao 1990 , the expected value of KL f , f , where˜ uu uu

f̂ is a nonparametric estimate of f , is asymptotically equivalent to theuu uu
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Ž Ž ..cross-validation criterion apart from the constant 2T log 2� for the estimate
ˆ Ž . Ž .f . Moreover, it is worth mentioning that the two criteria 6.2 and 6.3 areuu

Ž . Ž .asymptotically equivalent; see for instance Stone 1977 or Kavalieris 1989 .
Now, let us describe how the results of Sections 4 and 5 are extended to a

Ž � � .p�p �p dimensional covariance stationary vector w � y , x �. Assume that1 2 t t t
Ž .w admits the AR � representationt

�

Ž . Ž . Ž .6.4 A L w � A w �� t�1, 2, . . . , T ,Ýt j t�j t
j�0

where � is a p-dimensional martingale difference sequence and A is thet 0
identity matrix. As was argued in Section 1, the null hypothesis, H , that y �x ,0 t t

Ž .is equivalent to testing whether the p �p matrices c j are zero for j�0 in1 2
Ž .the infinite distributed lag representation of 6.4 :

�

Ž .y � c j x �u ,Ýt t�j t
j���

� � �where, by construction, E u x ,���s�� �0.t s
Ž .In this case, the HI estimator of c j is defined as

2 M�1�1
�1 i j� pˆ ˆŽ .c j � f f e ,ˆ Ý y x , p x x , p2 M p�1

whereas the test for H is given by0

� �M� 01
�i j� pŽ . Ž .S � �Re vec c j�1 e .ˆÝ ÝT ž /ž /M p�1 j��M�1

We then achieve the following results.

THEOREM 2: Assuming C9, C10, and an ob	ious extension of C8 to multi	ariate
data, for any finite collection j , . . . , j ,1 g
Ž . 1�2Ž Ž Ž . Ž .. Ž Ž . Ž ... d Ž � 4 .i T vec c j �c j , . . . , vec c j �c j �� N 0, �� �ˆ ˆ1 1 q q j j r , ll�1, . . . , qr ll

where

��1 �1 iŽ j �j .�r llŽ . Ž Ž . Ž ..� � 2� f �� � f � e d�,Hj j x x uur ll ��

Ž Ž ..which corresponds to the asymptotic co	ariance matrix between vec c j andˆ r
Ž Ž ..vec c j .ˆ ll

ˆ ˆ ˆ �̂1 ˆŽ .ii Let f � f � f f f . A consistent estimator of � , r, ll�uu, p y y, p y x, p x x, p x y, p j jr ll

1, . . . , q, is

2 M�1�1
�1 iŽ j �j .�r ll pˆ ˆ ˆ� � f � f e .Ý ž /j j x x , �p uu , pr ll 2 M p�1
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PROOF: The proof of this theorem or any other result in this section follows
by routine extension to those of Sections 4 and 5 and whose details can be seen

Ž .in Hidalgo 1998 .

COLLARY 3: Assuming C9, C10 and an ob	ious extension of C8� to multi	ariate
data, under H ,0

weakly
1�2 ˜Ž . Ž .T S � � vec B �Ž .T

p1�p 2 ˜� � Ž Ž ..in DD 0, 1 with the Skorohod metric, and where vec B � is a p �p -1 2
Gaussian process with co	ariance structure

1 Ž .� min � , �1 2 �1Ž . Ž Ž . Ž ..K � , � � f �� � f � d�.H1 2 x x uu4� 0

From Corollary 3, the test for H can be implemented in a similar fashion to0
that employed in Section 5. Finally, to examine the properties of the tests under
contiguous alternatives, introduce

0
�1�2Ž . Ž . Ž .H : c j�1 cos � j� �T h �� ,Ýa

j���

Ž . � � � Ž .�where h � is a continuous function in 0,� such that 0� h � in a set
� �	� 0,� with positive Lebesgue measure.

COROLLARY 4: Assuming the same conditions of Corollary 3, under H ,a

�weakly
1�2 ˜Ž . Ž . Ž .T S � � vec B � � h �� d� .HT ž /0

7. CONCLUSIONS

In this paper we have first shown that the asymptotic properties of Hannan’s
Ž .1967 HI estimator hold the same under long-range dependence, making the
estimation procedure a very desirable one in view of the possible adverse

Ž .properties of the LSE, as shown in Robinson 1994 . Secondly, we have proposed
a nonparametric Granger-causality test when the data possibly exhibit long-range
dependence. By means of spectral analysis, we have shown the asymptotic
properties of the test and examined its implementation. More importantly, we
have shown that the test has power against contiguous alternatives converging to
the null at the rate T�1�2. That is, although the test is nonparametric, it has an
asymptotic relative efficiency greater than zero when compared to parametric
tests based on a correct specification of the model.

Economics Dept., London School of Economics, Houghton St., London WC2A
2AE, U.K.; f.j.hidalgo@lse.ac.uk

Manuscript recei	ed October, 1996; final re	ision recei	ed No	ember, 1999.
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MATHEMATICAL APPENDIX A

Henceforth, Ý and Ý denote Ým and Ým , respectively, and K denotes a finitej j, k j��m j, k��m
positive constant.

Ž .PROOF OF PROPOSITION 2: The cov � ,� isg h, p ab, p

T1
� Ž . Ž . Ž . Ž .� t�s � r�u �� t�u � r�sÝ Ý g a h b g b h a2 2 2Ž .2m�1 4� TŽ . j, k t , r , s , u�1A.1

iŽ t�r .� � iŽ s�u.�2m p� j 2 m p�kŽ .4�cum z , z , z , z e .t g r h sa u b

We deal with the contribution of the first and third term in braces, the second being similarly
Ž . Ž .handled to the first. The contribution of the first term of A.1 is by 3.1

1 �
Ž . Ž . Ž .H 
 H � �
 f 
 �� d
HÝ 1 k� j 1 g a 1 2 m p� j 12 ½2 2Ž . ��2m�1 4� T j, kŽ .A.2

�
Ž . Ž . Ž .� H �
 H 
 �� f 
 �� d
 ,H 2 2 j�k h b 2 2 m p�k 2 5��

Ž . T � i t� Ž .where H � �Ý e . We study the first factor inside the braces of A.2 , the second beingt�1
�Ž . Ž . Ž .identical. Adding and subtracting f � H H 
 H � �
 d
 , that factor isg a 2 m p� j �� 1 k� j 1 1

�
Ž . Ž .Ž Ž . Ž ..H 
 H � �
 f 
 �� � f � d
H 1 k� j 1 g a 1 2 m p� j g a 2 m p� j 1

��

�
Ž . Ž . Ž .� f � H 
 H � �
 d
 ,Hg a 2 m p� j 1 k� j 1 1

��

Ž Ž .�1 Ž .. Ž . Ž .whose first term is O 	 2mp� j T log 2mp�k by Theorem 2 c, d of Robinson 1995a ,g a, j
1�2 1�2Ž . Ž . Ž .where 	 � f � f � , whereas the second term is 0 if j�k or 2�Tf �g a, j g g 2 m p� j aa 2 m p� j g a 2 m p� j

if j�k.
Ž .Thus, as T��, the modulus of A.2 is bounded by

2 Ž .K 1 log 2mp�k
	 	Ý g a , j h b , k2 2mp� j 2mp�kŽ .2m�1 j, k

Ž .K log 2mp� j
� 	 	Ý g a , j h b , j2 2mp� jŽ .2m�1 j

Ž .A.3

1
� Ž . � � Ž . �� f � f � .Ý g a 2 m p� j h b 2 m p� j2Ž .2m�1 j

Ž . ŽŽ .�2 2Ž . . 1�2 1�2 1�2 1 �2The first term of A.3 is O mp log mp � where � � f f f f , because, byp p aa, p g g , p bb, p h h, p
Ž .C1�C3, 	 and 	 satisfy the conditions of Lemma 1 see Appendix B . Similarly, by Lemma 1,g a, j h b, j

Ž . Ž �2 �1 Ž . .the second term of A.3 is O m p log mp � , whereas the third term isp

� � � �� R Rp g a , p h b , p Ž Ž ..1�o 1 ,
2m�1

� � � � � � � �since � and f f �� R R satisfies the conditions of Lemma 1. Thus, the2 m p�� g a, p h b, p p g a, p h b, pp
Ž .first term of A.1 is

� � � � 2Ž . Ž .� R R log mp log mpp g a , p h b , p Ž Ž ..1�o 1 �O � � .p 2 2½ 5ž /2m�1 m p Ž .mp
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Ž .Next, proceeding as above, the second term of A.1 is

2 Ž .log mp
O � .p 2ž /Ž .mp

Ž . Ž . Ž . 1�2Thus, we are left with the third term of A.1 . Writing � � �� � � and after straightfor-˜
ward calculations, we deduce that it is bounded, in absolute value, by

K
Ž . Ž . Ž . Ž .� � � �� � �� � �˜ ˜ ˜ ˜HÝ Ý g s 2 m p� j a s 2 m p� j h s 2 m p�k b s 2 m p�k2 1 2 3 42 3Ž . �T 2m�1 s j, kllŽ .A.4

Ž . Ž . Ž . Ž .�H � �� H ����� H ����� H � �� d�d�d�2 m p� j 2 m p� j 2 m p�k 2 m p�k

Ž . Ž .where � � is the indicated element of � � , the first sum is over s �1, . . . , 	 and ll�1, . . . , 4, and˜ ˜ab ll

� � Ž . �2 Ž .�2�� �� ,� . By Cauchy-Schwarz inequality, a typical term in A.4 is bounded by KT 2m�1
times

2

Ž . Ž . Ž . Ž .� � � �� H � �� H ����� d�d�˜ ˜H Ý g s 2 m p� j a s 2 m p� j 2 m p� j 2 m p� j1 22½ � j

Ž . Ž .� � �� � �˜ ˜H Ý h s 2 m p�k b s 2 m p�k3 42� k

Ž .A.5

1�22

Ž . Ž .�H ����� H � �� d�d� .2 m p�k 2 m p�k 5
Ž .The first integral in A.5 is

Ž . Ž . Ž . Ž .� � � �� H � �� H �����˜ ˜H Ý g s 2 m p� j a s 2 m p� j 2 m p� j 2 m p� j1 1 2 1 1 1ž2� j1

Ž . Ž . Ž . Ž .� � �� � � H ��� H ����� d�d� .˜ ˜Ý g s 2 m p� j a s 2 m p� j 2 m p� j 2 m p� j1 2 2 2 2 2 /
j2

Because

Ž . Ž . Ž .H ����� H ����� d��2�H �H 2 m p� j 2 m p� j j � j1 2 2 1
�

and

Ž . Ž . Ž .H � �� H ��� d��2�H � ,H 2 m p� j 2 m p� j j � j1 2 1 2
�

if follows, by C6, that

1�2
2 2Ž . Ž . Ž . Ž .A.5 �O T 	 	 K � 	 	 K � �O T m�Ý Ýg a , j a g , k j�k h b , j bh , k j�k pž /ž /j, k j , k

Ž .where K � is the Fejer kernel, because`
�2Ž . Ž . Ž . Ž Ž ..2m�1 	 	 K � � T�m f f 1�o 1 .Ý g a , j g a , k j�k aa , p g g , p

j, k

Ž . Ž . � Ž . � Ž .So A.4 �O � M�T , which concludes that cov � ,� �O � M�T . Q.E.D.p g h, p ab, p p
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PROOF OF PROPOSITION 3: Write � � f�1 �2 f�1 �2. By elementary inequalities and becauseg h, p g g , p h h, p
� � � �sup a 
Ý a ,ll ll ll ll

P

� � � Ž . � � Ž . �sup � � 
 � E � � sup � � �E � .Ýg h , p g h , p g h , p g h , p g h , p g h , p g h , p
p�1, . . . , P p�1, . . . , Pp�1

� � Ž 2 .1�2 ŽŽ .1�2 1�2 .Since sup a 
 Ý a , the second term on the right is O PM �T by Proposition 2ll ll ll ll p
whereas, by Proposition 1, the first term on the right is bounded by

PM log T 1
	� �K � f .Ý g h , p g h , pT pp�1

1�2Ž . 1�2Ž . � Ž . �But f � f � R � satisfies the conditions of Lemma 1, so by straightforward arguments,g g h h g h
we conclude the proof of the Proposition. Q.E.D.

Ž .PROOF OF THEOREM 1: We establish only i , omitting for the sake of brevity the much easier
Ž .proof of ii . By the Wold device, it suffices to show that for any finite q�0,

q
1�2 Ž Ž . Ž ..T  c j �c jˆÝ ll ll ll

ll�1

q
�d �1 �1 iŽ j � j .�ll llŽ . Ž . Ž . 1 2� N 0, 2�  f � f � e d� HÝ ll x x uu ll1 2ž /��ll , ll �11 2

q 2 ˆ ˆwhere  are constants such that Ý  �1. To that end, introduce � � f �Ef , A �ll ll�1 ll p y x, p y x, p p
ˆ ˆ ˆ ˆEf , � � f �Ef , and B �Ef . A typical element on the left of the last displayedy x, p p x x, p x x, p p x x, p

Ž . Ž .expression, say, c j �c j isˆ
2 M�1�1

�1 �2 i j�pŽ . Ž .A.6 B � �B A � eÝ p p p p p2 M p�1

2 M�1�1
�1 i j�pŽ . Ž .A.7 � B A e �c jÝ p p2 M p�1

2 M�1�1 �1�2 �2 2 i j�pŽ . Ž . Ž .A.8 � B � � � � �B � �A B � e .Ž .Ý p p p p p p p p p2 M p�1

We show below that

2 M�11
�1 i j�pˆŽ . Ž . Ž . Ž . Ž .A.9 A.6 � A.7 � A.8 � f f e �L jÝ x x , p u x , p2 M p�1

Ž . ŽŽ .�1 �2 �2�r�2 �3�2 2 �1 .where L j �O TM log M�M �T M �T M uniformly in j. Thus, by C10,p

q q1�2 2 M�1T
1�2 �1 i j �ll pˆŽ Ž . Ž .. Ž .T  c j �c j � f f  e �o 1 .ˆÝ Ý Ýll ll ll x x , p u x , p ll pž /2 M p�1ll�1 ll�1

Ž .But, by similar arguments to those of Theorem 1 of Robinson and Hidalgo 1997 , the first term on
the right of the last displayed equation converges in distribution to

q
��1 �1 iŽ j � j .�ll llŽ . Ž . Ž . 1 2N 0, 2�  f � f � e d� .HÝ ll x x uu ll1 2ž /��ll , ll �11 2

Ž .So, to complete the proof we need to show our claim in A.9 .
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Ž .We begin examining A.8 . This term is

2 M�1� 2 M�1�1 1
	�2 i j� �2 2 i j�p p� B � � e � C B � eÝ Ýp p p p p p2 M 2 Mp�1 p�1

2 M�1�1 �1 	 �2 2 i j�pŽ . Ž .� � �B � �A �C B � e ,Ž .Ý p p p p p p p2 M p�1

Ž .A.10

	 	�1 	 	 �1Ž . Ž .where C � f f with f � 2m�1 Ý f � �� .p x x, p y x, p 	 	 , p j 	 	 p j1 2 1 2
Ž . Ž .The first term of A.10 is O M�T by Cauchy-Schwarz and Markov inequalities because byp

�1 �2 �1�2 �1 Ž 1�2 �1�2 .Proposition 2, f f � and f � are O M T with z �x and z �y , andx x, p y y, p p x x , p p p th t t g t
Ž 	 . Ž � 	 �. Ž .z �z �x there, B � f �o f �O f by Proposition 1 and Lemma 1 respectively,t g th t p x x, p x x, p x x, p

� � � 	 � Ž .and C �K by C9. By similar arguments and since C �K by Lemma 2 see Appendix B , thep p
Ž . Ž . Ž �3 �2 2 .second term is also O M�T . The third term of A.10 is O T M uniformly in j, because byp p

standard linearization arguments and Propositions 1 to 3,

	�1 �1�2ˆ ˆ Ž .sup f f �C �O MT .x x , p y x , p p p
p�1, . . . , M

Thus, since Ý2 M�1�a ei j�p �Ý2 M�1a ei j�p �a , we conclude thatp�1 p p�1 p 1

M 2 M
Ž .A.8 �O � .p 3�2ž /TT

Ž . 2 M�1 i j�p 2 M i j�pNext the bias term A.7 : Because � �2� and Ý e �Ý e ,2 M p�0 p�1

2 M M1
�i ll� i j�p pŽ . Ž .c j � c ll e eÝ Ýž /2 M p�1 ll��M

2 M�1 M M1 1
�i ll� i j�p pŽ . Ž .� c ll e e � c ll ,Ý Ý Ýž /2 M 2 Mp�1 ll��M ll��M

Ž .so that A.7 is by C9

�1
�1Ž . Ž .A.11 B A � c llÝ1 1½ 52 M

ll���

2 M�1 �1 1
�1 � i ll� i j�p pŽ .� B A � c ll e e �O .Ý Ýp p 2���2ž /ž /2 M Mp�1 ll���

Next,

�1 	�1 	 Ž �1 	�1 	 .B A � f f � B A � f fp p x x , p y x , p p p x x , p y x , p

M 2 log2T
	� 1 	 	�1 	 	 	�1 	Ž . Ž .� f f � f A � f �C f B � f �Ox x , p y x , p x x , p p y x , p p x x , p p x x , p 2 2ž /T p
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� Ž . �by Proposition 1, standard linearization arguments, and because C � �K by C9. Thus, replacing
� Ž . �i ll�p �1 Ž .Ý c ll e by its definition f f , A.11 isll��� x x, p y x, p

�1 1
	� 1 	 	�1 	 	 	�1 	Ž . Ž Ž . Ž ..f f � c ll � f A � f �C f B � fÝx x , 1 y x , 1 x x , 1 1 y x , 1 1 x x , 1 1 x x , 1½ 52 M 2 M

ll���
2 M�11

	� 1 	 �1 i j�pŽ .� f f � f f eÝ x x , p y x , p x x , p y x , p2 M p�1Ž .A.12
2 M�11

	� 1 	 	 	�1 	 i j�pŽ Ž . Ž ..� f A � f �C f B � f eÝ x x , p p y x , p p x x , p p x x , p2 M p�1

1 M log2T
�O � .2���2 2ž /M T

Ž .By Lemma 2 the third term of A.12 is bounded, in absolute value, by

2 M�1K 1 1 1
C̃ �O �OÝ p2 2���2 2���2ž / ž /pM M Mp�1

˜ � � i ll�p �1� Ž . � Ž . Ž .since C �Ý ll c ll e �K by C9. The fourth term of A.12 is O T logT by Proposi-p ll���

� 	 � Ž .tion 1 and since by Lemma 2, C �K, so is the second term of A.12 by the same argument.p
Ž .The first term of A.12 is

� �1 1
	� 1 	 � i ll� � i ll� �21 1Ž . Ž . Ž . Ž .Ž . Ž .f � f � � c ll e � c ll e �1 �O M ,Ý Ýx x 1 y x 1ž /2 M 2 M

ll��� ll���

� �i ll�1 � �1 � � Ž . �because e �1 
K ll M as � ���M and Ý ll c ll �K by C9, so the second term on1 ll���

Ž �2 . Ž �2 .the left of the last displayed expression is O M , whereas the first term is O M by Lemma 2.
Thus, we conclude that

1 log T
Ž .A.7 �O � .2���2ž /TM

Ž . �1 	 	To finish the proof we need to examine A.6 . Replacing B and A B by f and C ,p p p x x, p p
respectively,

2 M�1 1�21 M log T
	� 1 	 i j�pŽ . Ž .A.6 � f � �C � e �OÝ x x , p p p p p 1�2ž /2 M TTp�1

�1 �2 �1�2 �1 Ž 1�2 �1�2after standard calculations, because by Proposition 2 f f � and f � are O M T ,y y, p x x, p p x x, p p p
	 Ž � 	 � Ž . Ž ..by Proposition 1 B � f �O f M log T � Tp , for example, and by Cauchy inequality.p x x, p x x, p

Ž �1 	 . Ž �1 . Ž .Next, since f f �1 �O p by Lemma 1, as f � satisfies the conditions there,x x, p x x, p x x

2 M�1 2 M�11 1
�1 i j� �1 i j�p pˆ ˆŽ . Ž .A.6 � f � �C � � f e � f f eÝ Ýx x , p p p p u x , p x x , p u x , p2 M 2 Mp�1 p�1

2 M�11 log M
	�1 i j�pŽ .� f C �C � e �OÝ x x , p p p p p 1�2 1�2ž /2 M T Mp�1

Ž .A.13

Ž . Ž �1 ���2 �1�2 .by Proposition 2. The third term on the right of A.13 is O M T by Lemma 2 andp
� �1 � Ž �1 �2 .because sup f � �O T M by Proposition 3.p�1, . . . , M x x, p p p

Ž .To complete the proof, we are left with the first term on the right of A.13 . Because by C8
ˆEf �0,u x, p

ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ .A.14 � �C � � f � f �C f � f �E f �C f � f ,Ž . Ž .p p p u x , p y x , p p x x , p u x , p y x , p p x x , p u x , p
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ˆ ˆ Ž .whose first term on the right, by definition of f and f and 1.1 , isy x, p x x, p

� T T1
�i t� i s�2m p� j 2 m p� jc x e x eÝ Ý Ý Ýll t� ll sŽ . ž / ž /2m�1 2�T j t�1 s�1ll���

Ž .A.15
� T T1

�i ll� � i t� i s�p 2 m p� j 2 m p� j� c e x e x e .Ý Ý Ý Ýll t sŽ .ž / ž / ž /2m�1 2�T j t�1 s�1ll���

Observe that

T T1
�i t� i s�x e x eÝ Ýt� ll sž / ž /2�T t�1 s�1

� 4 � 4 Ž . �i ll�is the cross-periodogram of x and x , whose cross-spectrum is f � e .t t�ll x x
Ž . Ž .Thus, using A.15 and by C9, the right side of A.14 is

1
�i ll�pc eÝ ll Ž .2m�1

� �ll 
M

�i ll� �2���2jŽ .Ž Ž . Ž .. Ž .� e �1 I � �EI � �O M .Ž .Ý x x 2 m p� j x x 2 m p� j p
j

�i ll� �1j� � Ž .Because 1�e 
K ll M j�m and by routine extension of Proposition 2,

1 j
1�2 �1�2Ž Ž . Ž .. Ž .I � �EI � �O M T f ;Ý x x 2 m p� j x x 2 m p� j p x x , pž /2m�1 mj

then

2 M�11 1 log M
�1 i j�pˆŽ .A.6 � f f e �O � .Ý x x , p u x , p 2���2 1�2 1�2ž /2 M M T Mp�1

Ž .This concludes the proof of part i and the theorem.

Ž . 1�2 Ž .PROOF OF COROLLARY 1: Because under H c j �0 for all j�0, by Theorem 1 T c j �ˆ0
1�2 Ž .T L j �a wherej

1�2 2 M�1T
�1 i j�pˆa � f f e ,Ýj x x , p u x , p2 M p�1

Ž .suppressing reference to T in a or L j . Thus, with the change of subindex �j by j,j

� �M�M�1 1
1�2 1�2 i j�pŽ . Ž Ž ..T S � �Re a �T L �j�1 eÝ ÝT � j�1 Mž /j�0 p�1

M�1 Ž .sin � j�
1�2 1�2Ž Ž .. Ž Ž .. Ž Ž ..� a �T L �1 �� a �T L �j�1 1�o 1Ý�1 � j�1 � jj�1

Ž �1 � M� � i j�p. Ž .�1 Ž . � �since Re M Ý e � � j sin � j� uniformly in �� 0,1 . Now,p�1
M��

M�1 Ž .sin � j�
1�2 Ž . Ž .sup T L �j�1 �o 1Ý pj� j�1

Ž 1�2 Ž . Ž �1 �2 . M� 1 �1 Ž .since by Theorem 1 T L �j�1 �O M log M and Ý j �O log M .p j�1
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Ž .So the behavior of 5.1 is governed by
k�1 M�1Ž . Ž .sin � j� sin � j�

a �� a � a ,Ý Ý�1 � j�1 � j�1� j � jj�1 j�k

where k is a fixed but large constant. The proof is thus completed if
k�1 Ž .sin � j�

Ž . Ž .A.16 G � �a �� aÝk �1 � j�1 � jj�1

converges to a Gaussian process indexed by �,

1 ��
2 �1Ž . Ž . Ž . Ž .A.17 EG � � f � f � d� ��Hk x x uu4� 0

for any arbitrary ��0 and k large enough, and
M�1 Ž .sin � j�

Ž .A.18 aÝ �j�1 � jj�k

is small uniformly in M and �.
Ž .We begin with assertion A.18 . For 0�s �s �M,1 2

2s s s �s s �	� j�2 2 2 1 2Ž . a asin � j� e 2 �j�1 � j�1�	Ž .A.19 a 
 a 
 .Ý Ý Ý Ý�j�1 � j�1 2 Ž .� j � j j j�	�j�s j�s 	�1 j�s1 1 1

Ž .Let � denote the j, ll th element of � . Then,� j�ll �

2s �	 s �	2 2 a a a aa a �j �1 � j �1�	 �j �1 � j �1�	�j�1 � j�1�	 1 1 2 2E � EÝ Ý ž /Ž . Ž . Ž .j j�	 j j �	 j j �	1 1 2 2j�s j , j �s1 1 2 1

s �	 2 22 � �� �� �	 � j � j � � j � j �	 � � j � j �	 �1 2 1 2 1 2 Ž Ž ..
 1�o 1 ,Ý Ž . Ž .j j �	 j j �	1 1 2 2j , j �s1 2 1

d 4Ž . Ž .because a � N 0, � by Theorem 1, and by the uniform integrability of a by C8�,�j j�1, . . . , k � j
� � � 4E a a a a converges to the corresponding expectation of the limit distribution of a .�j � j � j � j � j1 2 3 4 d 4 4 4� � � � � �The latter follows because if X � X and X is uniformly integrable, then E X �E X . Nowt t t

ll ll�1 Ž .choosing s �2 and s �2 , by Cauchy inequality, the expectation of the left side of A.19 is1 2
bounded by

1�2
ll ll�1 2 22 2 �	 � �� �� �	 � j � j � � j � j �	 � � j � j �	 �1 2 1 2 1 2K Ý Ý Ž . Ž .j j �	 j j �	1 1 2 2ll	�1 j , j �21 2

1�2
ll ll�12 2 �	 1


K Ý Ý 22 Ž .j j �	ll	�1 1 1j �21

1�2
ll ll�1 2 22 2 �	 � �� �� �	 � j � j � � j � j �	 � � j � j �	 �1 2 1 2 1 2�K ,Ý Ý Ž . Ž .j j �	 j j �	1 1 2 2ll	�1 j �2 , j � j1 1 2

�1 �� Žby triangle inequality. But � 
K	 , where ��d �d �1 recall the comments after Theorem	 x u
.1 , so the right side of the last displayed inequality, after standard calculations, is bounded by

1�2
ll ll�1 ll ll�12 2 �	 2 2 �	1 1

�1 �� �ll �2 �ll Ž1�� .Ž .K �K 	 
K 2 �2 .Ý Ý Ý Ý22 Ž .j j �	Ž .j j �	 1 1ll ll	�1 	�11 1j �2 j �21 1
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Let

ll�12 Ž .sin � j�
T � max a .Ýll �j�1 � j0
�
1 llj�2

Then,

Ž 2 . Ž �ll �2 �ll Ž1�� . .E T 
K 2 �2 ,ll

Ž �ll �2 �ll Ž1�� .. Ž �ll �4 �ll Ž1�� .�2 .and thus, with probability greater than 1�K 2 �2 , T 
K 2 �2 .ll
n Ž .Now choose k�2 , so that A.18 is, in absolute value, bounded by

� Ž .�log M �12
�n Ž1�� .�2 �n �4Ž .T 
K 2 �2 ,Ý ll

ll�n

Ž .and choosing n large enough, we conclude the proof of A.18 .
Ž . Ž .Assertion A.16 . From Theorem 1, the finite dimensional distributions of G � converge to ak

Ž .normal random variable. To finish, we need to prove the tightness condition; by Billingsley’s 1968
Theorem 12.3, it suffices to check

4 2Ž . Ž Ž . Ž .. � �A.20 E G � �G ��	 
K 	 .k k

� �But that follows because for all j and u, 	 � 0,� ,

2Ž . Ž Ž ..sin ju sin j u�	
�ž /j j

Ž . Ž . Ž Ž .. Ž Ž . .sin ju cos ju�� j	 sin j u�	 cos j u�	 �� ju
� � 	ž /j j

Ž .where �� 0,1 , which implies that

4 2Ž . Ž Ž .. � �sin 2� j� sin 2� j ��	 	
E a � 
K ,�j�1 2ž /ž /j j j

Ž . Ž .and thus A.20 . That concludes the proof of A.16 .
Ž . Ž . Ž .Finally A.17 follows since by A.16 , with the convention that sin ax �x�a for x�0,

k�1 Ž . Ž .sin � j � sin � j �1 22Ž Ž ..E G � � �Ýk � j � j �1 2 � j � j1 2j , j �01 2

1 �� �1 Ž . Ž .� f � f � d�, andH x x uu4�k�� 0

1 Ž .� min � , �1 2 �1Ž Ž . Ž .. Ž . Ž .E G � G � � f � f � d�. Q.E.D.Hk 1 k 2 x x uu4�k�� 0

Ž .PROOF OF COROLLARY 2: First, the left side of 5.3 is

� �M�1�2 0T
�i j�pŽ Ž . Ž ..Re c j�1 �c j�1 eˆÝ Ýž /Mž p�1 j��M�1

� �M� 01
1�2 � i j�pŽ .� T c j�1 e .Ý Ýž /M /p�1 j��M�1
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Ž̃ .But, from Corollary 1, the first term converges weakly to B � , whereas the second term, under H ,a
�1 � M� � Ž . Ž .is M Ý h � �o 1 by C9 and C10. From here the conclusion of the Corollary is immediate.p�1 p

Q.E.D.

MATHEMATICAL APPENDIX B

Ž .Let g � be a function that satisfies the following assumptions.
Ž . �� Ž .Ž �.. Ž �A1. g � �K� 1�O � as ��0� , where�
2 and �� 0, 2 .
Ž .A2. g � is twice continuously differentiable in any open set outside the origin.
j Ž Ž .. j Ž �j .A3. 
 log g � �
� �O � as ��0� for j�1,2.

LEMMA 1: Assuming A1�A3,

1
�1Ž . Ž Ž . Ž .. Ž Ž ..B.1 g � �g � �O p g � .Ý j�2 m p 2 m p 2 m p2m�1 j

PROOF: By A2, A3, and the mean value theorem

2� j
Ž . Ž . Ž .g � �g � � g � � ,j�2 m p 2 m p � j�2 m pž /T

Ž . Ž .where ��� j � 0,1 , and by A1�A3

1�� �T mp
�1 Ž . Ž .g � g � � �O .2 m p � j�2 m p ž /ž /ž /� j�2mp T

Ž .So the left side of B.1 is bounded by

1�� �Ž .Kg � j T mp2 m p �1Ž Ž ..�O p g �Ý 2 m p2m�1 T � j�2mp Tj

�1 � Ž . �since p�1 and K � mp� � j�2mp �K. Q.E.D.

LEMMA 2: Assuming C8 and C9,

4� 1
	� 1 	 �1 ˜Ž .B.2 f f � f f � C �O .x x , p y x , p x x , p y x , p p 2���2ž /Mp M

Ž .PROOF: The left side of B.2 is

�1
1 1

Ž Ž . Ž .. Ž . Ž .C � �� �C � f � �� f � ��Ý Ýp j p x x p j x x p jž /2m�1 2m�1j j

1
�1Ž Ž . Ž ..� C � �� �C � !Ý p j p p2m�1 j

Ž .B.3

1
�1 �1Ž Ž . Ž ..Ž Ž . Ž . .� C � �� �C � f � f � �� �1 ! ,Ý p j p x x p x x p j p2m�1 j

�1 �1Ž .Ž . Ž .where ! � f � 2m�1 Ý f � �� . But, by Taylor expansion and C8,p x x p j x x p j

2 M j M j
�1Ž . � Ž . Ž . �B.4 f � f � �� �1 � 1�O ,x x p x x p j ž /ž /T p T p
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Ž . Ž .whereas, by C9, C � �� �C � isp j p

1���2 1���2�j j j j
�i ll�p ˜Ž . Ž . Ž . Ž .B.5 2� ll c ll e �O � 2� C �O ,Ý pž / ž /ž /T T T Tž /

ll���

� � i ll�p˜ Ž . Ž . Ž .where C �Ý ll c ll e . Thus, adding and subtracting C � �� �C � into the firstp ll��� p j p
Ž . Ž . Ž . m Ž .term on the right of B.3 and using B.4 , B.5 and Ý j�0, the right side of B.3 isj��m

�1 ˜ �2 ���2Ž . Ž .4� M C �O M . Q.E.D.p p
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