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Transition metal complexes promote various annulation
reactions, which provide efficient methods for the synthesis
of heterocyclic molecules.[1] Such reactions often involve
heteroatom-containing metalacycles as the key intermediate,
and unsaturated organic compounds are incorporated into
heterocyclic skeletons through migratory insertion and reduc-
tive elimination. It has been shown that heterocyclic com-
pounds, such as triazoles,[2] phthalimides,[3a] phthalic anhydri-
de,[3b] and isatoic anhydride[3c] serve as the precursor to
heteroatom-containing metalacycles through oxidative addi-
tion to a low-valent transition metal, and the extrusion of
gaseous molecules like N2, CO, and CO2.

[4] We recently
developed a nickel-catalyzed denitrogenative annulation
reaction of 1,2,3-benzotriazin-4(3H)-ones with alkynes[5a]

and allenes,[5b] in which a five-membered ring azanickelacycle
was formed as the precursory platform. We next examined the
use of 1,2,3,4-benzothiatriazine-1,1(2H)-dioxides as a triazo
substrate for an annulation reaction because of the medicinal
importance of the resulting 1,2-benzothiazine-1,1(2H)-diox-
ide derivatives.[6] Herein, we report the enantioselective
synthesis of substituted 3,4-dihydro-1,2-benzothiazine-
1,1(2H)-dioxides by the nickel-catalyzed denitrogenative
annulation of 1,2,3,4-benzothiatriazine-1,1(2H)-dioxides
with allenes.

The model substrate, 2-methyl-1,2,3,4-benzothiatriazine-
1,1(2H)-dioxide (4a), can be readily prepared from ortho-
nitrobenzenesulfonyl chloride (1), which is commercially
available, in three steps (Scheme 1); 1 is coupled with
methylamine and the resulting ortho-nitro-N-methylbenze-

nesulfonamide (2a) is reduced using zinc to give ortho-amino-
N-methylbenzenesulfonamide (3a). The following HONO-
mediated ring-closing reaction affords 4a as a white solid.[7]

Initially, activation of the triazo moiety with nickel(0) was
examined using achiral phosphines in the reaction with a
mono-substituted allene, and PMe2Ph was found to be a
suitable ligand for the activation. A mixture of 4a and
cyclohexylpropa-1,2-diene (5a, 2 equiv) was heated in the
presence of [Ni(cod)2] (10 mol%) and PMe2Ph (20 mol%) in
1,4-dioxane at 100 8C. Substrate 4 a was consumed in 3 hours.
Workup of the reaction mixture, followed by chromato-
graphic isolation gave 3,4-dihydro-1,2-benzothiazine-
1,1(2H)-dioxide (6aa) in 84% yield as a single regioisomer
(Scheme 2). Other phosphine ligands, such as PMe3, PMePh2,

PPh3, and dppf gave inferior results. The annulation reaction
is considered to consist of 1) oxidative addition of the N�N
bond to nickel(0), 2) extrusion of N2 to give five-membered
ring azanickelacycle A, 3) insertion of an allene to form p-
allylnickel intermediate B, and 4) allylic amidation at the
more-substituted carbon[8,9] to release 6aa and nickel(0).

Thus, the triazo moiety of 4a could be activated by
nickel(0), with the extrusion of N2. We next examined chiral
ligands using 4a and 5 a as the substrates (Table 1). C2-
symmetric bidentate bisphosphine ligands, such as (S)-
binap,[10] (S,S’,R,R’)-tangphos,[11] and (R,R)-Me-duphos,[12]

were considerably inferior to PMe2Ph in terms of reactivity
(Table 1, entries 1–3). The yield and selectivity were both
improved when unsymmetrical bidentate P,N-type ligands,
such as (S,S)-iPr-foxap,[13] were employed (Table 1, entries 5
and 6). Optically active 6aa was formed stereoselectively
along with a small amount of 7aa. In particular, (R)-quinap[14]

gave the best enantioselectivity for 6aa (96%).

Scheme 1. a) NH2Me, Et3N, CH2Cl2, RT, 36h, 89%; b) Zn, NH4Cl,
MeOH, RT, 6h, 96%; c) NaNO2, HCl, EtOH, 0 8C, 9h, 82%.

Scheme 2. Ni0-catalyzed denitrogenative annulation using achiral phos-
phine. cod = 1,5-cyclooctadiene.
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The scope of the substituents on the nitrogen atom of 4
was examined in the reaction with 5a using the nickel(0)/(R)-
quinap catalyst (Table 2). Primary and secondary alkyl groups
were suitable, and the corresponding products 6 ba-ea were
produced with good regio- and enantioselectivities (Table 2,
entries 1–4). On the other hand, tert-butyl-substituted sub-
strate 4 f favored the formation of 7 fa (6 fa/7 fa = 13:87;

Table 2, entry 5). Steric repulsion arising around the bulky
tert-butyl group changed the preferred site of allylic amida-
tion to the primary allylic carbon. para-Tolyl-substituted
substrate 4g was also converted into the corresponding
product 6ga, albeit in low yield (Table 2, entry 6).

Functionalized benzo groups were briefly examined
(Scheme 3). Substrates 4 h and 4 i, which have electron-
donating and electron-withdrawing ring substituents, both
worked well with 5 a to furnish the corresponding products

6ha and 6 ia with high yield and enantioselectivity, respec-
tively.

Various monosubstituted allenes 5 were subjected to the
annulation reaction with 4a (Table 3). The reaction pro-
ceeded smoothly at 60 8C to give 6 as the major product,
except in the case of tert-butylpropa-1,2-diene (5e). The
reaction of 5e was slower at 60 8C, probably owing to steric
reasons, and thus required a higher temperature for it to
proceed to completion. Enantioselectivities in the range 81–
85% were observed with simple allenes that contain a
primary, secondary, tertiary, or phenyl substituent (Table 3,

Table 1: Ni0-catalyzed enantioselective annulation: Screening of chiral
ligands.[a]

Entry[a] Chiral ligand Yield [%][b] ee [%][c]

1 (S)-binap <5 –[d]

2 (S,S’,R,R’)-tangphos <5 –[d]

3 (R,R)-Me-duphos 13 (99:1) 52
4 (R)-(S)-ppfa 30 (97:3) 61
5 (R,R)-iPr-foxap 92 (94:6) 92
6 (R)-quinap 87 (94:6) 96

[a] Conditions: 4a (0.1 mmol), 5a (0.2 mmol), [Ni(cod)2] (10 mol%),
chiral ligand (10 mol%) in 1,4-dioxane (1 mL) at 60 8C for 6 h. [b] Total
yield of isomers: the 6aa/7aa ratio is given in parentheses. [c] Deter-
mined by HPLC analysis on a chiral stationary phase using a Chiralcel
OD-H column. [d] Not determined.

Table 2: Ni0-catalyzed enantioselecitve annulation: Scope of the sub-
stituent on the nitrogen atom of 4.[a]

Entry 4 R1 6 7 Yield [%][b] ee [%][c]

1 4b Et 6ba 7ba 84 (92:8) 97
2 4c Bn 6ca 7ca 74 (94:6)[d] 97
3 4d PMB 6da 7da 69 (98:2)[d] 91
4 4e iPr 6ea 7ea 77 (91:9)[e] 88
5 4 f tBu 6 fa 7 fa 67 (13:87)[f ] -[g]

6 4g p-Tol 6ga 7ga 28 (88:12) 86

[a] Conditions: 4 (0.1 mmol), 5a (0.2 mmol), [Ni(cod)2] (10 mol%), (R)-
quinap (10 mol%) in 1,4-dioxane (1 mL) at 100 8C for 12 h unless
otherwise noted. [b] Total yield of isomers: the 6/7 ratio is given in
parentheses. [c] Determined by HPLC analysis using a chiral column.
[d] Using toluene (1 mL). [e] Using [Ni(cod)2] (20 mol%), (R)-quinap
(20 mol%). [f ] Using [Ni(cod)2] (20 mol%), (R)-quinap (20 mol%) at
120 8C. [g] Not determined. PMB =para-methoxybenzyl.

Scheme 3. Ni0-catalyzed enantioselecitve annulation: Scope of the
substituent on the benzene ring of 4.

Table 3: Ni0-catalyzed enantioselecitve annulation of 4a with Allenes
5b–i.[a]

Entry 5 R2 6 7 Yield [%][b] ee [%][c]

1 5b n-Hex 6ab 7ab 87 (96:4) 85
2 5c CH2Cy 6ac 7ac 92 (98:2) 81
3 5d c-Pent 6ad 7ad 97 (97:3) 85
4 5e tBu 6ae 7ae 92 (87:13)[d] 84
5 5 f Ph 6af 7af 99 (86:14) 85
6 5g (CH2)2OTBS 6ag 7ag 98 (91:9) 72
7 5h (CH2)2OBn 6ah 7ah 91 (93:7) 73
8 5 i (CH2)2N(Phth) 6ai 7ai 95 (93:7) 76

[a] Conditions: 4a (0.1 mmol), 5 (0.2 mmol), [Ni(cod)2] (10 mol%), (R)-
quinap (10 mol%) in THF/CH3CN (0.5:0.5 mL) at 60 8C for 3–12 h.
[b] Total yield of isomers: the 6/7 ratio is given in parentheses.
[c] Determined by HPLC analysis on a chiral stationary phase. [d] 80 8C.
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entries 1–5). Functional groups such as siloxy, benzyloxy, and
N-phthalimidoyl groups on the alkyl chains were tolerated
under the reaction conditions, although the enantioselectiv-
ities decreased to 72–76 % ee (Table 3, entries 6–8).

The para-methoxybenzyl group in the product 6da was
easily removed on treatment with trifluoroacetic acid to give
the unprotected 3,4-dihydro-1,2-benzothiazine-1,1(2H)-diox-
ide 8a with retention of the enantiopurity [Eq. (1)].[15]

Furthermore, product 6aa could be derivatized to b-
methylphenethylamine 10aa by stereoselective hydrogena-
tion and subsequent reductive removal of the SO2 moiety
[Eq. (2)].[16] There are only a few reports in the literature on
its preparation with high diastereo- and enantioselectivi-
ties.[17]

In summary, we have demonstrated that a highly reactive
azanickelacycle can be generated from 1,2,3,4-benzothiatria-
zine-1,1(2H)-dioxide through extrusion of N2. The azanickel-
acycle incorporates a variety of allenes in a regio- and
enantioselective manner, providing a new synthetic route to
substituted 3,4-dihydro-1,2-benzothiazine-1,1(2H)-dioxides,
whose biological activities are of much interest.

Experimental Section
Typical procedure for the nickel-catalyzed annulation reaction: In an
N2-filled glove-box, 4a (39.7 mg, 0.20 mmol), [Ni(cod)2] (5.6 mg,
0.02 mmol), (R)-quinap (8.8 mg, 0.02 mmol), 1,4-dioxane (2 mL), and
5a (58 mL, 0.40 mmol) were added at room temperature to an oven-
dried 4 mL vial containing a stirrer bar. The vial was sealed with a
Teflon cap and taken out of the glove box. After being heated at 60 8C
for 6 h, the reaction mixture was cooled to room temperature and
stirred for 1 h in open air. The resulting mixture was passed through a
pad of Florisil and eluted with ethyl acetate. The filtrate was
concentrated under reduced pressure. The residue was purified by
preparative thin-layer chromatography (hexane/ethyl acetate 5:1) to
give an isomeric mixture of 6aa and 7aa (50.7 mg, 0.17 mmol, 87%
total yield, 6aa/7aa = 94:6). The enantiomeric excess of the major
isomer 6aa was determined by HPLC analysis using a Chiralcel OD�
H column.
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