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Abstract—Efficient syntheses of (+)-proto, (—)-gala quercitols and carba-L-rhamnose from p-(—)-quinic acid are described.
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Cyclitols have attracted a great deal of attention from
the synthetic community due to their glycosidase inhibi-
tion activities and their versatility as synthetic intermedi-
ates.! Quercitols as cyclohexanepentols can exist in 16
diastereomeric forms,?> of which four are symmetric.
Only (+)-proto, (—)-proto and (—)-vibo quercitols are
found in Nature.? (+)-proto Quercitol 1 was discovered
initially and its first synthesis was completed in 1968 by
McCasland et al.* Although there is considerable litera-
ture on the synthesis of various quercitols, we felt the
need to develop a practical and efficient synthetic route
to these compounds in bulk quantities. Besides querci-
tols, carba-sugars are cyclic monosaccharide analogues
in which the endocyclic oxygen atom is replaced by a
methylene group.® As a consequence of this substitution,
carba-sugars are hydrolytically stable analogues of their
parent sugars towards degradation by glycosidases.®
Carba-L-rhamnose 3, an analogue of L-rhamnose has
received little attention from synthetic chemists.” Here-
in, we report efficient syntheses of (+)-proto 1, (—)-gala
2 quercitols and carba-L-rhamnose 3 (Fig. 1) from bD-
(—)-quinic acid.

The synthesis of 1 began with the preparation of (—)-shi-
kimic ester 5 from p-(—)-quinic acid 4 according to the
literature procedure.® OsO, catalyzed NMO oxidation
of 5 in -BuOH at reflux for 3 h produced the diol 6
as a single diastereomer. The secondary OH group at
C-2 was protected selectively as a MOM-ether and
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Figure 1.

the ester reduced with LAH to afford the triol 7, which
was subjected to oxidative cleavage using silica-
supported sodium metaperiodate in DCM to give the
B-hydroxy ketone 8 in quantitative yield (Scheme 1).

We envisaged that the presence of the cyclohexylidene
protection at C-3, C-4 would direct hydride attack from
the Si face (Scheme 2) and indeed, sodium borohydride
reduction of ketone 8 at —40 °C in methanol gave the
diol 9° as a single diastereomer.

It was difficult to establish the stereochemistry at the
newly formed chiral centre C-1 due to second order
splitting and overlapping of the signals for the H-3,
H-4, H-5, H-1 and OMe protons. In order to shift the
resonance due to H-1 and H-5, the compound was deriv-
atized as the di-O-benzoate 11'° by treatment with
benzoyl chloride and pyridine in DCM at 0 °C (Scheme
3). The configuration at C-1 was assigned based on the
coupling constants of H-1 with H-2 and H-6a (J = 8.3
and 12.6 Hz, respectively). This was further confirmed
by a COSY experiment.

The deprotection of the diol 9 was carried out with
cat. HCl in MeOH at room temperature for 10 h to give
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Scheme 1. Reagents and conditions: (a) OsO,4, NMO, #-BuOH, reflux, 3 h, 70%; (b) (i) MOMCI, Hiinig’s base, DCM, 12 h, 87%; (ii)) LAH, THF,
60 °C, 2 days, 90%; (c) NalO4-SiO,, DCM, rt, 2 h, 100%.
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Scheme 2. Reagents and conditions: (a) NaBH,, MeOH, —40 °C, 2 h, 87%; (b) K-Selectride, THF, —78 °C, 1 h, 95%; (c) cat. HCI, MeOH, rt, 10 h,
92%.

(+)-proto quercitol 1 with analytical data in excellent
agreement with the literature values.'! Jzpon

The synthesis of (—)-gala quercitol 2, which is the C-1 )
epimer of 1, required the reversal of stereoselectivity

i i ; PhCOCI, Py, DCM - Hp
during the reduction of ketone 8. The reduction of 8 . 3hY85 s HL ;
£3 y (@ '~

with K-Selectride in dry THF at —78 °C afforded the
diol 10'? as a single diastereomer, no diastereomeric
impurity being detected. The selectivity was attributed G}
to chelation of a potassium ion with the C-1 carbonyl
oxygen and the C-5 hydroxyl group from the Si face,
which directed the hydride attack from the Re face to
produce the diol 10. Deprotection of 10 with cat. HCI Scheme 3.
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Pd/C-H,, MeOH, 8 h, 40 psi, 97%; (c) cat. HCI, MeOH, rt, 10 h, 95%.

in MeOH gave (—)-gala quercitol 2 in excellent yield,
with analytical data in agreement with reported values.!

We next turned our attention to the synthesis of 3 from
7. The triol 7 was converted in to the exo-olefin 12 by
employing the Corey—Winter protocol.'* We anticipated
that reduction of the exo-olefin would proceed in a man-
ner similar to the carbonyl reduction. Catalytic hydroge-
nation of 12 with 10% Pd/C at 40 psi in methanol
afforded a diastereomeric mixture of 13! and 14 in a
ratio of 93:7, which were separated by flash column
chromatography. All attempts to improve the selectiv-
ity, including changing the catalyst were unsuccessful.
Global deprotection of 13 with cat. HCI in methanol
gave 3 in excellent yield with analytical data in agree-
ment with the literature values’®!® (Scheme 4).

In conclusion, we have successfully synthesized (+)-pro-
to, (—)-gala quercitols and carba-L-rhamnose from D-
(—)-quinic acid in ten linear steps.
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