Tetrahedron xxx (2015) 1–11

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Gd(OTf)₃ catalyzed preparation of 2,3-unsaturated *O*-, *S*-, *N*-, and *C*-pyranosides from glycals by Ferrier Rearrangement

Peiran Chen^{a,b,*}, Jie Su^a

^a Key Lab of Eco-Textile, Ministry of Education, Donghua University, 2999 Renmin Road North, Songjiang District, Shanghai 201620, China ^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China

ARTICLE INFO

Article history: Received 15 September 2015 Received in revised form 28 October 2015 Accepted 3 November 2015 Available online xxx

Keywords: Ferrier Rearrangement Gd(OTf)₃ 3,4,6-Tri-O-acetyl-p-glucal 3,4,6-Tri-O-benzyl-p-glucal 3,4-Di-O-acetyl-t-rhamnal 2,3-Unsaturated glycosides

ABSTRACT

By using Gd(OTf)₃ as the catalyst, synthesis of 2,3-unsaturated-glycosides has been performed by Ferrier Rearrangement. A series of 2,3-unsaturated *O*-, *S*-, *N*-, and *C*-glycosides were obtained from 3,4,6-tri-*O*-acetyl-D-glucal, 3,4,6-tri-*O*-benzyl-D-glucal, and 3,4-di-*O*-acetyl-L-rhamnal under mild reaction conditions in good yields and high anomeric selectivities.

© 2015 Elsevier Ltd. All rights reserved.

Tetrahedro

1. Introduction

2,3-Unsaturated glycosides are of great importance in the synthesis of biologically active molecules¹ and new functional materials² as chiral intermediates owing to their regio- and stereovarieties that they provide for the subsequent transformations. As one of the most useful procedures to achieve 2,3-unsaturated glycosides directly and efficiently, Ferrier Rearrangement has been widely investigated³ and a variety of reagents have been used to promote this reaction, including Bronsted acids,⁴ Lewis acids,⁵ as well as other reagents such as oxidants, etc.⁶ Due to their unique properties and high catalytic activities, lanthanide salts as catalyst in Ferrier Rearrangement have recently gained more and more applications, among which there could be mentioned Dy(OTf)₃, Er(OTf)₃, Yb(OTf)₃, Y(OTf)₃, Sm(OTf)₃, and Tm(OTf)₃.⁷ In our continuing efforts to search for more efficient catalysts for Ferrier Rearrangement, we found gadolinium triflate is a highly efficient catalyst for our purposes. Here we wish to report our results.

2. Results and discussion

2.1. Optimization of reaction conditions

Considering the effect of the counter anions of the salts on catalytic capacity, 5u,v different gadolinium salts have been screened, including Gd(OAc)₃·6H₂O, GdBr₃·xH₂O, GdB₆, Gd(NO₃)₃, and Gd(OTf)₃, among which Gd(OTf)₃ was found to be the best one. For the reaction solvent, we found acetonitrile gave the best result among acetone, acetonitrile, THF, dichloromethane, and toluene. Results are shown in Table 1 and Table 2.

2.2. Synthesis of 2,3-unsaturated glucosides with 3,4,6-tri-O-acetyl-p-glucal

Synthesis of 2,3-unsaturated glucosides with 3,4,6-tri-O-acetylp-glucal (1) was discussed in this section. Results are summarized in Table 3.

It could be seen that with tri-O-acetyl-D-glucal (1) as starting material, alcohols (including simple alcohols, chiral alcohols, and phenols) gave the corresponding 2,3-unsaturated glucosides in high yields with good anomeric selectivity. It was reported that when tri-O-acetyl-D-glucal was treated with *p*-methoxyphenol in

^{*} Corresponding author. Tel.: +86 21 67792594; e-mail address: prchen@dhu. edu.cn (P. Chen).

P. Chen, J. Su / Tetrahedron xxx (2015) 1-11

2

Table 1

A comparative study of the catalytic effect of different metal chloride Lewis acid catalysts in the Ferrier Rearrangement of glucal 1^a

Entry	Lewis acid catalyst	Reaction time	Conversion (%) ^b	α:β ^c
1	Gd(OAc) ₃ ·6H ₂ O	24 h	NR	1
2	GdBr ₃ ·xH ₂ O	24 h	NR	1
3	GdB ₆	24 h	NR	1
4	Gd(OTf) ₃	18 h	83	90:10
5	$Gd(NO_3)_3$	24 h	NR	1

The bold represents the best reaction condition in the table.

^a Reaction conditions: tri-O-acetyl-D-glucal (1) (190 mg, 0.7 mmol), EtOH(5 mL), catalyst (10 mol%), 40 $^{\circ}$ C.

^b Determined by analysis of the ¹H NMR spectra of the reaction mixture.

^c The anomeric ratio was determined by integration of the anomeric hydrogen in the ¹H NMR spectra.

Table 2

Optimization of solvent a for the Gd(OTf)₃ catalyzed Ferrier Rearrangement reaction system

The bold represents the best reaction condition in the table.

^a Reaction conditions: tri-O-acetyl-D-glucal (1) (190 mg, 0.7 mmol), EtOH(1.0 equiv), Gd(OTf)₃ (10 mol %), solvent (5 mL), 40 $^{\circ}$ C.

^b Determined by analysis of the ¹H NMR spectra of the reaction mixture.

^c The anomeric ratio was determined by integration of the anomeric hydrogen in the ¹H NMR spectra.

CH₂Cl₂ using BF₃·OEt₂ as the catalyst, *C*-glycoside was obtained exclusively.⁸ However, in our case, no such phenomenon occurred. *p*-Methoxyphenol, 3-hydroxyl-benzaldehyde, and 2-naphthol gave the corresponding normal O-glycosides as sole products in good yield (entries 5, 6, and 7, Table 1), which could be confirmed by the two *ortho* aromatic signals in the ¹H NMR spectra of the products. When thiols were used as nucleophiles, the corresponding 2,3-unsaturaterd *S*-glycosides could also be obtained in high yields with good anomeric selectivities (entries 8–10, Table 3). Similarly, with TMS-activated *C*-donors, *C*-glucosides formed in high yields and good selectivity (entry 18–20, Table 1).

2.3. Synthesis of 2,3-unsaturated glycosides with 3,4-di-O-acetyl-L-rhamnal

Synthesis of 2,3-unsaturated glycosides with 3,4-di-O-acetyl-L-rhamnal (**4**) was summarized in Table 4. It could be seen that all of *O*-, *S*-, *N*-, *C*-donors gave good outcomes in terms of yields and selectivities.

2.4. Synthesis of 2,3-unsaturated glucosides with 3,4,6-tri-0-benzyl-p-glucal

Synthesis of 2,3-unsaturated glucosides with 3,4,6-tri-O-benzyl-D-glucal (**6**) was discussed in this section. Results are summarized in Table 5. By comparison of Table 3 with Table 5, it could be seen that relatively higher reactive temperature (60 °C) was necessary in Table 5, which meant that O-benzyl sugar was less reactive than O-acetyl sugar in the reactions. 3,4,6-Tri-O-benzyl-D-glucal (**6**) took longer time and gave lower yield in the reaction with the same nucleophiles (**2**) than 3,4,6-tri-O-acetyl-D-glucal (**1**) However, in our observation, even in the case of 3,4,6-tri-O-benzyl-D-glucal, $Gd(OTf)_3$ is a catalyst which appears to be efficient enough to afford satisfactory outcome in both yield and selectivity.

3. Conclusions

In summary, Gd(OTf)₃ has been demonstrated to be a highly efficient catalyst for the preparation of various 2,3-unsaturated glycosides in the Ferrier Rearrangement. Under our reaction conditions, 3,4,6-tri-O-acetyl-D-glucal, 3,4-di-O-acetyl-L-rhamnal, and 2,4,6-tri-O-benzyl-D-glucal afforded corresponding O-, S-, N-, and C-products in high to good yields with high anomeric selectivities.

4. Experimentals

4.1. Method and materials

¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 (400 MHz) spectrometer with Me₄Si as internal standard. ¹⁹F NMR spectra were obtained on a Bruker AM-300 (282 MHz) spectrometer using CFCl₃ as an external standard; downfield shifts being designated as positive, all chemical shifts (δ) were expressed in ppm and coupling constants (*J*) are in Hz. Mass spectra were recorded on a Finnigan-MAT-8430 instrument using El ionization at 70 eV. High-Resolution mass spectral (ESI) analyses were performed on a Finnigan MAT 8430 spectrometer. IR spectra were recorded on a Nicolet 380 spectrometer. Optical rotations were measured by WZZ-2 polarimeter. Melting points were measured on a WRS-2A melting point apparatus. The glycals, L-menthol, (1*R*)-*endo*-(+)-fenchol and the protected glucose were purchased from Energy-Chemical Company. All the solvents used in the reaction were purified by re-distillation.

4.2. General experimental procedure of Ferrier rearrangement of 3,4,6-tri-O-acetyl-D-glucal, 3,4-di-O-acetyl-L-rhamnal or 3,4,6-tri-O-benzyl-D-glucal catalyzed with Gd(OTf)₃

To a stirred solution of 3,4,6-tri-*O*-acetyl-*D*-glucal (190 mg, 0.7 mmol), 3,4-di-*O*-acetyl-*L*-rhamnal (150 mg, 0.7 mmol) or 3,4,6-tri-*O*-benzyl-*D*-glucal (292 mg, 0.7 mmol) and the corresponding nucleophile (1.0 equiv) in CH₃CN (5 mL) were added Gd(OTf)₃ (10 mol %) at ambient temperature. The mixture was stirred under 40 °C for the appropriate amount of time (Tables 3–5), and the extent of the reaction was monitored by TLC analysis. The reaction mixture was diluted with cooled sodium bicarbonate (satd, 20 mL) and extracted with DCM (3×10 mL). The combined organics were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. All the products were purified by silica gel column chromatography (hexane/EtOAc=6/1).

4.2.1. Ethyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranoside (**3a**). White solid; mp=70–72 °C; [α]_D¹⁰=+87.2 (c 1.06, CHCl₃, α : β =89:11) {lit::^{5u} [α]_D²⁵=+122.7 (c 0.88, CHCl₃, α : β =17:1)}; ¹H NMR (400 MHz, CDCl₃) δ 5.90–5.80 (m, 2H), 5.31 (d, J=9.6 Hz, 1H), 5.04 (s, 1H), 4.28–4.08 (m, 3H), 3.83 (dq, J=9.6, 7.1 Hz, 1H), 3.57 (dq, J=9.5, 7.1 Hz, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 1.24 (t,

P. Chen, J. Su / Tetrahedron xxx (2015) 1-11

3

Table 3

Gd(OTf)₃ catalyzed synthesis of 2,3-unsaturated glucosides by Ferrier Rearrangement of 3,4,6-tri-O-acetyl-D-glucal (1) with nucleophiles (2)^a

ARTICLE IN PRESS

P. Chen, J. Su / Tetrahedron xxx (2015) 1–11

Fable 3 (continued)					
Entry	Nucleophile (2)	Reaction time	Product (3)	Yield ^b /(α : β) ^c	
10	SH	25 min	GAC OAc 3j	86% (α only)	
11	S-NH ₂	30 min	$\int_{OAc}^{OAc} \int_{H_{O}}^{H_{O}} \int_{OAc}^{H_{O}} \int_{OAc}^{H_{$	74% (93:7)	
12		20 min	OAc OAc OAc 31	72% (93:7)	
13	O S S O NH ₂	50 min	$\int_{OAc}^{OAc} \int_{OAc}^{O} H_{O}^{H-S-CH_2Ph}$	71% (90:10)	
14	О H ₃ C-S-NH ₂ О	20 min	$\int_{OAc}^{OAc} \int_{H}^{O} CH_3$	84% (95:5)	
15	O H ₃ C ⁻ S-NH-CH ₃ O	20 min	$ \begin{array}{c} $	76% (α only)	
16	о О-С-NH ₂	90 min	OAC OAC 3p	72% (α only)	
17		5 h	OAc O OAc O OAc O OAc O	71% (α only)	
18	TMS	40 min	OAc OAc 3r	88% (α only)	

P. Chen, J. Su / Tetrahedron xxx (2015) 1-11

Table 3 (continued)

^a General reaction conditions: tri-O-acetyl-D-glucal (1) (190 mg, 0.7 mmol), nucleophile (2) (1.0 equiv), Gd(OTf)₃ (10 mol %), MeCN (5 mL), 40 °C.

^b Isolated yield.

^c The anomeric ratio was determined by integration of the anomeric hydrogen in the ¹H NMR spectra.

Table 4

Gd(OTf)₃ catalyzed synthesis of 2,3-unsaturated glycosides by Ferrier Rearrangement of 3,4-di-O-acetyl-L-rhamnal (4) with nucleophiles (2)^a

	Ac	$\frac{Gd(OTf)_3/N}{40^{\circ}C}$ + Nucleophile $\frac{Gd(OTf)_3/N}{40^{\circ}C}$		
		ÓAc 4 2	5	
Entry	Nucleophile (2)	Reaction time	Product (5)	Yield ^b /(α : β) ^c
1	ОН	30 min	Aco Ph Me Ph 5a	85% (α only)
2	SH	20 min		71% (a only)
3	H ₃ C	30 min	Aco Me Me Sc	87% (α only)
4	$H_3C - \overset{O}{\overset{H}{\overset{H}{_3}}} - NH - CH_3$	20 min	Aco Me O Me O N-S-Me	77% (α only)
5	О-ТМЗ	20 min		65% (97:3)
	~		5e	

^a General reaction conditions: 3,4-di-O-acetyl-L-rhamnal (4) (150 mg, 0.7 mmol), nucleophile (2) (1.0 equiv), Gd(OTf)₃ (10 mol %), MeCN (5 mL), 40 °C.

^b Isolated yield.

^c The anomeric ratio was determined by integration of the anomeric hydrogen in the ¹H NMR spectra.

J=7.1 Hz, 3H) ppm; IR (film, cm⁻¹): 2923, 2843, 1740, 1623, 1458, 1371, 1335, 1039, 979, 902; MS(ESI) *m/z*: 276.1 ([M+NH₄]⁺,100).

4.2.2. Benzyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranoside (**3b**). Colorless oil; $[\alpha]_D^{10} = +58.5$ (c 1.26, CHCl₃, α only) {lit.:^{5x} $[\alpha]_D^{25} = +68.3$ (c 1.02, CHCl₃, α : β =9:1)}; ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.30 (m, 5H), 5.95–5.85 (m, 2H), 5.36 (d, J=9.4 Hz, 1H), 5.16 (s, 1H), 4.83 (d, J=11.7 Hz, 1H), 4.63 (d, J=11.7 Hz, 1H), 4.31–4.24 (m, 1H), 4.21–4.12 (m, 2H), 2.13 (s, 3H), 2.11 (s, 3H) ppm; lR (film, cm⁻¹): 3030, 2931, 1738, 1605, 1488, 1355, 1232, 1040, 907; MS(ESI) m/z: 338.2 ([M+NH₄]⁺, 100).

4.2.3. (+)-endo-Fenacholyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythrohex-2-enopyranoside (**3c**). White solid; mp=75–76 °C; $[\alpha]_D^{10}$ =+64.6 (c 1.12 CHCl₃, α only) {lit.^{5t} $[\alpha]_2^{24}$ =+48.7 (c 0.5 CHCl₃, α only) } ¹ H NMR (400 MHz, CDCl₃) δ 5.87 (s, 2H), 5.30 (d, *J*=9.5 Hz,

ARTICLE IN PRESS

P. Chen, J. Su / Tetrahedron xxx (2015) 1–11

Table 5

 $Gd(OTf)_3$ catalyzed synthesis of 2,3-unsaturated glucosides by Ferrier Rearrangement of 3,4,6-tri-O-benzyl-D-glucal (6) with nucleophiles (2)³

P. Chen, J. Su / Tetrahedron xxx (2015) 1–11

^a General reaction conditions: 2,4,6-tri-O-benzyl-D-glucal (6) (292 mg, 0.7 mmol), nucleophile (2) (1.0 equiv), Gd(OTf)₃ (10 mol %), MeCN (5 mL), 60 °C.

^b Isolated yield.

^c The anomeric ratio was determined by integration of the anomeric hydrogen in the ¹H NMR spectra.

1H), 5.00 (s, 1H), 4.29–4.22 (m, 1H), 4.19–4.12 (m, 2H), 3.47 (s, 1H), 2.10 (s, 6H), 1.79–1.63 (m, 3H), 1.53–1.36 (m, 2H), 1.13 (s, 3H), 1.12–1.07 (m, 1H), 1.06 (s, 3H), 1.04–0.95 (m, 1H), 0.89 (s, 3H) ppm; IR (film, cm⁻¹): 3036, 2927, 2853, 1737, 1443, 1377, 1045, 970, 908; MS(ESI) *m*/*z*: 389.0 ([M+Na]⁺, 100).

4.2.4. $6-O-(4,6-Di-O-acetyl-2,3-dideoxy-\alpha-D-erythreo-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-\alpha-D-galactopyranose ($ **3d** $). White solid; mp=131–132 °C; <math>[\alpha]_{D}^{D}=+29.7$ (c 1.12 CHCl₃, $\alpha:\beta=88:12$) {lit.:^{4b} $[\alpha]_{D}^{25}=+16.8$ (c 1.0, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 5.88–5.79 (m, 2H), 5.50 (d, *J*=5.0 Hz, 1H), 5.30 (d, *J*=9.7 Hz, 1H), 5.07 (s, 1H), 4.61–4.57 (m, 1H), 4.32–4.29 (m, 1H), 4.27–4.21 (m, 2H), 4.16–4.07 (m, 2H), 3.97 (d, *J*=7.7 Hz, 1H), 3.85 (dd, *J*=10.2, 6.3 Hz, 1H), 3.73 (dd, *J*=10.2, 7.0 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 1.51 (s, 3H), 1.42 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H) ppm; IR (film, cm⁻¹):2920, 2850, 1744, 1637, 1430, 1374, 1237, 1161, 783, 729, 671; MS(ESI) *m/z*: 495.1 ([M+Na]⁺, 100).

4.2.5. 4-Methoxyphenyl 4,6-di-O-acetyl-2,3-dideoxy-1-O- α -D-erythro-hex-2-enopyrano side (**3e**). White solid; mp=77–78 °C, $[\alpha]_D^{10}$ =+115.7 (c 1.08, CHCl₃, α only) {lit.: = +139.1 (c 0.66, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J*=8.9 Hz, 2H), 6.86 (d, *J*=8.9 Hz, 2H), 6.03 (s, 2H), 5.59 (s, 1H), 5.40 (d, *J*=9.2 Hz, 1H), 4.34–4.26 (m, 2H), 4.23–4.15 (m, 1H), 3.80 (s, 3H), 2.14 (s, 3H), 2.05

(s, 3H) ppm; IR (film, cm⁻¹): 2930, 1739, 1615, 1495, 1387, 1220, 1035, 970; MS (ESI) *m*/*z*: 359.0 ([M+Na]⁺, 56).

4.2.6. 3-Formylphenyl 4,6-di-O-acetyl-2,3-dideoxy-1-O-α-D-erythrohex-2-enopyranoside (**3f**). White solid; mp=72-74 °C, $[\alpha]_D^{10}$ =+121.4 (c 0.93, CHCl₃, α only), {lit:.⁷¹ [α]_D^{10}=+139.7 (c 0.85 CHCl₃, α:β=40:1)}; ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.64 (s, 1H), 7.59 (d, *J*=7.5 Hz, 1H), 7.50 (t, *J*=7.8 Hz, 1H), 7.39 (d, *J*=8.0 Hz, 1H), 6.06 (dd, *J*=23.0, 10.3 Hz, 2H), 5.78 (s, 1H), 5.42 (d, *J*=9.3 Hz, 1H), 4.33-4.21 (m, 2H), 4.15 (d, *J*=11.1 Hz, 1H), 2.14 (s, 3H), 1.98 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 191.81, 170.69, 170.23, 157.61, 137.88, 130.58, 130.17, 126.55, 124.31, 123.40, 117.08, 92.98, 68.00, 64.94, 62.60, 20.97, 20.66; IR (film, cm⁻¹): 2927, 2838, 1737, 1624, 1477, 1365, 1230, 1035, 780, 739; MS(ESI) *m/z*: 357.1 ([M+Na]⁺, 25). HR-ESI: C₁₇H₁₈NaO₇ [M+Na]⁺ calcd 357.0945, found. 357.0942.

4.2.7. 2-Naphenyl 4,6-di-O-acetyl-2,3-dideoxy-1-O-α-D-erythro-hex-2-enopyranoside (**3g**). White solid; mp=72–74 °C; $[\alpha]_D^{10}$ =+136.4 (c 1.13, CHCl₃, α:β=89:11) {lit.:⁵⁰ [α]_D^5=+153.9 (c 1.01, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.81 (d, *J*=8.1 Hz, 1H), 7.76–7.68 (m, 2H), 7.51 (t, *J*=7.7 Hz, 1H), 7.37 (t, *J*=7.4 Hz, 1H), 7.13 (d, *J*=8.9 Hz, 1H), 6.34 (s, 1H), 6.02 (d, *J*=10.3 Hz, 1H), 5.92 (d, *J*=10.3 Hz, 1H), 5.69 (d, *J*=8.9 Hz, 1H), 4.43–4.35 (m, 2H), 4.17–4.09 (m, 1H), 2.19 (s, 3H), 2.17 (s, 3H) ppm; IR (film, cm⁻¹): 3095,1740,

P. Chen, J. Su / Tetrahedron xxx (2015) 1–11

1617, 1388, 1220, 1036, 820, 795; MS (ESI) m/z: 357.0 ([M+H]⁺, 100).

4.2.8. Phenyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-1-thio-hex-2enopyranoside (**3h**). White solid; mp=56–57 °C; [α]_D¹⁰=+144.2 (c 1.17, CHCl₃, α only) {lit.:^{4b} [α]_D²⁵=+28.2 (c 1.0, CHCl₃, α : β =12:1)}; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J*=6.2 Hz, 2H), 7.39–7.25 (m, 3H), 6.09 (d, *J*=9.2 Hz, 1H), 5.89 (d, *J*=9.9 Hz, 1H), 5.78 (s, 1H), 5.41 (d, *J*=7.8 Hz, 1H), 4.55–4.43 (m, 1H), 4.38–4.16 (m, 2H), 2.13 (s, 3H), 2.10 (s, 3H) ppm; IR (film, cm⁻¹): 2945, 2880, 1738, 1640, 1520, 1433, 1232, 1076, 904, 746, 712; MS(ESI) *m/z*: 345.0 ([M+Na]⁺, 100).

4.2.9. 4-Methoxylphenyl 4,6-di-O-acetyl-2,3-dideoxy- α -*D*-erythro-1thio-hex-2-enopyranoside (**3i**). White solid; mp=75–76 °C; $[\alpha]_D^{10}$ =+183.4 (c 1.09, CHCl₃, α only) {lit..⁴ⁱ, no rotation value reported, α only}; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J*=8.6 Hz, 2H), 6.88 (d, *J*=8.6 Hz, 2H), 6.08 (d, *J*=10.1 Hz, 1H), 5.87 (d, *J*=10.2 Hz, 1H), 5.62 (s, 1H), 5.39 (d, *J*=9.5 Hz, 1H), 4.57–4.47 (m, 1H), 4.33–4.23 (m, 2H), 3.83 (s, 3H), 2.14 (s, 6H) ppm; IR (film, cm⁻¹): 2932, 2844, 1740, 1628, 1520, 1452, 1233, 1064, 965, 812; MS(ESI) *m*/ *z*: 375.1 ([M+Na]⁺, 100).

4.2.10. 2-Naphenyl 4,6-di-O-acetyl-2,3-dideoxy-α-*D*-erythro-hex-2eno-1-thio-α-*D*-pyranoside (**3***j*). White solid; mp=97–98 °C; [α]₁^D=133.8 (c 1.14,CHCl₃, α only) {lit.:⁴ⁱ no rotation value reported, α : β =9:1}; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.87–7.77 (m, 3H), 7.64 (d, *J*=8.6 Hz, 1H), 7.56–7.45 (m, 2H), 6.17–6.10 (m, 1H), 5.92 (d, *J*=10.0 Hz, 2H), 5.43 (dd, *J*=9.5, 1.6 Hz, 1H), 4.60–4.50 (m, 1H), 4.39–4.24 (m, 2H), 2.15 (s, 3H), 2.06 (s, 3H) ppm; IR (film, cm⁻¹): 2925, 1740, 1624, 1520, 1428, 1231, 1036, 823; MS(ESI) *m/z*: 395.0 ([M+Na]⁺, 100).

4.2.11. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-phenylsulfonamide (**3k**). Colorless oil; $[\alpha]_D^{10}$ =+43.5 (c 0.96, CHCl₃, α : β =93:7) {lit.:^{9b} α : β =5:1}; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J=7.4 Hz, 2H), 7.63 (t, J=7.4 Hz, 1H), 7.55 (t, J=7.5 Hz, 2H), 5.96 (d, J=10.2 Hz, 1H), 5.85 (d, J=10.1 Hz, 1H), 5.74-5.63 (m, 2H), 5.29 (d, J=8.1 Hz, 1H), 3.93 (dd, J=12.2, 3.4 Hz, 1H), 3.55 (dt, J=9.2, 3.2 Hz, 1H), 3.36 (dd, J=12.2, 2.3 Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H) ppm; IR (film, cm⁻¹): 3267, 2940, 1741, 1638, 1580,1450, 1371, 1161, 1030, 746, 710; MS(ESI) *m*/*z*:391.9 ([M+Na]⁺, 100).

4.2.12. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-4'-chloro-phenylsulfonamide (**3l**). Colorless oil; $[\alpha]_D^{10}$ =+47.8 (c 0.89, CHCl₃, α : β =93:7) {lit.:^{5r} no rotation value reported, α : β =85:15}; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J=8.5 Hz, 2H), 7.52 (d, J=8.5 Hz, 2H), 5.95 (t, J=10.2 Hz, 2H), 5.84 (d, J=10.2 Hz, 1H), 5.64 (d, J=8.4 Hz, 1H), 5.27 (d, J=8.8 Hz, 1H), 3.96 (dd, J=12.8, 4.3 Hz, 1H), 3.64–3.55 (m, 2H), 2.06 (s, 3H), 2.04 (s, 3H) ppm; IR (film, cm⁻¹): 3325, 2938, 1739, 1590, 1427, 1340, 1208, 1124, 1034, 902, 789; MS(ESI) *m/z*: 426.0 ([M+Na]⁺, 100).

4.2.13. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-benzylsulfonamide (**3m**). White solid; mp=137–138 °C; $[\alpha]_D^{10}$ =+40.5 (c 1.04,CHCl₃, α : β =90:10) {lit:.⁷ⁱ $[\alpha]_D^{10}$ =+44.9 (c 0.96, CHCl₃, α : β =10:1)}; ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.45 (m, 2H), 7.44–7.39 (m, 3H), 6.00 (dt, *J*=10.2, 1.9 Hz, 1H), 5.87–5.82 (m, 1H), 5.60 (d, *J*=7.7 Hz, 1H), 5.35 (d, *J*=8.8 Hz, 1H), 5.26 (dd, *J*=8.9, 1.8 Hz, 1H), 4.56 (d, *J*=13.7 Hz, 1H), 4.36–4.28 (m, 2H), 4.23 (dd, *J*=12.1, 6.4 Hz,1H), 4.05–3.99 (m, 1H), 2.13 (s, 3H), 2.04 (s, 3H) ppm; IR (film, cm⁻¹): 3310, 2938, 1739, 1590,1427, 1340, 1208, 1124, 1034, 902, 789; MS(ESI) *m/z*: 406.0 ([M+Na]⁺, 100).

 $\begin{array}{l} \alpha:\beta = 85:15, \text{ no rotation value reported} \}; \ ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ \delta \ 6.02 \ (d, J = 10.1 \text{ Hz}, 1\text{H}), 5.92 - 5.86 \ (m, 1\text{H}), 5.64 - 5.50 \ (m \ 2\text{H}), 5.26 \ (dd, J = 9.1, 1.7 \text{ Hz}, 1\text{H}), 4.29 \ (dd, J = 12.1, 2.4 \text{ Hz}, 1\text{H}), 4.16 \ (dd, J = 12.0, 6.6 \text{ Hz}, 1\text{H}), 4.02 - 3.95 \ (m, 1\text{H}), 3.16 \ (s, 3\text{H}), 2.13 \ (s, 3\text{H}), 2.09 \ (s, 3\text{H}) \ \text{ppm; IR (film, cm^{-1}): 3284, 2919, 2833, 1740, 1445, 1132, 1040, 946; } MS(\text{ESI}) \ m/z: 329.9 \ ([\text{M}+\text{Na}]^+, 100). \end{array}$

4.2.15. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-N-methyl-methanesulfonamide (**30**). Colorless oil; $[\alpha]_D^{10} = +73.4$ (c 1.03, CHCl₃, α only) {lit:.⁷ⁱ $[\alpha]_D^{10} = +66.9$ (c 1.10, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 5.97 (dt, J=10.3, 2.0 Hz, 1H), 5.81–5.78 (m, 1H), 5.72 (dt, J=10.4, 1.9 Hz, 1H), 5.26–5.20 (m, 1H), 4.23 (dd, J=12.1, 2.4 Hz, 1H), 4.10 (dd, J=12.1, 6.2 Hz, 1H), 3.87–3.80 (m, 1H), 2.91 (s, 3H), 2.74 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.53, 170.18, 131.22, 128.44, 82.76, 73.88, 64.38, 62.75, 38.29, 29.14, 20.90, 20.71; IR (film, cm⁻¹): 2979, 2865,1743, 1626, 1316, 1123, 904; MS(ESI) m/z: 344.1 ([M+Na]⁺, 100); HR-ESI: C₁₂H₁₉NNaO₇S [M+Na]⁺, calcd 344.0774, found. 344.0762.

4.2.16. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-benzylcarbamate (**3p**). Colorless oil; $[\alpha]_D^{10}$ =+45.6 (c 0.94, CHCl₃, α only) {lit.:^{9d} $[\alpha]_D^{5}$ =+52 (c 0.5, CHCl₃), α : β =3:1}; ¹H NMR (400 MHz, CHCl₃) δ 7.44–7.32 (m, 5H), 5.98 (d, J=10.2 Hz, 1H), 5.87–5.82 (m, 1H), 5.81–5.71 (m, 1H), 5.63 (s, 1H), 5.31 (dd, J=9.0, 1.8 Hz, 1H), 5.17 (s, 2H), 4.27 (dd, J=12.1, 5.0 Hz, 1H), 4.17 (dd, J=12.1, 2.4 Hz, 1H), 3.94–3.87 (m, 1H), 2.10 (s, 3H), 2.08 (s, 3H) ppm; IR (film, cm⁻¹): 3328, 2934, 2865, 1740, 1638, 1520, 1431, 1209, 890, 765, 712; MS(ESI) *m/z*: 386.0 ([M+Na]⁺, 100).

4.2.17. 2-(4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl) oxazolidinone (**3q**). White solid; mp=80–82 °C; $[\alpha]_D^{10}$ =+96.4 (c 1.03, CHCl₃, α only) {lit.:⁷ⁱ [α]_D^{10}=+111.6 (c 1.17, CHCl₃, α : β =10:1)}; ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, *J*=10.2 Hz, 1H), 5.86 (s, 1H), 5.75 (d, *J*=10.3 Hz, 1H), 5.28 (d, *J*=9.1 Hz, 1H), 4.43–4.30 (m, 2H), 4.19 (d, *J*=4.1 Hz, 2H), 3.95–3.88 (m, 1H), 3.65 (q, *J*=8.6 Hz, 1H), 3.50–3.42 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.80, 170.28, 157.59, 131.26, 128.01, 78.53, 74.04, 64.46, 62.97, 62.42, 39.63, 20.93, 20.81. IR (film, cm⁻¹): 2930, 2842, 1740, 1623, 1425,1324, 1231, 1040, 966, 825; MS(ESI) *m/z*: 322.1 ([M+Na]⁺,100). HR-ESI: C₁₃H₁₇NNaO₇ [M+Na]⁺, calcd 322.0897, found. 322.0890.

4.2.18. 3-(4',6'-Di-O-acetyl-2',3'-dideoxy-α-D-erythro-hex-2'-enopyranosyl)-1-propene (**3r**). Colorless oil; $[\alpha]_D^{10}$ =+97.5 (c 1.05, CHCl₃, α only) lit.:^{7g} $[\alpha]_D^{26}$ =+66.2 (c 1.0, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 5.98–5.92 (m, 1H), 5.92–5.78 (m, 2H), 5.19–5.10 (m, 3H), 4.33–4.28 (m, 1H), 4.25 (dd, *J*=11.9, 6.6 Hz, 1H), 4.17 (dd, *J*=11.9, 3.5 Hz, 1H), 3.98 (td, *J*=6.5, 3.5 Hz, 1H), 2.53–2.44 (m, 1H), 2.39–2.30 (m, 1H), 2.11 (s, 6H) ppm; IR (film, cm⁻¹): 2931, 2843, 1738, 1630, 1332, 1220, 1040, 920, 831; MS(ESI) *m/z*: 277.0 ([M+Na]⁺, 100).

4.2.19. $2-(4',6'-Di-O-acetyl-2',3'-dideoxy-\alpha-D-erythro-hex-2'-eno-pyranosyl)-acetophenone ($ **3s** $). Colorless oil; <math>[\alpha]_{D}^{10} = +78.6$ (c 0.92, CHCl₃, α only) {lit:.^{9a} α : β =8:2, $[\alpha]_{D}^{23} = +35.7$ (c 0.99, CHCl₃) for α anomer, $[\alpha]_{D}^{23} = +111.3$ (c 0.574, CHCl₃) for β anomer}; ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.95 (m, 2H), 7.63–7.57 (m, 1H), 7.52–7.46 (m, 2H), 6.11–6.06 (m, 1H), 588–5.83 (m, 1H), 5.18–5.13 (m, 1H), 4.98–4.91 (m, 1H), 4.25 (dd, *J*=11.9, 6.6 Hz, 1H), 4.14 (dd, *J*=11.9, 3.6 Hz, 1H), 4.00 (td, *J*=6.4, 3.7 Hz, 1H), 3.48 (dd, *J*=16.4, 7.1 Hz, 1H), 3.15 (dd, *J*=16.4, 6.6 Hz, 1H), 2.10 (s, 3H), 2.03 (s, 3H) ppm; IR (film,cm⁻¹): 2930, 2838, 1741, 1590, 1325, 1224, 1030, 865, 710; MS(ESI) *m/z*: 355.0 ([M+Na]⁺, 100).

4.2.20. 4,6-Di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl cyanide (**3t**). White solid; mp=86-87 °C;

 $[\alpha]_D^{00} = -15.6$ (c 1.10, CHCl₃, only) {lit.:⁷ⁱ $[\alpha]_D^{10} = -19.8$ (c 0.98, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 6.06 (dt, *J*=10.2, 1.8 Hz, 1H), 5.92 (ddd, *J*=10.2, 3.5, 1.9 Hz, 1H), 5.40-5.34 (m, 1H), 5.12-5.08 (m, 1H), 4.29 (d, *J*=3.9 Hz, 2H), 4.10-4.04 (m, 1H), 2.15 (s, 3H), 2.14 (s, 3H) ppm; IR (film, cm⁻¹): 2935, 2840, 2212, 1741, 1565, 1350, 1221, 1032, 910, 721; MS(ESI) *m/z*: 261.9 ([M+Na]⁺, 100).

4.2.21. 3'-Phenylpropyl 4-O-acetyl-6-deoxy-2,3-dideoxy- α -*D*-erythro-hex-2-enopyranoside (**5a**). Colorless oil; $[\alpha]_{D}^{10} = -56.8$ (c 0.95, CHCl₃, α only); ¹H NMR (400 MHz, DMSO) δ 7.31–7.25 (m, 2H), 7.23–7.14 (m, 3H), 5.83 (q, *J*=10.4 Hz, 2H), 4.96 (s, 1H), 4.92 (d, *J*=9.2 Hz, 1H), 3.88–3.79 (m, 1H), 3.69–3.61 (m, 1H), 3.49–3.40 (m, 1H), 2.70–2.57 (m, 2H), 2.06 (s, 3H), 1.87–1.78 (m, 2H), 1.12 (d, *J*=6.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, DMSO) δ 170.53, 142.07, 129.33, 128.91, 128.76, 128.75, 126.20, 94.16, 70.61, 67.52, 64.79, 32.18, 31.49, 21.29, 18.23; IR (film, cm⁻¹): 2924, 1739, 1630, 1542, 1430, 1342, 1235, 1037, 923, 730; MS(ESI) *m/z*: 313.1 ([M+Na]⁺, 100). HR-ESI: C₁₇H₂₂NaO₄ [M+Na]⁺, calcd 313.1410, found. 313.1417.

4.2.22. Cyclohexanethiol 4-O-acetyl-6-deoxy-2,3-dideoxy- α -*D*-erythro-hex-2-enopyranoside (**5b**). Colorless oil; $[\alpha]_D^{10} = -117.5$ (c 1.08, CHCl₃, α only) {lit.:^{5v} $[\alpha]_D^{25} = -156.9$ (c 1.0, CHCl₃, α only)}; ¹H NMR (400 MHz, CDCl₃) δ 5.91 (d, *J*=10.1 Hz, 1H), 5.74 (d, *J*=10.1 Hz, 1H), 5.61 (s, 1H), 5.12 (d, *J*=9.0 Hz, 1H), 4.23-4.14 (m, 1H), 2.96-2.86 (m, 1H), 2.10 (s, 3H), 2.08-1.99 (m, 2H), 1.82-1.73 (m, 2H), 1.64-1.57 (m, 1H), 1.46-1.29 (m, 5H), 1.24 (d, *J*=6.3 Hz, 3H) ppm; IR (film, cm⁻¹): 2932, 1741, 1630, 1423, 1235, 1042, 924, 833; MS(ESI) *m/z*: 293.0 ([M+Na]⁺, 100).

4.2.23. 4-Methylphenyl 4-O-acetyl-6-deoxy-2,3-dideoxy-α-*D*-erythro-hex-2-enopyranoside (**5c**). Colorless oil; $[\alpha]_{1}^{10} = -118.6$ (c 1.03, CHCl₃, α only); {lit.:⁹*c* α:β=9:1, no rotation value reported}. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J*=8.3 Hz, 2H), 7.33 (d, *J*=8.1 Hz, 2H), 5.90 (d, *J*=10.1 Hz, 1H), 5.83–5.78 (m, 1H), 5.66 (d, *J*=9.1 Hz, 1H), 5.58–5.52 (m, 1H), 4.95–4.90 (m, 1H), 3.46–3.37 (m, 1H), 2.45 (s, 3H), 2.06 (s, 3H), 0.73 (d, *J*=6.2 Hz, 3H) ppm; IR (film, cm⁻¹): 3324, 2931, 2837, 1742, 1640, 1431, 1355, 1228, 1030, 910, 824, 732; MS(ESI) *m/z*: 343.1 ([M+NH₄]⁺, 100).

4.2.24. 4-O-acetyl-6-deoxy-2,3-dideoxy-α-D-erythro-hex-2enopyranosyl-N-methyl-methanesulfonamide (**5d**). Colorless oil; $[\alpha]_D^{10}$ =-106.5 (c 1.17, CHCl₃, α only); ¹H NMR (400 MHz, CDCl₃) δ 5.93 (d, J=10.3 Hz, 1H), 5.74 (s, 1H), 5.66 (d, J=10.3 Hz, 1H), 5.00 (d, J=7.1 Hz, 1H), 3.73-3.64 (m, 1H), 2.91 (s, 3H), 2.74 (s, 3H), 2.05 (s, 3H), 1.19 (d, J=6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.37, 131.73, 128.34, 82.68, 71.99, 69.71, 38.32, 29.13, 20.98, 18.00; IR (film, cm⁻¹): 3078, 2920, 2853, 1740, 1641, 1336, 1223, 1040, 915, 816; MS(ESI) *m/z*: 286.1 ([M+Na]⁺, 100). HR-ESI: C₁₀H₁₇NNaO₅S [M+Na]⁺, calcd 286.0720, found. 286.0714.

4.2.25. 2-(4'-O-acetyl-6'-deoxy-2',3'-dideoxy-α-*D*-erythro-hex-2'enopyranosyl) acetophenone (**5e**). Colorless oil; $[\alpha]_{D}^{10}$ =-110.7 (c 1.09, CHCl₃, α:β=97:3) {lit.:⁷ⁱ[α]_D^{10}=-110.7 (c 1.09, CHCl₃ α only)}; ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.97 (m, 2H), 7.63-7.57 (m, 1H), 7.53-7.46 (m, 2H), 6.09 (ddd, *J*=10.3, 2.1, 1.2 Hz, 1H), 5.85 (ddd, *J*=10.4, 3.6, 2.0 Hz, 1H), 4.95-4.85 (m, 2H), 4.01-3.92 (m, 1H), 3.47 (dd, *J*=16.5, 6.8 Hz, 1H), 3.16 (dd, *J*=16.5, 6.7 Hz, 1H), 2.11 (s, 3H), 1.27 (d, *J*=6.6 Hz, 3H) ppm; IR (film, cm⁻¹):2933, 2842, 1738, 1645, 1564, 1437, 1346, 1230, 1125, 1041, 814, 725; MS(ESI) *m/z*: 292.2 ([M+NH₄]⁺, 24).

4.2.26. Cyclohexyl-4,6-di-O-benzyl-2,3-dideoxy-D-erythro-1-thiohex-2-enopyranoside (**7a**). Colorless oil; $[\alpha]_D^{10} = +68.7$ (c 1.06, CHCl₃, α only) {lit.:^{5v} $[\alpha]_D^{55} = +53.6$ (c 1.0 CHCl₃, $\alpha:\beta=10:1$)}; ¹H NMR (400 MHz, DMSO) δ 7.38–7.24 (m, 10H), 6.09 (d, J=10.3 Hz, 1H), 5.74 (d, J=10.3 Hz, 1H), 5.11 (s, 1H), 4.65 (d, J=11.7 Hz, 1H), 4.56–4.43 (m, 3H), 3.92 (d, J=9.6 Hz, 1H), 3.89–3.82 (m, 1H), 3.66 (d, J=9.7 Hz, 1H), 3.63–3.54 (m, 2H), 1.92–1.78 (m, 2H), 1.71–1.55 (m, 2H), 1.50–1.40 (m, 1H), 1.34–1.08 (m, 5H) ppm; IR (film, cm⁻¹): 3064, 2941, 2832, 1625, 1518, 1423, 1330, 1231, 1120, 836, 744; MS(ESI) *m/z*: 426.3 ([M+NH₄]⁺, 100).

4.2.27. Benzyl-4,6-di-O-benzyl-2,3-dideoxy-*D*-erythro-1-thio-hex-2enopyranoside (**7b**). Colorless oil; $[\alpha]_D^{10} = +86.7$ (c 1.28, CHCl₃, $\alpha:\beta=88:12$) {lit.:^{5v} $[\alpha]_D^{23} = +80.4$ (c 1.4, CHCl₃, $\alpha:\beta=10:1$)}; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.25 (m, 15H), 6.13 (d, *J*=10.3 Hz, 1H), 5.83 (dt, *J*=10.3, 2.3 Hz, 1H), 5.17 (s, 1H), 4.85 (d, *J*=11.8 Hz, 1H), 4.69 (d, *J*=12.2 Hz, 1H), 4.66–4.61 (m, 2H), 4.55 (d, *J*=12.2 Hz, 1H), 4.48 (d, *J*=11.5 Hz, 1H), 4.26–4.20 (m, 1H), 4.07–4.01 (m, 1H), 3.77 (dd, *J*=10.6, 4.1 Hz, 1H), 3.67 (dd, *J*=10.6, 1.8 Hz, 1H) ppm; IR (film, cm⁻¹): 2937, 1623, 1486, 1392, 1223, 1141, 1056, 809. MS(ESI) *m/z*: 434.2 ([M+NH₄]⁺, 100).

4.2.28. Benzyl 4,6-di-O-benzyl-2,3-dideoxy-α-*D*-erythro-hex-2-eno-1-thio-α-*D*-pyranoside (**7c**). Colorless oil; $[\alpha]_D^{10}$ =+76.5 (c 1.02, CHCl₃, α;β=93:7); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.23 (m, 15H), 6.00 (d, *J*=10.2 Hz, 1H), 5.84–5.79 (m, 1H), 5.47 (s, 1H), 4.73–4.46 (m, 4H), 4.31–4.20 (m, 2H), 3.96 (d, *J*=13.4 Hz, 1H), 3.83–3.76 (m, 2H), 3.66 (dd, *J*=10.7, 1.6 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 138.49, 138.24, 138.08, 129.04, 128.78, 128.49, 128.41, 128.39, 127.91, 127.89, 127.79, 127.66, 127.44, 126.93, 79.28, 73.37, 71.14, 70.37, 69.26, 68.88, 35.68; IR (film, cm⁻¹): 3043, 2936, 2845, 1621, 1486, 1378, 1236, 1120, 1035, 912, 823, 755, 708; MS(ESI) *m/z*: 450.2 ([M+NH₄]⁺, 100). HR-ESI: C₂₇H₂₉O₃S [M+H]⁺, calcd 433.1837, found. 433.1840.

4.2.29. 4'-Methoxylphenyl 4,6-di-O-benzyl-2,3-dideoxy-α-*D*-erythro-1-thio-hex-2-enopyranoside (**7d**). White solid; mp=46–48 °C; $[\alpha]_D^{10}$ =+117.6 (c 0.92, CHCl₃, α :β=92:8); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J*=8.6 Hz, 2H), 7.40–7.30 (m, 10H), 6.77 (d, *J*=8.7 Hz, 2H), 6.08–5.99 (m, 2H), 5.63 (s, 1H), 4.71–4.64 (m, 2H), 4.58–4.49 (m, 2H), 4.47–4.41 (m, 1H), 4.23 (d, *J*=9.2 Hz, 1H), 3.85–3.81 (m, 2H), 3.79 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.63, 138.26, 138.02, 135.02, 128.77, 128.46, 128.35, 127.93, 127.90, 127.86, 127.60, 127.56, 125.49, 114.40, 84.85, 73.35, 71.10, 70.50, 69.36, 69.31, 55.32; IR (film, cm⁻¹): 2932, 2820, 1531, 1423, 1332, 1041, 945, 817; MS(ESI) *m/z*: 466.2 ([M+NH₄]⁺, 100). HR-ESI: C₂₇H₃₂O₄NS [M+NH₄]⁺, calcd 466.2047, found. 466.2040.

4.2.30. 4'-Trifluoromethoxylphenyl 4,6-di-O-benzyl-2,3-dideoxy-α-*D*erythro-1-thio-hex-2-enopyranoside (**7e**). White solid; mp=74–76 °C; [α]_D¹⁰=+121.5 (c 0.98, CHCl₃, α:β=96:4); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J=8.1 Hz, 2H), 7.48 (d, J=8.2 Hz, 2H), 7.41–7.29 (m, 10H), 6.12 (d, J=10.2 Hz, 1H), 6.00 (d, J=10.2 Hz, 1H), 5.88 (s, 1H), 4.66 (d, J=12.5 Hz, 2H), 4.55–4.49 (m, 2H), 4.36–4.25 (m, 2H), 3.84–3.75 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 137.98, 137.82, 130.44, 129.86, 128.49, 128.38, 127.96, 127.91, 127.75, 126.61, 125.58 (q, J=4.0 Hz, 1C), 83.23, 73.36, 71.38, 70.15, 69.88, 68.91; ¹⁹F NMR (377 MHz, CDCl₃) δ –62.56(s); IR (film, cm⁻¹): 2936, 2841, 1623, 1512, 1421, 1320, 1226, 1037, 915, 816; MS(ESI) *m/z*: 487.2 ([M+H]+, 100). HR-ESI: C₂₇H₂₆O₃F₃S [M+H]⁺, calcd 487.1549, found 487.1541.

4.2.31. 4,6-Di-O-benzyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-4'-methoxyl-phenylsulfonamide (**7f**). Colorless oil; $[\alpha]_D^{10}$ +121.5 (c 1.12, CHCl₃, α : β =80:20); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J=8.9 Hz, 2H), 7.41–7.25 (m, 10H), 6.82 (d, J=8.9 Hz, 2H), 6.11 (d, J=10.2 Hz, 1H), 5.79–5.73 (m, 1H), 5.67–5.61 (m, 1H), 5.58–5.51 (m, 1H), 4.57 (d, J=11.3 Hz, 1H), 4.51–4.35 (m, 3H), 4.19 (dd, J=9.1, 1.7 Hz, 1H), 3.79 (s, 3H), 3.44 (dd, J=10.7, 2.9 Hz, 1H), 3.30 (dt, J=9.0, 2.3 Hz, 1H), 2.80 (dd, J=10.7, 2.0 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 162.77, 138.07, 137.62, 133.54, 131.97, 130.97, 129.63, 129.41, 128.46, 128.42, 127.99, 127.95, 127.74, 127.71, 125.51, 113.91, 79.39, 73.34, 71.83, 69.48, 69.26, 67.65, 55.59; IR (film,

P. Chen, J. Su / Tetrahedron xxx (2015) 1–11

cm⁻¹):3341, 3076, 2964, 1634, 1517, 1418, 1334, 1225, 1078, 934, 817; MS(ESI) *m/z*: 513.2 ([M+NH₄]⁺, 100). HR-ESI: $C_{27}H_{33}N_2O_6S$ [M+NH₄]⁺, calcd 513.2054, found. 513.2047.

4.2.32. 4,6-Di-O-benzyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-methanesulfonamide (**7g**). Colorless oil; $[\alpha]_D^{10} = +94.6$ (c 1.15, CHCl₃, α : β =85:15) {lit.:^{9d} $[\alpha]_D^{25} = +54$ (c 0.7, CHCl₃, α : β =3:1)}; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.26 (m, 10H), 6.16 (dt, *J*=10.2, 1.7 Hz, 1H), 5.80 (ddd, *J*=10.2, 3.0, 1.8 Hz, 1H), 5.58–5.53 (m, 1H), 5.39 (d, *J*=9.2 Hz, 1H), 4.68–4.46 (m, 4H), 4.00–3.95 (m, 1H), 3.85–3.79 (m, 1H), 3.75 (dd, *J*=10.3, 2.0 Hz, 1H), 3.64 (dd, *J*=10.3, 6.2 Hz, 1H), 3.06 (s, 3H) ppm; IR (film, cm⁻¹): 3289, 3035, 2921, 2857, 1372, 1233, 1020, 952, 724; MS(ESI) *m/z*: 421.2 ([M+NH₄]⁺, 100).

4.2.33. 4,6-Di-O-benzyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-N-methyl-methanesulfonamide (**7h**). Colorless oil; $[\alpha]_D^{0}$ =+68.6 (c 1.10, CHCl₃, α only); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.29 (m, 10H), 6.21 (dt, *J*=10.3, 1.9 Hz, 1H), 5.82–5.79 (m, 1H), 5.70 (dt, *J*=10.3, 1.8 Hz, 1H), 4.67 (d, *J*=11.5 Hz, 1H), 4.61–4.51 (m, 3H), 4.13–4.07 (m, 1H), 3.80–3.74 (m, 1H), 3.73–3.68 (m, 2H), 2.97 (s, 3H), 2.81 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 138.18, 137.71, 132.57, 128.51, 128.41, 127.99, 127.96, 127.72, 127.59, 127.21, 83.01, 76.53, 73.26, 71.57, 69.56, 69.33, 38.36, 29.29. IR (film,cm⁻¹): 3056, 2931, 2846, 1513, 1382, 1217, 1040, 843, 722; MS(ESI) *m/z*: 440.2 ([M+Na]⁺, 100). HR-ESI: C₂₂H₂₇NNaO₅S [M+Na]⁺, calcd 440.1502, found. 440.1502.

4.2.34. 4,6-Di-O-benzyl-2,3-dideoxy- α -D-erythro-hex-2enopyranosyl-benzylcarbamate (**7i**). Colorless oil; $[\alpha]_{10}^{10}$ =+104.5 (c 1.11, CHCl₃, α : β =89:11) {lit:.^{9d} $[\alpha]_{25}^{25}$ =+29 (c 2.0, CHCl₃, α : β =7:3)}; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.23 (m, 15H), 6.09 (dt, *J*=10.1, 1.9 Hz, 1H), 5.76 (d, *J*=9.4 Hz 1H), 5.71(d, *J*=10.2 Hz 1H), 5.40–5.31 (m, 1H), 5.22–5.07 (m, 2H), 4.70–4.41 (m, 4H), 4.27–4.19 (m, 1H), 3.80–3.67 (m, 3H) ppm; IR (film, cm⁻¹): 3048, 2940, 2841, 1520, 1410, 1221, 1032, 942, 825, 732; MS(ESI) *m/z*: 477.2 ([M+NH₄]⁺, 100).

4.2.35. 2-(4,6-Di-O-benzyl-2,3-dideoxy-α-D-erythro-hex-2enopyranosyl) oxazolidinone (**7***j*). White solid; mp=54–56 °C; $[\alpha]_D^{10}$ =+86.4 (c 0.96, CHCl₃, α only); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.25 (m, 10H), 6.20 (d, *J*=10.3 Hz, 1H), 5.85 (s, 1H), 5.68 (d, *J*=10.3 Hz, 1H), 4.68–4.60 (m, 2H), 4.56–4.49 (m, 2H), 4.42–4.29 (m, 2H), 4.20 (d, *J*=6.9 Hz, 1H), 3.83–3.73 (m, 3H), 3.71–3.63 (m, 1H), 3.50–3.42 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 157.69, 138.20, 137.78, 132.66, 128.47, 128.36, 127.94, 127.81, 127.65, 126.57, 78.77, 76.99, 73.48, 71.70, 69.45, 68.91, 62.37, 39.78; IR (film, cm⁻¹): 2934, 2841, 1702, 1615, 1391, 1234, 1026, 840, 752; MS(ESI) *m/z*: 413.2 ([M+NH₄]⁺, 100). HR-ESI: C₂₃H₂₉O₅N₂ [M+NH₄]⁺, calcd 413. 2071, found. 413.2065.

4.2.36. $3-(4',6'-Di-O-benzyl-2',3'-dideoxy-\alpha-D-erythro-hex-2'-eno-pyranosyl)-1-propene ($ **7k** $). Colorless oil; <math>[\alpha]_D^{10} = +88.4 (c 0.92, CHCl_3, \alpha only) {lit.:^{5x} <math>[\alpha]_D^{25} = +73.529 (c 3.4, CHCl_3, \alpha only)};$ ¹H NMR (400 MHz, CDCl_3) δ 7.39–7.24 (m, 10H), 5.97–5.82 (m, 3H), 5.17–5.06 (m, 2H), 4.66–4.46 (m, 4H), 4.30–4.23 (m, 1H), 4.04–3.98 (m, 1H), 3.87–3.81 (m, 1H), 3.74–3.64 (m, 2H), 2.55–2.45 (m, 1H), 2.38–2.28 (m, 1H) ppm; IR (film, cm⁻¹): 3058, 2921, 2853, 1642, 1372, 1233, 1040, 912, 732; MS(ESI) *m/z*:373.0 ([M+Na]⁺, 100).

4.2.37. 2-(4',6'-Di-O-benzyl-2',3'-dideoxy-α-D-erythro-hex-2'-enopyranosyl)-acetophenone (**71**). Colorless oil; $[\alpha]_D^{10}$ =+112.6 (c 0.97, CHCl₃, α only); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J*=7.5 Hz, 2H), 7.62–7.56 (m, 1H), 7.52–7.44 (m, 2H), 7.36–7.27 (m, 10H), 6.00 (s, 2H), 4.94 (t, *J*=6.8 Hz, 1H), 4.67–4.48 (m, 4H), 4.03 (d, *J*=6.9 Hz, 1H), 3.91–3.85 (m, 1H), 3.73–3.61 (m, 2H), 3.51 (dd, *J*=16.3, 6.6 Hz, 1H), 3.19 (dd, *J*=16.3, 7.0 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 197.78, 138.18, 138.09, 136.99, 133.24, 131.08, 128.62, 128.41, 128.33, 128.21, 127.96, 127.81, 127.77, 127.58, 125.86, 73.43, 72.15, 71.11, 69.85, 69.18, 69.16, 42.38; IR (film, cm⁻¹): 2925, 2852, 1731, 1524, 1413, 1332, 1210, 1128, 1058, 755, 687; MS(ESI) *m/z*: 446.2 ([M+NH₄]⁺, 100). HR-ESI: $C_{28}H_{29}O_4$ [M+H]⁺, calcd 429.2066, found 429.2060.

4.2.38. 4,6-*D*i-O-*benzyl*-2,3-*d*ideoxy- α -*D*-*erythro*-*hex*-2-*enopyr*anosyl cyanide (**7m**). Colorless oil; $[\alpha]_D^{10} = +72.8$ (c 0.98, CHCl₃, α : β =80:20) {lit.:^{5x} $[\alpha]_D^{25} = +44.737$ (c 3.8, CHCl₃, α : β =60:40)}; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.24 (m, 10H), 6.19 (d, *J*=10.2 Hz, 1H), 5.83–5.77 (m, 1H), 5.10–5.04 (m, 1H), 4.64 (dd, *J*=11.7, 6.7 Hz, 2H), 4.56–4.47 (m, 2H), 4.27 (dd, *J*=8.9, 1.8 Hz, 1H), 3.88 (dt, *J*=8.9, 2.7 Hz, 1H), 3.83–3.74 (m, 2H) ppm; IR (film, cm⁻¹): 3067, 2942, 2835, 2210, 1621, 1530, 1425, 1337, 1252, 1135, 1058, 945, 844, 753; MS(ESI) *m/z*: 453.2 ([M+NH₄]⁺, 80).

Acknowledgements

This work is financially supported by a grant of the National Natural Science Foundation of China (NSFC, Grant No. 21272305).

Supplementary data

Supplementary data (¹H and ¹³C NMR spectra) associated with this article can be found, in the online version, at http://dx.doi.org/ 10.1016/j.tet.2015.11.002.

References and notes

- For recent examples, see (a) Durham, T. B.; Miller, M. J. Org. Lett. 2002, 4, 135; (b) Williams, D. R.; Heidebrecht, R. W., Jr. J. Am. Chem. Soc. 2003, 125, 1843; (c) Domon, D.; Fujiwara, K.; Ohtaniuchi, Y.; Takezawa, A.; Takeda, S.; Kawasaki, H.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2005, 46, 8279; (d) Panarese, J. D.; Waters, S. P. Org. Lett. 2009, 11, 5086; (e) Rusin, A.; Zawisza-Puchalka, J.; Kujawa, K.; Gogler-Piglowska, A.; Wietrzyk, J.; Switalska, M.; Glowala-Kosinska, M.; Gruca, A.; Szeja, W.; Krawczyk, Z.; Grynkiewicz, G. Bioorg. Med. Chem. 2011, 19, 295.
- For example, see Bozell, J. J.; Tice, N. C.; Sanyal, N.; Thompson, D.; Kim, J.-M.; Vidal, S. J. Org. Chem. 2008, 73, 8763.
- (a) Ferrier, R. J. Top. Curr. Chem. 2001, 215, 153; (b) Ferrier, R. J. Org. React. 2003, 61, 174; (c) Ferrier, R. J.; Zubkov, O. A. Org. React. 2004, 62, 569; (d) Gómez, A. M.; Lobo, F.; Uriel, C.; Cristóbal López, J. Eur. J. Org. Chem. 2013, 7221.
- 4. For recent examples, see, (a) Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004, 69, 6137; (b) Misra, A. K.; Tiwari, P.; Agnihotri, G. Synthesis 2005, 260; (c) Tiwari, P.; Agnihotri, G.; Misra, A. K. Carbohydr. Res. 2005, 340, 749; (d) Yadav, J. S.; Satyanarayana, M.; Balanarsaiah, E.; Raghavendra, S. Tetrahedron Lett. 2006, 47, 6095; (e) Gorityala, B. K.; Cai, S.; Lorpitthaya, R.; Ma, J.; Pasunooti, K. K.; Liu, X.-W. Tetrahedron Lett. 2009, 50, 676; (f) Zhou, J.; Zhang, B.; Yang, G.; Chen, X.; Wang, Q.; Wang, Z.; Zhang, J.; Tang, J. Synlett 2010, 893; (g) Chen, P.; Wang, S. Tetrahedron 2013, 69, 583; (h) Zhang, J.; Zhang, B.; Zhou, J.; Chen, H.; Li, J.; Yang, G.; Wang, Z.; Tang, J. J. Carbohydr. Chem. 2013, 32, 380; (i) Goutam Guchhait, G.; Misra, A. K. Catal. Lett. 2011, 141, 925.
- 5. For recent examples, see (a) Yadav, J. S.; Subba Reddy, B. V.; Chand, P. K. Tetrahedron Lett. 2001, 42, 4057; (b) Swamy, N. R.; Venkateswarlu, Y. Synthesis 2002, 598; (c) Bettadaiah, B. K.; Srinivas, P. Tetrahedron Lett. 2003, 44, 7257; (d) Kim, H.; Men, H.; Lee, C. J. Am. Chem. Soc. **2004**, 126, 1336; (e) Swamy, N. R.; Srinivasulu, M.; Reddy, T. S.; Goud, T. V.; Venkateswarlu, Y. J. Carbohydr. Chem. 2004, 23, 435; (f) Ghosh, R.; Chakraborty, A.; Maiti, S. ARKIVOC 2004, IV, 1; (g) Babu, J. L.; Khare, A.; Vankar, Y. D. Molecules 2005, 10, 884; (h) Naik, P. U.; Nara, J. S.; Harjani, J. R.; Salunkhe, M. M. J. Mol. Catal. A: Chem. **2005**, 234, 35; (i) Procopio, A.; Dalpozzo, R.; Nino, A. D.; Maiuolo, L.; Nardi, M.; Oliverio, M.; Russo, B. Carbohydr. Res. 2007, 342, 2125; (j) Zhang, G.; Shi, L.; Liu, Q.; Wang, J.; Li, L.; Liu, X. Tetrahedron 2007, 63, 9705; (k) Zhang, G.; Liu, Q. Synth. Commun. **2007**, *37*, 3485; (I) Tayama, E.; Otoyama, S.; Isaka, W. Chem. Commun. **2008**, 4216; (m) Zhang, G.-S.; Liu, Q.-F.; Shi, L.; Wang, J.-X. Tetrahedron **2008**, 64, 339; (n) Rodriguez, O. M.; Colinas, P. A.; Bravo, R. D. Synlett 2009, 1154; (o) Gorityala, B. K.; Lorpitthaya, R.; Bai, Y.; Liu, X.-W. Tetrahedron 2009, 65, 5844; (p) Nagaraj, P.; Ramesh, N. G. Tetrahedron Lett. **2009**, 50, 3970; (q) Balamurugan, R.; Kop-polu, S. R. Tetrahedron **2009**, 65, 8139; (r) Ding, F.; William, R.; Gorityala, B. K.; Ma, J.; Wang, S.; Liu, X.-W. Tetrahedron Lett. 2010, 51, 3146; (s) Chen, P.-R.; Wang, S.-S. Tetrahedron 2012, 68, 5356; (t) Chen, P.-R.; Lin, L. Tetrahedron 2013, 69, 4524; (u) Chen, P.-R.; Lin, L. Tetrahedron 2013, 69, 10045; (v) Chen, P.-R.; Li, S. Tetrahedron Lett. 2014, 55, 5813; (w) Narasimha, G.; Srinivas, B.; Krishna, P. R.; Kashyap, S. Synlett 2014, 523; (x) Srinivas, B.; Reddy, T. R.; Kashyap, S. Carbohydr. Res. 2015, 406, 86; (y) Reddy, T. R.; Rao, D. S.; Kashyap, S. RSC Adv. 2015, 5, 28338; (z) Battina, S. K.; Reddy, T. R.; Palakodety Radha Krishna, P. R.; Kashyap, S. Tetrahedron Lett. 2015, 56, 1798.

P. Chen, J. Su / Tetrahedron xxx (2015) 1-11

- For examples, see (a) Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.; Kinoshita, M. J. Chem. Soc., Chem. Commun. 1993, 704; (b) Fraser-Reid, B.; Madsen, R. J. Org. Chem. 1995, 60, 3851; (c) Koreeda, M.; Houston, T. A.; Shull, B. K.; Klemke, E.; Tuinman, R. J. Synlett 1995, 90; (d) Watanabe, Y.; Itoh, T.; Sakakibara, T. Carbohydr. Res. 2009, 344, 516.
- 7 (a) Yadav, J. S.; Subba Reddy, B. V.; Murthy, C. V. R. S.; Mahesh Kumar, G. Synlett
 2000, 1450; (b) Takhi, M.; Abdel-Rahman, A. A.-H.; Schmidt, R. R. Synlett
 2001, 427; (c) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Balasubramanian, M. Tetrahedron
 Lett. 2002, 43, 7009; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem. Soc.,
 Perkin Trans. 1 2002, 2390; (e) Anjiaia, S.; Chandrasekhar, S.; Gree, R. J. Mol. Catal.
 A: Chem. 2004, 214, 133; (f) Procopio, A.; Dalpozzo, R.; DeNino, A.; Nardi, M.;

Russo, B.; Tagarellib, A. Synthesis **2006**, 2332; (g) Procopio, A.; Dalposso, R.; DeNino, A.; Nardi, M.; Oliverio, M.; Russo, B. Synthesis **2006**, 2608; (h) Chen, P.-R.; Zhang, D. Tetrahedron **2014**, 70, 8505; (i) Chen, P.-R.; Bi, B. Tetrahedron Lett. **2015**, 56, 4895.

- (a) Noshita, T.; Sugiyama, T.; Kitazumi, Y.; Oritani, T. Biosci. Biotechnol. Biochem.
 1995, 59, 2025; (b) Ferrier, R. J.; Zubkov, O. A. Org. React. 2004, 62, 604.
- (a) Dawe, R. D.; Fraser-Reid, B. J. Org. Chem. 1984, 49, 522; (b) Chandrasekhar, S.; Reddy, Ch R.; Chandrashekar, G. Tetrahedron Lett. 2004, 45, 6481; (c) Abhishek Santra, A.; Guchhait, G.; Misra, A. K. Synlett 2013, 581; (d) Begum, Z.; Kishore, Ch; Reddy, V. V.; Reddy, B. V. S. Tetrahedron Lett. 2014, 55, 6048; (e) Reddy, T. R.; Battina, S. K.; Kashyap, S. J. Carbohydr. Chem. 2015, 34, 133.