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Stereoselective syntheses of (+)-proto, (�)-gala quercitols
and carba-LL-rhamnose from DD-(�)-quinic acid
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Abstract—Efficient syntheses of (+)-proto, (�)-gala quercitols and carba-LL-rhamnose from DD-(�)-quinic acid are described.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1.
Cyclitols have attracted a great deal of attention from
the synthetic community due to their glycosidase inhibi-
tion activities and their versatility as synthetic intermedi-
ates.1 Quercitols as cyclohexanepentols can exist in 16
diastereomeric forms,2 of which four are symmetric.
Only (+)-proto, (�)-proto and (�)-vibo quercitols are
found in Nature.3 (+)-proto Quercitol 1 was discovered
initially and its first synthesis was completed in 1968 by
McCasland et al.4 Although there is considerable litera-
ture on the synthesis of various quercitols, we felt the
need to develop a practical and efficient synthetic route
to these compounds in bulk quantities. Besides querci-
tols, carba-sugars are cyclic monosaccharide analogues
in which the endocyclic oxygen atom is replaced by a
methylene group.5 As a consequence of this substitution,
carba-sugars are hydrolytically stable analogues of their
parent sugars towards degradation by glycosidases.6

Carba-LL-rhamnose 3, an analogue of LL-rhamnose has
received little attention from synthetic chemists.7 Here-
in, we report efficient syntheses of (+)-proto 1, (�)-gala
2 quercitols and carba-LL-rhamnose 3 (Fig. 1) from DD-
(�)-quinic acid.

The synthesis of 1 began with the preparation of (�)-shi-
kimic ester 5 from DD-(�)-quinic acid 4 according to the
literature procedure.8 OsO4 catalyzed NMO oxidation
of 5 in t-BuOH at reflux for 3 h produced the diol 6
as a single diastereomer. The secondary OH group at
C-2 was protected selectively as a MOM-ether and
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the ester reduced with LAH to afford the triol 7, which
was subjected to oxidative cleavage using silica-
supported sodium metaperiodate in DCM to give the
b-hydroxy ketone 8 in quantitative yield (Scheme 1).

We envisaged that the presence of the cyclohexylidene
protection at C-3, C-4 would direct hydride attack from
the Si face (Scheme 2) and indeed, sodium borohydride
reduction of ketone 8 at �40 �C in methanol gave the
diol 99 as a single diastereomer.

It was difficult to establish the stereochemistry at the
newly formed chiral centre C-1 due to second order
splitting and overlapping of the signals for the H-3,
H-4, H-5, H-1 and OMe protons. In order to shift the
resonance due to H-1 and H-5, the compound was deriv-
atized as the di-O-benzoate 1110 by treatment with
benzoyl chloride and pyridine in DCM at 0 �C (Scheme
3). The configuration at C-1 was assigned based on the
coupling constants of H-1 with H-2 and H-6a (J = 8.3
and 12.6 Hz, respectively). This was further confirmed
by a COSY experiment.

The deprotection of the diol 9 was carried out with
cat. HCl in MeOH at room temperature for 10 h to give
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Scheme 1. Reagents and conditions: (a) OsO4, NMO, t-BuOH, reflux, 3 h, 70%; (b) (i) MOMCl, Hünig�s base, DCM, 12 h, 87%; (ii) LAH, THF,
60 �C, 2 days, 90%; (c) NaIO4–SiO2, DCM, rt, 2 h, 100%.
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Scheme 2. Reagents and conditions: (a) NaBH4, MeOH, �40 �C, 2 h, 87%; (b) K-Selectride, THF, �78 �C, 1 h, 95%; (c) cat. HCl, MeOH, rt, 10 h,
92%.
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(+)-proto quercitol 1 with analytical data in excellent
agreement with the literature values.11

The synthesis of (�)-gala quercitol 2, which is the C-1
epimer of 1, required the reversal of stereoselectivity
during the reduction of ketone 8. The reduction of 8
with K-Selectride in dry THF at �78 �C afforded the
diol 1012 as a single diastereomer, no diastereomeric
impurity being detected. The selectivity was attributed
to chelation of a potassium ion with the C-1 carbonyl
oxygen and the C-5 hydroxyl group from the Si face,
which directed the hydride attack from the Re face to
produce the diol 10. Deprotection of 10 with cat. HCl
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Scheme 4. Reagents and conditions: (a) (i) 1,1 0-thiocarbonyldiimidazole, toluene, reflux, 6 h; (ii) trimethyl phosphite, reflux, 9 h, (85%) from (7); (b)
Pd/C–H2, MeOH, 8 h, 40 psi, 97%; (c) cat. HCl, MeOH, rt, 10 h, 95%.
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in MeOH gave (�)-gala quercitol 2 in excellent yield,
with analytical data in agreement with reported values.13

We next turned our attention to the synthesis of 3 from
7. The triol 7 was converted in to the exo-olefin 12 by
employing the Corey–Winter protocol.14 We anticipated
that reduction of the exo-olefin would proceed in a man-
ner similar to the carbonyl reduction. Catalytic hydroge-
nation of 12 with 10% Pd/C at 40 psi in methanol
afforded a diastereomeric mixture of 1315 and 14 in a
ratio of 93:7, which were separated by flash column
chromatography. All attempts to improve the selectiv-
ity, including changing the catalyst were unsuccessful.
Global deprotection of 13 with cat. HCl in methanol
gave 3 in excellent yield with analytical data in agree-
ment with the literature values7a,16 (Scheme 4).

In conclusion, we have successfully synthesized (+)-pro-
to, (�)-gala quercitols and carba-LL-rhamnose from DD-
(�)-quinic acid in ten linear steps.
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