Rhodium-Catalyzed Regioselective Amidation of Indoles with Sulfonyl Azides via C–H Bond Activation

Jingjing Shi, Bing Zhou,* Yaxi Yang and Yuanchao Li*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China. Fax: (+)86 21 50807288; Tel: (+)86 21 50807288; E-mail:zhoubing2012@hotmail.com; E-mail:ycli@mail.shcnc.ac.cn

Table of contents:

General Methods and Materials	1
Experimental Procedures and Characterizations	1
¹ H and ¹³ C NMR Spectra of Compounds	19

General methods:

Mass spectra and high-resolution mass spectra were measured on a Finnigan MAT-95 mass spectrometer. ¹H and ¹³C NMR spectra were determined on Bruker AM-300, Bruker AM-400, Bruker AM-500 instruments using tetramethylsilane as internal reference. Data are presented as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, br d = broad doublet, t = triplet, m = multiplet), J = coupling constant in hertz (Hz). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography. *Materials:*

AgSbF₆ was purchased from Aldrich and used without further purification. $[Cp*RhCl_2]_2^{S1}$, $[Cp*Rh(MeCN)_3][SbF_6]_2^{S2}$, substrate 1-(Pyrimidin-2-yl)- 1*H*-indole ^{S3} and benzenesulfonyl azide ^{S4} were synthesized according to published procedures.

Experimental Procedures and Characterizations:

General Procedure for Preparation of benzenesulfonyl azide: benzenesulfonyl chloride (10.0 mmol) was dissolved in acetone (20 mL) and water (20 mL). The solution was cooled on ice and NaN₃ (10.0 mmol) was added. The reaction was stirred for 2 h. The acetone was removed under vacuum and the remaining water layer was extracted with EtOAc (150 mL), the EtOAc layer was washed with brine, dried on Na₂SO₄, filtered and concentrated. The benzenesulfonyl azide was obtained for future use without purification.

4-methylbenzenesulfonyl azide: This compound was obtained in 95% yield as a colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, *J* = 7.8, 2H), 7.40 (d, *J* = 7.8, 2H), 2.48 (s, 3H). Spectral data matched those previously reported.^{S4}

4-methoxybenzenesulfonyl azide: This compound was obtained in 98% yield as a colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.90 (d, *J* = 8.7, 2H), 7.05 (d, *J* = 8.7, 2H), 3.91 (s, 3H). Spectral data matched those previously reported.^{S4}

4-nitrobenzenesulfonyl azide: This compound was obtained in 98% yield as a light yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.46 (d, *J* = 8.7, 1H), 8.17 (d, *J* = 8.7, 1H). Spectral data matched those previously reported.^{S4}

General Procedure for Preparation of substrate 1-(Pyrimidin-2-yl)-1*H*-indole moiety S3 : NaH (60% dispersion in mineral oil, 11.0 mmol) was added in portions at 0 $^{\circ}$ to astirred solution of indole (10.0 mmol) in DMF (25 mL). After stirring for 30 min at 0 $^{\circ}$, 2-chloropyrimidine (12.0 mmol) was added and the mixture was stirred at 130 $^{\circ}$ for 24 h. Then, the reaction mixture was cooled to ambient temperature, poured into H2O (300 mL) and extracted with EtOAc (250 mL). The organic phase was dried over Na2SO4. After evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel (cyclohexane/EtOAc: 10/1) to give product.

1-(Pyrimidin-2-yl)-1*H***-indole (1f).** This compound was obtained in 85% yield as a white solid. M. p. = 86–88 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.82 (d, *J* = 8.3 Hz, 1H), 8.70 (d, *J* = 4.8 Hz, 2H), 8.28 (d, *J* = 3.7 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.35

(dd, J = 9.0, 6.5 Hz, 1H), 7.25 (t, J = 6.1 Hz, 1H), 7.04 (m, 1H), 6.71 (d, J = 3.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.8, 135.4, 131.4, 125.9, 123.7, 122.2, 120.9, 116.3, 116.1, 107.0. Spectral data matched those previously reported.^{S3}

3-methyl-1-(pyrimidin-2-yl)-1H-indole (1g). This compound was obtained in 79% yield as a white solid. M. p. = 76–78 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.78 (d, *J* = 8.2 Hz, 1H), 8.66 (d, *J* = 4.8 Hz, 2H), 8.04 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 6.98 (t, *J* = 4.8 Hz, 1H), 2.37 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 158.1, 157.6, 135.7, 130.8, 123.9, 122.6, 121.9, 119.1, 118.6, 116.4, 115.8, 51.7, 34.0, 20.5. Spectral data matched those previously reported.⁸³

methyl 3-(1-(pyrimidin-2-yl)-1H-indol-3-yl)propanoate (1h). This compound was obtained in 81% yield as a white solid. M. p. = 72-74 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.79 (d, *J* = 8.3, 1H), 8.67 (d, *J* = 4.8, 2H), 8.08 (s, 1H), 7.59 (d, *J* = 7.8, 1H), 7.35 (t, *J* = 7.7, 1H), 7.26 (t, *J* = 7.4, 1H), 7.01 (t, *J* = 4.8, 1H), 3.71 (s, 3H), 3.13 (t, *J* = 7.8, 2H), 2.80 (t, *J* = 7.8, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.58, 158.08, 157.59, 135.69, 130.85, 123.89, 122.61, 121.89, 119.12, 118.65, 116.37, 115.80, 51.72, 33.96, 20.54. HRMS (EI) calcd. for C₁₆H₁₅N₃O₂ [M]⁺ : 281.1164. Found: 281.1162.

5-methyl-1-(pyrimidin-2-yl)-1H-indole (1i). This compound was obtained in 76% yield as a white solid. M. p. = 86–88 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.69-8.65 (m, 3H), 8.22 (d, *J* = 3.6, 1H), 7.41 (s, 1H), 7.16 (d, *J* = 8.4, 1H), 7.02 (t, *J* = 4.8, 1H), 6.62 (d, *J* = 3.4, 1H), 2.47 (s, 3H).¹³C NMR (125 MHz, CDCl₃): δ 167.4, 157.8, 157.1, 137.5, 130.6, 126.8, 124.5, 123.5, 122.8, 116.4, 115.5, 107.1, 51.8. HRMS (EI) calcd. for C₁₃H₁₁N₃ [M]⁺ : 209.0953. Found: 209.09458.

5-methoxy-1-(pyrimidin-2-yl)-1H-indole (1j). This compound was obtained in 83% yield as a white solid. M. p. = 110-112 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.75 – 8.63 (m, 3H), 8.25 (d, *J* = 3.6, 1H), 7.10 (d, *J* = 2.5, 1H), 7.04 – 6.92 (m, 2H), 6.63 (d, *J* = 3.6, 1H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.6, 1556, 132.15, 130.3, 126.4, 117.1, 115.9, 112.6, 106.8, 103.2, 55.7. Spectral data matched those previously reported.^{S3}

6-methyl-1-(pyrimidin-2-yl)-1H-indole (1k). This compound was obtained in 78% yield as a white solid. M. p. = $120-122 \,^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃): δ 8.70 (d, *J* = 4.8, 2H), 8.64 (s, 1H), 8.21 (d, *J* = 3.6, 1H), 7.51 (d, *J* = 7.8, 1H), 7.08 (d, *J* = 7.8, 1H), 7.03 (t, *J* = 4.8, 1H), 6.66 (d, *J* = 3.6, 1H), 2.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 167.4, 157.8, 157.1, 137.5, 130.6, 126.8, 124.5, 123.5, 122.8, 116.4, 115.5, 107.1, 51.6. HRMS (EI) calcd. for C₁₃H₁₁N₃ [M]⁺ : 209.0953. Found: 209.09459.

6-methoxy-1-(pyrimidin-2-yl)-1H-indole (11). This compound was obtained in 70% yield as a white solid. M. p. = 78–80 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.70 (d, J =

4.8, 2H), 8.45 (d, J = 2.4, 1H), 8.17 (d, J = 3.6, 1H), 7.49 (d, J = 8.4, 1H), 7.03 (t, J = 4.8, 1H), 6.90 (dd, J = 8.4, 2.4, 1H), 6.63 (dd, J = 4.2, 0.6, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.8, 157.4, 136.3, 125.4, 124.8, 121.1, 116.0, 111.1, 106.8, 101.1, 55.8. HRMS (EI) calcd. for C₁₃H₁₁N₃O [M]⁺ : 225.0902. Found: 225.0899.

1-(pyrimidin-2-yl)-6-(trifluoromethyl)-1H-indole (**1m**). This compound was obtained in 78% yield as a white solid. M. p. = 98–100 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.16 (s, 1H), 8.74 (d, *J* = 4.8, 2H), 8.42 (d, *J* = 3.6, 1H), 7.70 (d, *J* = 8.4, 1H), 7.48 (d, *J* = 8.8, 1H), 7.11 (t, *J* = 4.8, 1H), 6.75 (d, *J* = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.3, 157.5, 134.4, 133.8, 129.3, 128.3, 126.6, 125.6 (q, *J* = 31.7), 125.2 (q, *J* = 272.2), 123.9, 121.2, 121.0, 11878 (q, *J* = 3.6), 116.8, 114.0 (q, *J* = 4.5), 106.6. HRMS (EI) calcd. for C₁₃H₈ F₃N₃ [M]⁺ : 263.0670. Found: 263.0666.

6-nitro-1-(pyrimidin-2-yl)-1H-indole (1n). This compound was obtained in 80% yield as a light yellow solid. M. p. = $179-181 \,^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃): δ 9.77 (d, *J* = 2.1, 1H), 8.79 (d, *J* = 4.8, 2H), 8.55 (d, *J* = 3.6, 1H), 8.14 (dd, *J* = 8.7, 2.1, 1H), 7.68 (d, *J* = 8.7, 1H), 7.18 (t, *J* = 4.8, 1H), 6.79 (d, *J* = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 157.1, 144.5, 136.1, 134.0, 131.0, 120.6, 117.5, 117.3, 113.1, 106.7. HRMS (EI) calcd. for C₁₂H₈N₄O₂ [M]⁺ : 240.0647. Found: 240.0653.

5-nitro-1-(pyrimidin-2-yl)-1H-indole (10). This compound was obtained in 80% yield as a light yellow solid. M. p. = 244-246 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.92

(d, J = 9.3, 1H), 8.77 (d, J = 4.8, 2H), 8.55 (s, 1H), 8.44 (d, J = 3.9, 1H), 8.22 (d, J = 9.3, 1H), 7.18 (t, J = 4.8, 1H), 6.84 (d, J = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 157.2, 143.3, 138.39, 131.0, 128.9, 118.9, 117.4, 117.2, 116.4, 107.7. HRMS (EI) calcd. for C₁₂H₈N₃O₂ [M]⁺ : 240.0647. Found: 240.0650.

methyl 1-(pyrimidin-2-yl)-1H-indole-5-carboxylate (1p). This compound was obtained in 80% yield as a white solid. M. p. = 120–122 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.84 (d, J = 8.7, 1H), 8.73 (d, J = 4.8, 2H), 8.42 – 8.27 (m, 2H), 8.03 (dd, J = 8.7, 1.5, 1H), 7.10 (t, J = 4.8, 1H), 6.77 (dd, J = 3.6, 0.6, 1H), 3.95 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 157.8, 157.1, 137.5, 130.6, 126.8, 124.5, 123.5, 122.8, 116.4, 115.5, 107.1, 51.6. HRMS (EI) calcd. for C₁₄H₁₁N₃O₂ [M]⁺ : 253.0851. Found: 253.0847.

5-chloro-1-(pyrimidin-2-yl)-1H-indole (1q). This compound was obtained in 89% yield as a white solid. M. p. = 110-112 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.76 (dd, *J* = 9.1, 4.8, 1H), 8.71 – 8.64 (m, 2H), 8.31 (d, *J* = 3.6, 1H), 7.27 (dd, *J* = 8.8, 2.8, 1H), 7.10-7.03 (m, 2H), 6.65 (d, *J* = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 133.8, 132.5, 127.7, 127.1, 123.7, 120.3, 117.3, 116.4, 106.2. HRMS (EI) calcd. for C₁₂H₈ClN₃ [M]⁺ : 229.0407. Found: 229.0403.

5-bromo-1-(pyrimidin-2-yl)-1H-indole (1r). This compound was obtained in 83% yield as a white solid. M. p. = 120-122 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.73 – 8.63 (m, 3H), 8.28 (d, *J* = 3.4, 1H), 7.75 (s, 1H), 7.42 (d, *J* = 9.0, 1H), 7.08 (t, *J* = 4.8,

1H), 6.63 (d, J = 3.5, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.5, 134.1, 133.1, 127.0, 126.4, 123.3, 117.8, 116.4, 115.4, 106.1. HRMS (EI) calcd. for C₁₂H₈BrN₃ [M]⁺: 272.9902. Found: 272.9904.

5-fluoro-1-(pyrimidin-2-yl)-1H-indole (1s). This compound was obtained in 76% yield as a white solid. M. p. = $112-114 \,^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃): δ 8.76 (dd, *J* = 9.1, 4.8, 1H), 8.71 – 8.64 (m, 2H), 8.31 (d, *J* = 3.6, 1H), 7.27 (dd, *J* = 8.8, 2.8, 1H), 7.10-7.03 (m, 2H), 6.65 (d, *J* = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.89 (d, *J* = 265.9 Hz), 158.13, 157.8, 131.86, 127.35, 117.24 (d, *J* = 9.0), 116.29, 111.36 (d, *J* = 24.8), 106.62 (d, *J* = 4.1), 106.03 (d, *J* = 23.5). HRMS (EI) calcd. for C₁₂H₈FN₃ [M]⁺ : 213.0702. Found: 213.0699.

6-bromo-1-(pyrimidin-2-yl)-1H-indole (1t). This compound was obtained in 80% yield as a white solid. M. p. = 130-132 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.04 (s, 1H), 8.72 (d, *J* = 4.8, 2H), 8.25 (d, *J* = 3.9, 1H), 7.47 (d, *J* = 8.4, 1H), 7.35 (d, *J* = 8.4, 1H), 7.09 (t, *J* = 4.2, 1H), 6.66 (d, *J* = 3.0, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 167.4, 157.8, 157.1, 137.5, 130.6, 126.8, 124.5, 123.5, 122.8, 116.4, 115.5, 107.1, 51.6. HRMS (EI) calcd. for C₁₂H₈BrN₃ [M]⁺ : 272.9902. Found: 272.9907.

4-chloro-1-(pyrimidin-2-yl)-1H-indole (1u). This compound was obtained in 76% yield as a white solid. M. p. = 118-120 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.75 – 8.64 (m, 3H), 8.31 (d, J = 3.7, 1H), 7.28 – 7.21 (m, 2H), 7.05 (td, J = 4.8, 1.2, 1H),

6.82 (d, J = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 157.6, 136.1, 130.0, 126.4, 125.9, 124.2, 121.9, 116.6, 114.9, 105.0. HRMS (EI) calcd. for C₁₂H₈ClN₃ [M]⁺: 229.0407. Found: 229.0404.

General Procedure for Preparation of substrate N-(1-(pyrimidin-2-yl)-1H-indol-2-yl)benzenesulfonamide moiety: The mixture of $[Cp*Rh(MeCN)_3][SbF_6]_2$ (8 mg, 0.01 mmol), substrate A (0.2 mmol), B (0.26 mmol, 1.3 equiv) and H₂O (36 mg, 2 mmol)were dissolved in DCE (1 mL) and refluxed for 5 h. The resulting mixture was cooled to room temperature, silica gel column directly to give product.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 86% as a white solid (M. p. = 152-154 °C). IR (film): 3048, 2917, 1583, 1427, 1344, 1172, 1091, 802, 684, 543 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.07 (s, 1H), 8.68 (d, *J* = 4.8, 2H), 8.48 (dd, *J* = 6.3, 3.3, 1H), 7.61 (d, *J* = 8.1, 2H), 7.48 (dd, *J* = 6.0, 3.0, 1H), 7.23 – 7.16 (m, 2H), 7.11 – 7.06 (m, 3H), 6.64 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 152.7, 138.9, 131.1, 128.6, 128.5, 124.5, 123.6, 122.1, 118.1, 118.0, 115.0, 111.4, 110.8, 92.6, 16.5. HRMS (EI) calcd. for C₁₉H₁₆N₄O₂S [M]⁺ : 364.0994. Found: 364.0989.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 86% as a white solid (M. p. = 195-197 °C). IR (film): 3049, 2915, 1563, 1428, 1346, 1169, 1090, 814, 746, 681, 550 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 9.25 (s, 1H), 8.49 (d, *J* = 4.8, 2H), 8.27 - 8.23 (m, 1H), 7.64 - 7.52 (m, 1H), 7.34 - 7.16 (m, 4H), 6.94 (t, *J* = 4.8, 1H), 6.85 (d, *J* = 8.7, 2H), 2.47 (s, 3H), 2.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 157.51, 157.16, 143.54, 135.87, 134.01, 129.15, 128.92, 127.16, 126.87, 124.61, 122.53, 119.30, 115.98, 115.59, 114.66, 21.49, 9.26. HRMS (EI) calcd. for C₂₀H₁₈N₄O₂S [M]⁺: 378.1150. Found: 378.1155.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 81% as a white solid (M. p. = 132-134 °C). IR (film): 3049, 2923, 1732, 1558, 1443, 1339, 1156, 1092, 826, 741, 667, 542 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 9.21 (s, 1H), 8.49 (d, *J* = 4.8, 2H), 8.28 – 8.13 (m, 1H), 7.69 – 7.52 (m, 1H), 7.34 – 7.22 (m, 2H), 7.19 (d, *J* = 8.1, 2H), 6.96 (t, *J* = 4.8, 1H), 6.84 (d, *J* = 8.1, 2H), 3.71 (s, 3H), 3.33 (d, *J* = 8.1, 2H), 2.89 (d, *J* = 8.1, 2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 157.5, 157.0, 143.6, 135.7, 134.1, 129.1, 127.6, 127.3, 126.8, 124.6, 122.6, 119.3, 117.8, 116.2, 114.7, 51.6, 33.5, 21.4, 19.6. HRMS (EI) calcd. for C₂₃H₂₂N₄O₄S [M]⁺ : 450.1362. Found: 450.1366.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 86% as a white solid (M. p. = 138-140 °C). ¹H NMR (300 MHz, CDCl₃): δ 11.12 (br s, 1H), 8.64 (d, J = 4.8, 2H), 8.35 (d, J = 8.4, 1H), 7.60 (d, J = 8.1, 2H), 7.26 (d, J = 2.1, 1H), 7.12 – 6.93 (m, 4H), 6.57 (s, 1H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.6, 143.8, 136.2, 133.6, 132.6, 131.8, 129.5, 128.8, 127.1, 124.3, 120.0, 116.2, 115.6, 97.5, 21.4, 21.3. HRMS (EI) calcd. for C₂₀H₁₈N₄O₂S [M]⁺ : 378.1150. Found: 378.1154.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 77% as a white solid (M. p. = 146–148 °C). IR (film): 2937, 2832, 1585, 1452, 1342, 1157, 1093, 956, 789, 653, 540 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.23 (s, 1H), 8.63 (ddd, *J* = 4.9, 1.4, 0.7, 2H), 8.39 (d, *J* = 9.0, 1H), 7.62 (d, *J* = 8.4, 2H), 7.10 – 7.03 (m, 3H), 6.95 (d, *J* = 2.7, 1H), 6.79 (dd, *J* = 9.0, 2.7, 1H), 6.56 (s, 1H), 3.84 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 158.0, 157.7, 156.1, 144.0, 136.1, 134.2, 129.6, 128.2, 127.2, 117.0, 116.2, 111.4, 102.7, 97.2, 55.7, 21.6. HRMS (EI) calcd. for C₂₀H₁₈N₄O₃S [M]⁺: 394.1100. Found: 394.1104.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 90% as a white solid (M. p. = 188–190 °C). IR (film): 2921, 2852, 1585, 1463, 1427, 1338, 1159, 1087, 912, 817, 659, 553 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 10.87 (s, 1H), 8.65 (d, J = 4.8, 2H), 8.27 (s, 1H), 7.56 (d, J = 8.1, 2H), 7.37 (d, J = 7.8, 1H), 7.08 – 7.02 (m, 4H), 6.62 (s, 1H), 2.45 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 157.6, 143.7, 136.0, 133.9, 132.9, 132.6, 129.4, 127.0, 126.0, 124.4, 119.6, 116.2, 115.7, 98.4, 22.0, 21.4. HRMS (EI) calcd. for C₂₀H₁₈N₄O₂S [M]⁺ : 378.1150. Found: 378.1155.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane: EtOAc (2:1) in a 83% as a white solid (M. p. = 143–145 °C). IR (film): 2990, 2940, 1585, 1427, 1342, 1160, 1087, 903, 796, 661, 557 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 10.69 (br s, 1H), 8.64 (d, *J* = 4.8, 2H), 8.09 (d, *J* = 2.4, 1H), 7.52 (d, *J* = 8.4, 2H), 7.37 (d, *J* = 8.4, 1H), 7.13 – 6.99 (m, 3H), 6.85 (dd, *J* = 8.4, 2.4, 1H), 6.60 (d, *J* = 0.6, 1H), 3.84 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 157.7, 157.0, 143.8, 136.2, 134.7, 132.1, 129.5, 127.1, 122.4, 120.6, 116.4, 111.2, 101.3, 99.2, 55.9, 21.6. HRMS (EI) calcd. for C₂₀H₁₈N₄O₃S [M]⁺ : 394.1100. Found: 394.1094.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 75% as a white solid (M. p. = 256–258 °C). IR (film): 2967, 2927, 1583, 1500, 1326, 1159, 1087, 896, 802, 660, 563 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.37 (s, 1H), 8.86 (s, 1H), 8.76 (d, J = 4.8, 2H), 7.67 (d, J = 7.2, 2H), 7.54 (d, J = 8.1, 1H), 7.44 (d, J = 8.4, 1H), 7.20 (t, J = 4.8, 1H), 7.13 (d, J = 7.8, 2H), 6.64 (s, 1H), 2.31 (s, 3H). ¹³C NM (125 MHz, CDCl₃): δ 158.0, 157.9, 144.6, 143.3, 139.3, 135.8, 134.4, 131.8, 129.8, 127.2, 119.0, 119.0, 117.5, 113.1, 94.4, 21.5. HRMS (EI) calcd. for C₂₀H₁₅F₃N₄O₂S [M]⁺ : 432.0868. Found: 432.0866.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 79% as a light yellow solid (M. p. = 299–301 °C). IR (film): 3138, 2924, 1577, 1511, 1461, 1423, 1330, 1155, 1087, 789, 659, 543 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.72 (s, 1H), 9.54 (d, *J* = 2.1, 1H), 8.83 (d, *J* = 4.8, 2H), 8.12 (dd, *J* = 8.7, 2.1, 1H), 7.75 (d, *J* = 8.4, 2H), 7.48 (d, *J* = 8.7, 1H), 7.29 – 7.26 (m, 1H), 7.19 (d, *J* = 8.1, 2H), 6.63 (s, 1H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 158.0, 157.9, 144.2, 136.3, 135.9, 132.5, 131.4, 129.6, 127.1, 119.9, 119.8, 117.0, 113.6, 113.6, 95.7, 21.5. HRMS (EI) calcd. for C₁₉H₁₅N₅O₄S [M]⁺ : 409.0845. Found: 409.0844.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 84% as a light yellow solid (M. p. = 206–208 °C). IR (film): 3142, 2968, 2924, 1598, 1512, 1423, 1355, 1184, 1088, 904, 838, 667, 551 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.24 (s, 1H), 8.78 (d, *J* = 4.8, 2H), 8.60 (d, *J* = 9.3, 1H), 8.32 (d, *J* = 2.4, 1H), 8.03 (dd, *J* = 9.3, 2.4, 1H), 7.68 (d, *J* = 8.4, 2H), 7.26 (t, *J* = 4.8, 1H), 7.15 (d, *J* = 8.4, 2H), 6.66 (s, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 157.7, 144.4, 143.9, 136.7, 136.5, 135.9, 129.7, 128.7, 127.2, 117.9, 117.6, 116.1, 115.6, 96.1, 21.5. HRMS (EI) calcd. for C₁₉H₁₅N₅O₄S [M]⁺ : 409.0845. Found: 409.0850.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 87% as a white solid (M. p. = 186–188 °C). IR (film): 2986, 2923, 1719, 1604, 1585, 1423, 1344, 1165, 1089, 946, 815, 661, 546 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.08 (br s, 1H), 8.71 (d, *J* = 4.8, 2H), 8.50 (d, *J* = 8.7, 1H), 8.17 (s, 1H), 7.87 (d, *J* = 9.0, 1H), 7.62 (d, *J* = 7.8, 2H), 7.16 (t, *J* = 4.8, 1H), 7.08 (d, *J* = 7.8, 2H), 6.65 (s, 1H), 3.92 (s, 3H), 2.28 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 167.5, 157.8, 144.1, 136.1, 135.8, 134.8, 129.6, 128.3, 127.1, 124.9, 124.2, 121.9, 117.0, 115.5, 97.2, 52.0, 21.5. HRMS (EI) calcd. for C₂₁H₁₈N₄O₄S [M]⁺: 422.1049. Found: 422.1045.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 83% as a white solid (M. p. = 184-186 °C). IR (film): 2970, 2927, 1578, 1461, 1419, 1341, 1148, 1094, 917, 803, 680, 555 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.24 (s, 1H), 8.68 (d, J = 4.8, 2H), 8.42 (d, J = 8.7, 1H), 7.64 (d, J = 8.4, 2H), 7.41 (d, J = 2.1, 1H), 7.18 – 7.02 (m, 4H), 6.53 (s, 1H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 157.9, 157.7, 144.1, 136.0, 135.0, 131.8, 130.0, 129.6, 128.6, 127.1, 122.8, 119.3, 117.1, 116.7, 95.9, 21.5. HRMS (EI) calcd. for C₁₉H₁₅ClN₄O₂S [M]⁺ : 398.0604. Found: 398.0608.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 83% as a white solid (M. p. = 193–195 °C). IR (film): 2923, 2871, 1583, 1448, 1425, 1336, 1162, 1091, 956, 788, 678, 563 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.23 (s, 1H), 8.70 (d, J = 4.7, 2H), 8.39 (d, J = 8.8, 1H), 7.63 (d, J = 8.1, 2H), 7.58 (s, 1H), 7.28 – 7.25 (m, 2H), 7.16 – 7.09 (m, 3H), 6.53 (s, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 157.7, 144.1, 135.8, 134.8, 132.1, 130.4, 129.5, 127.1, 125.4, 122.3, 117.4, 116.7, 116.3, 95.6, 21.4. HRMS (EI) calcd. for C₁₉H₁₅BrN₄O₂S [M]⁺ : 442.0099. Found: 442.0096.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 81% as a white solid (M. p. = 166-168 °C). IR (film): 2969, 2923, 1572, 1500, 1458, 1338, 1081, 886, 793, 669, 560 cm⁻¹.¹H NMR (300 MHz, CDCl₃): δ 11.29 (s, 1H), 8.67 (dd, *J* = 4.8, 0.7, 2H), 8.45 (dd, *J* = 9.3, 4.8, 1H), 7.64 (d, *J* = 8.1, 2H), 7.18 – 7.04 (m, 4H), 6.88 (td, *J* = 9.3, 2.7, 1H), 6.55 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5 (d, *J* = 239.1), 157.9, 157.7, 144.1, 136.1, 135.2, 129.8, 129.6 (d, *J* = 5.9), 129.6, 127.1, 117.1 (d, *J* = 8.9), 116.6, 110.22 (d, *J* = 24.4), 105.3 (d, *J* = 24.1), 96.3 (d, *J* = 3.8), 21.5. HRMS (EI) calcd. for C₁₉H₁₅FN₄O₂S [M]⁺: 382.0900. Found: 382.0894.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 74% as a white solid (M. p. = 215-217 °C). IR (film): 3126, 2956, 1594, 1500, 1427, 1340, 1164, 1087, ,890, 820, 667, 563 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.07 (s, 1H), 8.69 (d, J = 4.8, 3H), 7.60 (d, J = 8.4, 2H), 7.36 – 7.27 (m, 2H), 7.15 – 7.04 (m, 3H), 6.58 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 144.2, 136.0, 134.2, 134.2, 129.7, 127.6, 127.2, 126.3, 121.1, 119.0, 116.9, 116.3, 97.2, 21.6. HRMS (EI) calcd. for C₁₉H₁₅ BrN₄O₂S [M]⁺ : 442.0099. Found: 442.0093.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 79% as a white solid (M. p. = 210–212 °C). IR (film): 3140, 2937, 1585, 1452, 1342, 1160, 1088, ,886, 811, 665, 542 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.16 (s, 1H), 8.70 (d, J = 4.8, 2H), 8.40 (d, J = 7.8, 1H), 7.66 (d, J = 7.8, 2H), 7.23 – 7.03 (m, 5H), 6.73 (s, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 157.8, 144.1, 136.1, 134.4, 134.1, 129.6, 127.5, 127.2, 125.0, 123.4, 122.9, 116.8, 114.4, 95.0, 21.5. HRMS (EI) calcd. for C₁₉H₁₅ClN₄O₂S [M]⁺ : 398.0604. Found: 398.0610.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 74% as a yellow solid (M. p. = 168-170 °C). IR (film): 3143, 2963, 2924, 1617, 1452, 1429, 1329, 1150, 1088, 775, 659, 539 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.32 (s, 1H), 8.69 (d, J = 4.8, 2H), 8.47 (s, 1H), 8.12 (d , J = 7.2, 2H), 7.90 (d, J = 8.4, 2H), 7.50 (s, 1H), 7.25 – 7.13 (m, 3H), 6.71 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 157.9, 157.8, 150.2, 144.8, 133.6, 132.2, 128.3, 128.1, 124.1, 123.6, 123.4, 120.2, 116.6, 116.0, 98.5. HRMS (EI) calcd. for C₁₈H₁₃N₅O₄S [M]⁺ : 395.0688. Found: 395.0691.

Following general procedure, the indicated compound was purified by flash column chromatography on silica gel using cyclohexane:EtOAc (2:1) in a 82% as a yellow solid (M. p. = 122-124 °C). IR (film): 2938, 2832, 1585, 1486, 1342, 1160, 1084, 884, 659, 561 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 11.04 (br s, 1H), 8.66 (d, *J* = 4.8, 2H), 8.48 (dd, *J* = 6.0, 3.3, 1H), 7.65 (d, *J* = 8.7, 2H), 7.48 (dd, *J* = 6.3, 3.0, 1H), 7.24 – 7.14 (m, 2H), 7.08 (t, *J* = 4.8, 1H), 6.73 (d, *J* = 9.0, 2H), 6.64 (s, 1H), 3.73 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 163.1, 158.0, 157.7, 133.6, 133.6, 130.5, 129.2, 128.6, 123.0, 123.0, 119.9, 116.4, 115.8, 114.1, 97.6, 55.5. HRMS (EI) calcd. for C₁₉H₁₆N₄O₃S [M]⁺: 380.0943. Found: 380.0942.

Deprotection of 3f and 3g

Under Ar, **3f** (36mg) was dissolved in dry DMSO 1 mL, 20% EtONa in EtOH (50 μ L) was added, the mixture was stirred at 100 °C for 10 min, then cooled, extracted with EtOAc, washed with water. The organic phase was dried over Na₂SO₄. After evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel (DCM/MeOH : 100/1) to give product **4f** (15mg yeild 50%) two dynamic isomers (4:3) as a white solid (M. p. = 210 – 212 °C). IR (film): 3091, 2923, 1591, 1300, 1145, 1087, 854, 773, 669, 545 cm⁻¹. ¹H NMR (**4f-a**,

300 MHz, DMSO): δ 10.86 (s, 1H), 10.58 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.39 – 7.17 (m, 4H), 6.99 – 6.92 (m, 1H), 6.91 – 6.84 (m, 1H), 5.70 (d, J = 1.5 Hz, 1H), 2.32 (s, 3H). ¹H NMR (**4f-b**, 300 MHz, DMSO): δ 11.57 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.39 – 7.17 (m, 4H), 7.03 (t, J = 7.0 Hz, 2H), 5.70 (d, J = 1.5 Hz, 1H), 4.08 (s, 2H), 2.35 (s, 3H). ¹³C NMR (**4f-a** and **4f-b**, 100 MHz, DMSO): δ 143.78, 142.88, 140.09, 137.13, 134.16, 132.59, 130.13, 129.93, 128.27, 127.49, 127.22, 126.65, 125.03, 123.28, 120.97, 119.68, 119.61, 111.65, 111.28, 92.38, 55.43, 37.39, 21.48. HRMS (EI) calcd. for C₁₅H₁₄N₂O₂S [M]⁺ : 286.0776. Found: 287.0768.

Following procedure of **4f**, to give product **4g** (yeild 73%) as a light yellow viscous liquid. IR (film): 3062, 2925, 1618, 1471, 1278, 1203, 1083, 924, 868, 777, 678, 551 cm⁻¹. ¹H NMR (300 MHz, DMSO): δ 11.07 (s, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.40 – 7.21 (m, 5H), 7.10 – 7.02 (m, 1H), 6.15 (s, 1H), 2.36 (s, 3H), 1.36 (s, 3H). ¹³C NMR (125 MHz, DMSO): δ 171.45, 142.78, 140.79, 139.06, 133.50, 129.46, 129.23, 126.20, 123.52, 123.18, 112.29, 77.77, 25.66, 21.00. HRMS (EI) calcd. for C₁₅H₁₃FN₂O₂S [M]⁺ : 300.0932. Found: 300.0927.

Reference:

S1: K. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi, *Org. Lett.* 2004, 6, 2785.

S2: Yang Li, Bi-Jie Li, Wen-Hua Wang, Wei-Ping Huang, Xi-Sha Zhang, Kang Chen, and Zhang-Jie Shi, *Angew. Chem. Int. Ed.* 2011, 50, 2115.

S3: Lutz Ackermann, Alexander V. Lygin, Org. Lett. 2011, 13, 3332.

S4: Joshua V. Ruppel, Jess E. Jones, Chelsea A. Huff, Rajesh M. Kamble, Ying Chen, and X. Peter Zhang, *Org. Lett.* 2008, 10, 1995.

¹H and ¹³C NMR Spectra of Compounds

110 100 f1 (ppm)

Compound 3j

