Tetrahedron 64 (2008) 7587-7593

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Effective synthesis of negatively charged cyclodextrins. Selective access to phosphate cyclodextrins

Óscar López^{a,*}, Mikael Bols^{b,*}

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain ^b Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kbh. Ø, Denmark

ARTICLE INFO

Article history: Received 2 April 2008 Received in revised form 16 May 2008 Accepted 20 May 2008 Available online 23 May 2008

ABSTRACT

We report the selective preparation of α - and β -cyclodextrins bearing one and two phosphate moieties on the primary rim. These compounds were prepared by selective O-debenzylation of fully protected derivatives, followed by phosphorylation and deprotection. The synthesis of an α -cyclodextrin with both, a carboxylic group and a phosphate moiety on primary positions is also described. Title compounds are examples of negatively charged cyclodextrins that might be of interest in studying the complexation of cationic guests.

© 2008 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Supramolecular chemistry is emerging as a challenging area in organic chemistry; the study of derivatives capable of establishing spontaneous non-covalent interactions is of great interest and has found many practical applications such as additives for food preservation,¹ drug delivery,^{2,3} catalysis,^{4,5} biomimetic recognition⁶ and chiral separations.⁷ In this context, cyclodextrins, cyclic oligosaccharides of six, seven or eight α -D-glucopyranose units are among the most important molecular hosts considered in supramolecular chemistry.⁸ Numerous chemical^{9–11} and enzymatic synthesis⁸ of cyclodextrin derivatives have been reported so far; nevertheless, chemical modification of cyclodextrins is not a simple task due to the high number of hydroxyl groups present in these structures.

In this context, we have recently reported¹² the preparation of cyclodextrin-derived 6^A,6^D-diacids **1** and **2**, as well as 6^A,6^D-di-*O*-sulfate **3** as novel artificial enzymes, which accelerated the hydrolysis of aryl glycosides in a phosphate buffered medium up to 989 times.

* Corresponding authors.

E-mail addresses: osc-lopez@us.es (Ó. López), bols@kemi.ku.dk (M. Bols).

0040-4020/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.05.094

Reaction was shown to proceed faster when increasing the phosphate buffer concentration, and the proposed mechanism involves the cyclodextrin-mediated stabilization of the incipient positive charge in the transition state, followed by nucleophilic displacement of the aglycon by a phosphate molecule of the buffer.¹² This observation prompted us to prepare cyclodextrin derivatives bearing phosphate moieties in their structure, with the aim of studying the same hydrolysis reaction and to compare with isosteric carboxylic acid and sulfate derivatives **1–3** in order to determine whether the phosphate moiety can participate in the catalytic process. Thus, phosphorylated cyclodextrins might mimic the behaviour of phosphorylases, which catalyze the hydrolysis and/or transfer of glycosides through a phosphate group attached to pyridoxal.^{13–16}

Furthermore, cyclodextrins incorporating ionizable groups represent an interesting family of maltooligosaccharides for complexing charged guests in aqueous media through attractive Coulombic interactions.¹⁷ For instance, the use of a monophosphate cyclodextrin has been used by Cho et al.¹⁸ for binding antineoplastic drugs and subsequent release of the guest upon phoshatase-mediated hydrolysis. Anionic cyclodextrins such as phosphates, carboxylates, sulfates or succinylates have been studied as additives for plant growth acceleration and for the release of essential nutrients.¹⁹ Charged cyclodextrins also allow an improvement of the isolation of plant metabolites; in this context, strong non-covalent complexes between cyclodextrins and anticarcinogenic taxol and other taxanes have been reported, what led to higher amounts of the isolated product.¹⁹

2. Results and discussion

Ubiquitous organophosphorous derivatives are extremely important derivatives in biological systems and exhibit practical

applications such as chiral discriminators or membrane carriers;^{20,21} however, reports on their use in supramolecular chemistry is relatively scarce. Breslow's group accomplished²² the synthesis of the ammonium salt of β -cyclodextrin monophosphate by treatment of unprotected cyclodextrin with diphenylchlorophosphate: the corresponding phosphate ester was purified by a tedious series of crystallizations and hydrogenated under pressure to afford final compound in moderate vield. The same derivative was later re-studied¹⁸ and partially characterized by Eliseev's group. Tarelli and co-workers described²³ treatment of α - and β -cyclodextrin with inorganic metaphosphate to afford a mixture of isomeric monophosphates on positions 2, 3 and 6, which were partially resolved by anion-exchange chromatography. Branched cyclodextrin triphosphates were prepared using either *cyclo*-mono- μ -imidotriphosphate (*c*-MITP)²⁴ or *cyclo*-triphosphate (P3m).²⁵ Liu et al. reported²⁶ the use of phosphoryl-tethered β cyclodextrins as an enhancement of the chiral recognition ability of maltooligosaccharides. The use of cyclodextrin monophosphate esters for complexing aminoacids²⁷ and organic dyes²⁸ has also been reported.

We have synthesized cyclodextrins bearing two phosphate groups on primary positions starting from α - and β -cyclodextrins (Scheme 1); the starting materials are partially debenzylated cyclodextrins, which are accessed using a straightforward procedure, originally introduced by Sinaÿ's group for the selective and mild deprotection of benzylated²⁹ or methylated³⁰ derivatives. This procedure involves treatment of fully protected derivatives with DIBAL-H in anhydrous toluene; the original synthetic conditions were later optimized,^{12,31-33} mainly by Sinaÿ's group in subsequent technical improvements. Selectively debenzylated cyclodextrins have been widely used in our group for the preparation of artificial enzymes based on cyclodextrins for catalyzing glycoside hydrolysis of amine oxidation.^{12,34-43}

Initial attempts to transform diols **8** and **9** into the corresponding diphosphates using classical phosphate syntheses were unsuccessful; thus, reaction of α -cyclodextrin diol **8** with dibenzyl *N*,*N*-diisopropylamino phosphoramidate⁴⁴ in the presence of tetrazole, followed by oxidation with iodide resulted in decomposition to a mixture of more polar derivatives.

Nevertheless, DMAP-promoted phosphorylation of diols **8** and **9** with commercial chlorodiphenylphosphate in pyridine afforded diphosphorylated derivatives **10** and **11**, in 87% and 86% yields, respectively, after chromatography. The presence of the phosphate moiety was supported by NMR spectroscopy; ¹³C NMR spectra of compounds **10** and **11** showed coupling between phosphorus and *ipso* carbons on aromatic phosphate ester residues with a ²*J*_{PC} of 4.0–6.5 Hz. ³¹P NMR spectrum of α -cyclodextrin diphosphate **10** showed a singlet signal at –10.8 ppm; on the other hand, ³¹P NMR spectrum of compound **11** showed two non-equivalent phosphate groups at –10.7 and –10.8 ppm.

Phosphate esters could neither be deprotected under standard hydrogenation conditions nor basic hydrolysis. Fully unprotected derivatives **12** and **13** were achieved by first removal of the benzyl ether groups by Pd-catalyzed hydrogenation, followed by Pt-catalyzed hydrogenation at moderate pressure (20 atm). Filtration and removal of the solvents afforded pure **12** and **13** in 60% and 83% yields, respectively. ³¹P NMR spectra of these cyclodextrin diphosphates showed a singlet signal at 1.7 and 1.3 ppm, respectively, in accordance with reported primary phosphate groups on carbohydrates.^{18,45}

Following a similar procedure, we have also prepared cyclodextrin-derived monophosphates starting from α - and β -cyclodextrin (Scheme 2). Treatment of per-O-benzylated cyclodextrins **6** and **7** with fewer equivalents of DIBAL-H, and shorter reaction times afforded monodeprotected derivatives **14** and **15** that furnished protected monophosphates **16** and **17** upon reaction with chlorodiphenylphosphate, using the same conditions as indicated above. These compounds showed coupling between *ipso* aromatic carbons and phosphorous (${}^{2}J_{P,C}$ =6.5 Hz) and resonance at -10.7 ppm in 31 P NMR spectra. Standard hydrogenation, followed with Pt-catalyzed hydrogenation at 20 atm afforded fully unprotected derivatives **18** and **19** in 79% and 71% yields, respectively.

We also describe the preparation of an α -cyclodextrin derivative bearing a phosphate and a carboxylic acid moiety in the same molecule (Scheme 3). The key step for this synthesis is the monoprotection of α -cyclodextrin diol **8** with allyl bromide in the presence of ^tBuOK.⁴⁶ Derivative **20** was phosphorylated using the same conditions as indicated in Schemes 1 and 2; removal of

the allyl group of **21** was achieved by first isomerization with Wilkinson's catalyst, followed by in situ generated acid treatment to afford **22**.

The free hydroxyl group on **22** was first oxidized to the corresponding aldehyde by using Dess–Martin periodinane, followed by further oxidation to the carboxylic acid moiety with NaClO₂⁴⁷ in a buffered medium to afford protected derivative **23**. Final deprotection of **23** using the same conditions as for mono- and diphosphate derivatives (Schemes 1 and 2) afforded **24**, a novel cyclodextrin derivative bearing two different acidic moieties on primary positions (Scheme 3).

Fully unprotected derivatives 12, 13, 18, 19 and 24 were tested for catalysis in hydrolysis reactions of aryl glycosides and of aryl phosphates at different pH values and temperatures. Surprisingly, title compounds did not show appreciable catalysis. A possible explanation is the different solvation properties exhibited by carboxylates, sulfates and phosphates. Calculated¹² pK_a values for diacids 1 and 2 turned out to be 3.5 and 3.2, respectively. On the other hand, the reported⁴⁸ pK_a's values for glucose-6-phosphate are 0.94 and 6.11. These data suggest that phosphate derivatives bear a larger negative charge than carboxylates and sulfates. Furthermore, thermodynamics data⁴⁹ for solvation of lithium and sodium salts of carboxylates, sulfates and phosphates indicate a significant stabilization of the latter in aqueous medium. This might lead to a prominent decrease of the stabilization of the incipient positive charge in the aryl glycoside hydrolysis transition state exerted by the cyclodextrin. Furthermore, a more solvated derivative might

also involve a more crowded system for complexing the aromatic residue of the glycoside, and thus, a reduced capacity of the cyclodextrin for establishing inclusion complexes.

In conclusion, we have developed a versatile methodology for the successful preparation of phosphate-containing cyclodextrins, compounds of high practical and biological interest. For this purpose, we have combined the practical and selective de-O-benzylation of fully benzylated cyclodextrins and phosphorylation with diphenylphosphoryl chloride. Although the final derivatives did not show appreciable catalysis in the aryl glycosides hydrolysis, they comprise a family of valuable chiral tools for the complexation of positively charged guests. These negatively charged cyclodextrins are obtained in a selective fashion that avoids mixtures of phosphate regioisomers as described in other procedures in the literature, and subsequent difficult purifications.

3. Experimental section

3.1. General

Solvents were distilled under anhydrous conditions. All reagents were used as purchased without further purification. Evaporation was carried out in a rotatory evaporator. Glassware used for water-free reactions was dried for 2 h at 130 °C before use. Columns were packed with silica gel 60 (230–400 mesh) as the stationary phase. TLC plates (Merck 60 F₂₅₄) were visualized by spraying with cerium sulfate (1%) and molybdic acid (1.5%) in 10% H₂SO₄ and heating until coloured spots appeared. ¹H, ¹³C NMR and COSY experiments were carried out with a Varian Mercury 400 instrument. Monoisotopic mass spectra (MALDI-TOF MS) were obtained on a Bruker Daltonics mass spectrometer using an α -cyanohydroxycinnamic acid (α -CHCA) matrix. Spectra were calibrated using a peptide calibration standard solution.

3.2. 6^A , 6^D -Di-O-(diphenylphosphate)-hexadeca-O-benzyl- α -cyclodextrin (10)

To a solution of diol **8** (1.00 g, 0.41 mmol) and DMAP (15 mg, 0.12 mmol) in Py (10 mL) was added diphenylphosphoryl chloride (1.03 mL, 4.97 mmol) at 0 °C under N₂. The corresponding solution was kept stirring overnight and after that it was poured over waterice. Dichloromethane was added (100 mL) and the organic phase was washed with 1 M HCl (3×50 mL), satd aq NaHCO₃ (1×50 mL), H₂O (1×50 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (pentane \rightarrow 1:3 EtOAc–pentane) to afford title compound (988 mg, 87%).

[α] $_{D}^{23}$ +36 (*c* 1.4, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.12 (m, 100H, Ar–H), 5.32 (d, 2H, *J*_{H,H}=10.8 Hz, CH), 5.25 (d, 2H, *J*_{1,2}=3.2 Hz, H-1), 5.15–5.12 (m, 5H, *J*_{1,2}=3.2 Hz, *J*_{H,H}=10.0 Hz, H-1, CH), 5.00 (d, 2H, *J*_{1,2}=3.1 Hz, H-1), 4.94–4.86 (m, 8H, CH), 4.56 (d, 1H, *J*_{H,H}=12.4 Hz, CH), 4.49–4.42 (m, 17H), 4.37–4.32 (m, 5H), 4.20–4.02 (m, 13H), 3.98–3.96 (m, 10H), 3.63 (m, 2H), 3.54–3.47 (m, 5H), 3.34 (dd, 2H, *J*=3.6, 9.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, *J*_{C,P}=6.5 Hz, *C*_{*ipso*} phosphate), 150.6 (d, *J*_{C,P}=7.0 Hz, *C*_{*ipso*} phosphate), 139.4, 138.4, 138.3, 138.2, 138.1 (*C*_{*ipso*}), 129.8, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 127.5, 127.3, 127.2, 127.1 (CH_{Ar}), 125.4, 125.3, 120.3, 120.2, 120.1 (CH_{Ar}–phosphate), 99.0, 98.7, 98.6 (C-1), 81.2, 80.7, 80.5, 80.4, 79.6, 79.3, 79.2, 78.4, 78.1, 76.0, 75.7, 75.3, 73.6, 73.5, 73.0, 72.7, 72.1, 71.6, 70.9, 70.8, 69.2, 69.0, 68.5, 60.6; ³¹P NMR (161.9 MHz, CDCl₃): δ –10.8; MS: calcd for C₁₇₂H₁₇₄NaO₃₆P₂: 2900.1158; found: 2899.3690.

3.3. 6^A,6^D-Di-O-(diphenylphosphate)-nonadeca-O-benzyl-β-cyclodextrin (11)

To a solution of diol $\mathbf{9}$ (1.50 g, 0.53 mmol) and DMAP (64 mg, 0.53 mmol) in Py (15 mL) was added diphenylphosphoryl chloride

(1.54 mL, 7.38 mmol) at 0 °C under N₂. The corresponding solution was kept stirring overnight and after that it was poured over water–ice. Dichloromethane was added (120 mL) and the organic phase was washed with 1 M HCl (3×70 mL), satd aq NaHCO₃ (1×70 mL), H₂O (1×70 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (pentane \rightarrow 1:2 EtOAc–pentane) to afford title compound (1.51 g, 86%).

 $[\alpha]_{D}^{23}$ +45 (c 0.4, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.21–6.98 (m, 115H, Ar-H), 5.30 (d, 1H, J_{1,2}=3.6 Hz, H-1), 5.18 (d, 1H, $J_{1,2}=3.6$ Hz, H-1), 5.14 (d, 1H, $J_{1,2}=3.6$ Hz, H-1), 5.11 (d, 1H, J_{1,2}=3.2 Hz, H-1), 5.09 (d, 1H, J_{1,2}=3.5 Hz, H-1), 5.11–5.05 (m, 4H), 5.02 (d, 1H, J_{1.2}=4.00 Hz, H-1), 4.93–4.88 (m, 3H, J_{H,H}=10.0 Hz, CH), 4.76-4.69 (m, 7H), 4.55-4.23 (m, 22H), 4.01-3.91 (m, 24H), 3.84 (d, 1H, $J_{H,H}$ =8.8 Hz), 3.82 (d, 1H, $J_{H,H}$ =11.2 Hz), 3.79 (d, 1H, J_{H,H}=10.8 Hz), 3.77 (d, 1H, J_{H,H}=9.2 Hz), 3.69 (d, 1H, J_{H,H}=10.8 Hz), 3.62 (d, 1H, J_{H,H}=10.4 Hz), 3.51-3.41 (m, 9H), 3.27 (dd, 3H, $J_{2,3}=9.6$ Hz, H-2), 3.23 (dd, 3H, $J_{2,3}=9.6$ Hz, H-2); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, J_{C,P}=4.0 Hz, C_{ipso} phosphate), 150.6 (d, J_{C,P}=5.0 Hz, C_{ipso} phosphate), 150.5 (d, J_{C,P}=7.0 Hz, C_{ipso} phosphate), 139.4, 139.2, 138.5, 138.4, 138.3, 138.2 (Cipso), 129.9, 129.7, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 127.1 (CH_{Ar}), 125.3, 120.2, 120.1, 120.0 (CH_{Ar}-phosphate), 98.9, 98.8, 98.5, 98.4, 98.3 (C-1), 81.0, 80.8, 80.7, 80.4, 79.3, 79.2, 79.1, 78.8, 78.6, 77.7, 75.8, 75.7, 75.5, 75.4, 75.1, 73.6, 73.4, 73.2, 72.9, 72.7, 72.6, 72.0, 71.6, 71.5, 70.8, 70.7, 70.6, 70.4, 69.4, 68.5, 68.1, 60.5; ³¹P NMR $(161.9 \text{ MHz}, \text{CDCl}_3)$: $\delta - 10.7, -10.8$; MS: calcd for C₁₉₉H₂₀₂NaO₄₁P₂: 3332.3094: found: 3332.2608.

3.4. 6^A,6^D-Di-O-phosphate-α-cyclodextrin (12)

Compound **10** (0.80 g, 0.29 mmol) was dissolved in 1:1 MeOH– EtOAc (20 mL). Then, Pd–C (320 mg) and TFA (cat.) were added and the mixture was kept stirring under hydrogen atmosphere for 3 days. Filtration and removal of the solvents afforded intermediate $6^{A}, 6^{D}$ -di-*O*-(diphenylphosphate)- α -cyclodextrin. This compound was dissolved in 1:1 MeOH–H₂O (20 mL), and to the solution was added PtO₂ (232 mg); the corresponding mixture was vigorously stirred under hydrogen atmosphere (20 atm) for 3 days. Filtration and removal of the solvents furnished title compound (194 mg, 60%).

 $[\alpha]_{6}^{23}$ +101 (c 0.4, H₂O); ¹H NMR (400 MHz, D₂O): δ 5.05–5.01 (m, 6H, H-1), 4.12 (m, 2H), 3.94–3.92 (m, 10H), 3.81 (m, 9H), 3.59–3.54 (m, 17H); ¹³C NMR (100 MHz, DMSO-d₆): δ 102.3, 101.6, 101.2 (C-1), 83.3, 82.7, 82.5, 73.9, 73.4, 73.2, 73.1, 72.5, 72.3, 72.1, 72.0, 70.7, 65.2, 60.4; ³¹P NMR (161.9 MHz, D₂O): δ 1.7; MS: calcd for C₃₆H₆₀Na₃O₃₆P₂: 1199.2033; found: 1198.3985.

3.5. 6^{A} , 6^{D} -Di-O-phosphate- β -cyclodextrin (13)

Compound **11** (1.50 g, 0.45 mmol) was dissolved in 1:1 MeOH–EtOAc (20 mL). Then, Pd(OH)₂ (356 mg) and TFA (cat.) were added and the mixture was kept stirring under hydrogen atmosphere for 2 days. Filtration and removal of the solvents afforded intermediate 6^{A} , 6^{D} -di-O-(diphenylphosphate)- β -cyclodextrin. This compound was dissolved in 1:1 MeOH–H₂O (40 mL), and to the solution was added PtO₂ (291 mg); the corresponding mixture was vigorously stirred under hydrogen atmosphere (20 atm) for 3 days. Filtration and removal of the solvents furnished title compound (482 mg, 83%).

 $[\alpha_1^{23}]^{+104}$ (c 0.4, H₂O); ¹H NMR (400 MHz, D₂O): δ 5.13–5.10 (m, 7H, H-1), 4.19 (m, 2H), 4.01–3.91 (m, 23H), 3.69–3.61 (m, 17H); ¹³C NMR (100 MHz, DMSO- d_6): δ 103.5, 103.4, 103.3, 103.2 (C-1), 83.0, 82.9, 82.8, 82.7, 82.6, 82.5, 82.4, 74.6, 73.4, 72.5, 72.4, 65.4, 65.3, 61.7, 61.6; ³¹P NMR (161.9 MHz, D₂O): δ 1.3; MS: calcd for C₄₂H₇₀Na₃O₄₁P₂: 1361.2561; found: 1360.3671.

3.6. 6^A-*O*-(Diphenylphosphate)-heptadeca-*O*-benzyl-α-cyclodextrin (16)

To a solution of derivative **14** (0.71 g, 0.29 mmol) and DMAP (20 mg, 0.16 mmol) in Py (7 mL) was added diphenylphosphoryl chloride (0.60 mL, 2.88 mmol) at 0 °C under N₂. The corresponding solution was kept stirring overnight and after that it was poured over water–ice. Dichloromethane was added (125 mL) and the organic phase was washed with 1 M HCl (2×50 mL), satd aq NaHCO₃ (1×50 mL), H₂O (1×50 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (pentane \rightarrow 1:3 EtOAc-pentane) to afford title compound (731 mg, 91%).

 $[\alpha]_{D}^{23}$ +38 (c 0.5, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.09 (m, 95H, Ar-H), 5.26 (d, 1H, J_{H.H}=10.0 Hz, CH), 5.24 (d, 1H, J_{H,H}=11.2 Hz, CH), 5.22 (d, 1H, J_{H,H}=10.8 Hz, CH), 5.17–5.12 (m, 6H), 5.09 (d, 1H, $J_{1,2}$ =3.6 Hz, H-1), 5.05 (d, 1H, $J_{1,2}$ =3.6 Hz, H-1), 5.01 (d, 1H, *J*_{1,2}=3.2 Hz, H-1), 4.89–4.84 (m, 7H), 4.54–4.40 (m, 17H), 4.40 (d, 1H, J_{H,H}=11.6 Hz, CH), 4.37 (d, 1H, J_{H,H}=11.6 Hz, CH), 4.36 (d, 1H, J_{H,H}=12.0 Hz, CH), 4.32 (d, 1H, J_{H,H}=11.6 Hz, CH), 4.30 (d, 1H, J_{H,H}=13.2 Hz, CH), 4.27 (d, 1H, J_{H,H}=12.0 Hz, CH), 4.06–3.88 (m, 22H), 3.62 (d, 2H, J_{H,H}=10.8 Hz), 3.54-3.44 (m, 8H), 3.27 (dd, 2H, $J_{1,2}=3.2$ Hz, $J_{2,3}=10.0$ Hz, H-2); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, J_{CP}=6.5 Hz, C_{ipso} phosphate), 150.7 (d, J_{CP}=6.5 Hz, C_{ipso} phosphate), 139.5, 139.4, 138.5, 138.4, 138.3, 138.2 (Cipso), 129.9, 129.8, 128.4, 128.3, 128.1, 127.8, 127.7, 127.5, 127.4, 127.1 (CH_{Ar}), 125.4 125.3 (CH_{Ar}-phosphate), 99.0, 98.9, 98.8, 98.7, 98.6 (C-1), 81.2, 81.1, 80.8, 80.6, 79.8, 79.7, 79.5, 79.3, 79.2, 79.1, 78.8, 78.6, 75.8, 75.6, 75.5, 73.6. 72.8. 72.1. 71.7. 71.6. 70.7. 69.3. 69.1. 68.3: ³¹P NMR (161.9 MHz. CDCl₃): δ –10.7; MS: calcd for C₁₆₇H₁₇₁NaO₃₃P₂: 2758.1338; found: 2758.7788.

3.7. 6^A-*O*-(Diphenylphosphate)-eicosa-*O*-benzyl-β-cyclodextrin (17)

To a solution of derivative **15** (0.70 g, 0.24 mmol) and DMAP (23 mg, 0.19 mmol) in Py (7 mL) was added diphenylphosphoryl chloride (0.50 mL, 2.38 mmol) at 0 °C under N₂. The corresponding solution was kept stirring overnight and after that it was poured over water–ice. Dichloromethane was added (125 mL) and the organic phase was washed with 1 M HCl (2×50 mL), satd aq NaHCO₃ (1×50 mL), H₂O (1×50 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (pentane \rightarrow 1:3 EtOAc–pentane) to afford title compound (620 mg, 82%).

[α] $_{D}^{23}$ +46 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.06 (m, 110H, Ar–H), 5.30–5.23 (m, 3H), 5.31 (d, 1H, *J*_{1,2}=3.2 Hz, H-1), 5.30 (d, 1H, *J*_{1,2}=4.0 Hz, H-1), 5.24 (d, 1H, *J*_{1,2}=4.0 Hz, H-1), 5.8–5.09 (m, 7H), 4.97–4.93 (m, 1H), 4.85–4.80 (m, 6H), 4.65–4.38 (m, 25H), 4.12–4.01 (m, 24H), 3.90 (t, 1H, *J*_{H,H}=8.8 Hz), 3.75 (d, 1H, *J*_{H,H}=9.6 Hz), 3.67–3.54 (m, 16H), 3.35 (dd, 2H, *J*_{1,2}=3.2 Hz, *J*_{2,3}=9.6 Hz, H-2); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, *J*_{C,P}=6.0 Hz, C_{*ipso*} phosphate), 150.6 (d, *J*_{C,P}=6.5 Hz, C_{*ipso*} phosphate), 139.4, 139.3, 139.2, 138.4, 138.3, 138.2 (C_{*ipso*}), 129.8, 129.7, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.0 (CH_{Ar}), 125.3, 120.2, 120.1 (CH_{Ar}–phosphate), 98.8, 98.7, 98.6, 98.5, 98.4 (C-1), 81.0, 80.8, 80.7, 80.4, 78.9, 78.7, 78.5, 75.6, 75.4, 73.4, 73.2, 72.7, 72.6, 71.9, 71.7, 71.5, 70.5, 69.3, 68.2; ³¹P NMR (161.9 MHz, CDCl₃): δ –10.7; MS: calcd for C₁₉₄H₁₉₉NaO₃₈P: 3190.3275; found: 3190.1707.

3.8. 6^A-O-Phosphate-α-cyclodextrin (18)

Compound **16** (0.66 g, 0.24 mmol) was dissolved in 1:1 MeOH– EtOAc (30 mL). Then, $Pd(OH)_2$ (360 mg) and TFA (cat.) were added and the mixture was kept stirring under hydrogen atmosphere for 2 days. Filtration and removal of the solvents afforded intermediate 6^{A} -O-(diphenylphosphate)- α -cyclodextrin. This compound was dissolved in 1:1 MeOH–H₂O (30 mL), and to the solution was added PtO₂ (192 mg); the corresponding mixture was vigorously stirred under hydrogen atmosphere (20 atm) for 3 days. Filtration and removal of the solvents furnished title compound (196 mg, 79%).

 $[\alpha]_{b}^{\beta3}$ +103 (*c* 0.4, H₂O); ¹H NMR (400 MHz, D₂O): δ 5.06–5.02 (m, 6H, H-1), 4.13 (m, 2H), 3.97–3.80 (m, 20H), 3.61–3.55 (m, 14H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 102.1 (×2) 102.0, 101.9 (C-1), 82.6, 82.5, 82.4, 82.3, 82.1 73.6, 73.3, 73.2, 72.3, 72.2, 72.1, 71.8, 60.1; ³¹P NMR (161.9 MHz, D₂O): δ 2.3; MS: calcd for C₃₆H₆₀Na₂O₃₃P: 1097.2550; found: 1096.5359.

3.9. 6^{A} -O-Phosphate- β -cyclodextrin (19)

Compound **17** (0.53 g, 0.17 mmol) was dissolved in 1:1 MeOH– EtOAc (20 mL). Then, Pd(OH)₂ (298 mg) and TFA (cat.) were added and the mixture was kept stirring under hydrogen atmosphere for 2 days. Filtration and removal of the solvents afforded intermediate 6^{A} -O-(diphenylphosphate)- β -cyclodextrin. This compound was dissolved in 1:1 MeOH–H₂O (20 mL), and to the solution was added PtO₂ (120 mg); the corresponding mixture was vigorously stirred under hydrogen atmosphere (20 atm) for 3 days. Filtration and removal of the solvents furnished title compound (146 mg, 71%).

$$\label{eq:alpha} \begin{split} & [\alpha]_{D}^{23} + 115 \ (c \ 0.3, \ H_2 \ O); \ ^1 H \ NMR \ (400 \ MHz, \ D_2 \ O); \ \delta \ 5.14 - 5.10 \ (m, \ 7H, \ H-1), \ 4.15 \ (m, \ 2H), \ 4.02 - 3.88 \ (m, \ 25H), \ 3.72 - 3.59 \ (m, \ 14H) \ (lit.^{18}); \ ^{13} C \ NMR \ (100 \ MHz, \ DMSO - d_6); \ \delta \ 101.8, \ 101.5, \ 101.4, \ 101.3, \ 82.6, \ 82.0, \ 81.3, \ 81.0, \ 72.6, \ 71.9, \ 71.5, \ 71.4, \ 60.4, \ 59.9, \ 59.4, \ 59.3; \ ^{31} P \ NMR \ (161.9 \ MHz, \ DMSO - d_6); \ \delta \ 0.16; \ MS: \ calcd \ for \ C_{42}H_{70} Na_2 O_{38} P; \ 1259.3078; \ found: \ 1258.5734. \end{split}$$

3.10. 6^{A} -O-allyl- 6^{D} -O-(Diphenylphosphate)-hexadeca-Obenzyl- α -cyclodextrin (21)

To a solution of 6^{A} -O-allyl-hexadeca-O-benzyl- α -cyclodextrin **20** (0.59 g, 0.24 mmol) and DMAP (31 mg, 0.25 mmol) in Py (5 mL) was added diphenylphosphoryl chloride (0.35 mL, 1.69 mmol) at 0 °C under N₂. The corresponding solution was kept stirring overnight and after that it was poured over water–ice. Dichloromethane was added (150 mL) and the organic phase was washed with 1 M HCl (2×50) mL, satd aq NaHCO₃ (1×50 mL), H₂O (1×50 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (pentane \rightarrow 1:3.5 EtOAc–pentane) to afford title compound (574 mg, 88%).

 $[\alpha]_D^{23}$ +37 (c 1.2, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.15 (m, 90H, Ar–), 5.89 (ddt, 1H, $J_{H,H}$ =10.8 Hz, $J_{H,H}$ =10.8 Hz, *J*_{H.CH2}=5.6 Hz, CH=CH₂), 5.35 (d, 1H, *J*_{H,H}=10.8 Hz, CH), 5.33 (d, 1H, J_{H,H}=10.8 Hz, CH), 5.30–5.20 (m, 9H), 5.18 (d, 1H, J_{1,2}=3.6 Hz, H-1), 5.15 (d, 1H, J_{1,2}=2.8 Hz, H-1), 5.13 (d, 1H, J_{1,2}=2.8 Hz, H-1), 4.99 (d, 3H, J_{H,H}=10.0 Hz, CH), 4.96 (d, 3H, J_{H,H}=9.2 Hz, CH), 4.62 (dd, 1H, J_{5,6a}=4.0 Hz, J_{6a,6b}=12.4 Hz, H-6a), 4.64–4.49 (m, 16H), 4.43 (dd, 3H, J_{5,6a}=3.2 Hz, J_{6a,6b}=11.6 Hz, H-6a), 4.28-3.96 (m, 24H), 3.73 (br d, 2H, J_{H,H}=11.6 Hz, CH), 3.69 (br d, 2H, J_{H,H}=11.2 Hz, CH), 3.64 (br d, 2H, J_{H,H}=10.8 Hz, CH), 3.74–3.56 (m, 6H), 3.38 (dd, 2H, J_{H,H}=3.2, 10.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, J_{C,P}=6.3 Hz, C_{ipso} phosphate), 150.6 (d, J_{CP}=6.7 Hz, C_{inso} phosphate), 139.5, 139.4, 138.5, 138.4, 138.3, 138.2, 138.1 (Cipso), 134.9 (CH=), 129.8, 129.7, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 127.0 (CH_{Ar}), 125.4, 125.3, 120.2, 120.1 (CH_{Ar}-phosphate), 117.0 (H₂C=), 98.9, 98.8, 98.7, 98.6 (C-1), 81.1, 81.0, 80.7, 80.5, 80.0, 79.7, 79.5, 79.3, 79.2, 79.1, 78.9, 78.8, 78.7, 78.5, 75.8, 75.7, 75.6, 75.5, 75.4, 73.5, 72.9, 72.8, 72.7, 72.4, 72.1, 71.6, 71.5, 70.7, 70.6, 69.2, 69.1, 68.3; ³¹P NMR (161.9 MHz, CDCl₃): δ –10.6; MS: calcd for C₁₆₃H₁₆₉NaO₃₃P: 2708.1181; found: 2708.0223.

3.11. 6^{A} -O-(Diphenylphosphate)-hexadeca-O-benzyl- α -cyclodextrin (22)

To a solution of 6^A-O-allyl-6^D-O-(diphenylphosphate)-hexadeca-O-benzyl- α -cyclodextrin (**21**) (0.44 mg, 0.16 mmol) in 2:1 abs EtOH-toluene (20 mL) was added DABCO (11 mg, 0.10 mmol) and Wilkinson's catalyst (77 mg, 0.083 mmol), and the corresponding mixture was refluxed for 3 h. After cooling down to rt. the solution was concentrated to dryness and the residue was dissolved in EtOAc (80 mL) and washed with H_2O (2×50 mL); the organic layer was dried over MgSO₄, filtered and the filtrate was concentrated to dryness. The crude residue was dissolved in a 5:3 CH₂Cl₂-MeOH mixture (16 mL) and AcCl (0.18 mL, 2.53 mmol) was added at 0 °C (pH 1–2); reaction was kept at rt for 3 h. After that it was quenched by the addition of Et₃N (0.7 mL) and the solution was concentrated to dryness; the residue was dissolved in CH₂Cl₂ (80 mL) and washed with 10% KHSO₄ (50 mL) and H₂O (50 mL). The organic layer was dried over MgSO₄, filtered and the filtrate was concentrated to dryness and purified by column chromatography (pentane \rightarrow 1:3 EtOAc-pentane) to afford title compound (317 mg, 75%).

 $[\alpha]_D^{23}$ +40 (c 0.6, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.00 (m, 90H, Ar-H), 5.48 (d, 1H, J_{1,2}=4.0 Hz, H-1), 5.47 (d, 1H, $J_{1,2}=3.6$ Hz, H-1), 5.36 (d, 1H, $J_{H,H}=11.2$ Hz, CH), 5.34 (d, 1H, J_{H.H}=11.2 Hz, CH), 5.20 (d, 1H, J_{H.H}=10.8 Hz, CH), 5.15 (d, 1H, J_{H.H}=10.8 Hz, CH), 4.98–4.93 (m, 3H), 4.92–4.83 (m, 6H), 4.81 (d, 3H, J_{H.H}=11.2 Hz, CH), 4.70–4.63 (m, 4H), 4.57–4.38 (m, 13H), 4.54 (dd, 1H, *J*_{5,6a}=2.8 Hz, *J*_{6a,6b}=12.0 Hz, H6a), 4.36 (d, 1H, *J*_{H,H}=12.4 Hz, CH), 4.29 (d, 1H, J_{H.H}=12.4 Hz, CH), 4.24–3.85 (m, 20H), 3.80–3.66 (m, 6H), 3.59–3.52 (m, 3H), 3.47–3.43 (m, 3H), 3.36 (dd, 2H, J_{2.3}=9.6 Hz, H-2), 3.20 (dd, 2H, *J*_{2,3}=10.0 Hz, H-2), 2.14 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): δ 150.7 (d, J_{C,P}=7.2 Hz, C_{ipso} phosphate), 150.6 (d, J_{C,P}=7.8 Hz, C_{ipso} phosphate), 139.4, 139.3, 138.6, 138.5, 138.4, 138.3, 138.2 (Cinso), 129.9, 129.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.1, 127.0, 126.8 (CHAr), 125.4, 125.3, 120.1 (CHArphosphate), 98.8, 98.6, 98.3, 98.2, 98.1, 97.9 (C-1), 81.4, 81.1, 80.9, 80.8, 80.3, 80.2, 79.9, 79.5, 79.4, 79.2, 79.0, 78.4, 78.2, 76.7, 76.3, 76.2, 75.9, 74.7, 73.5, 73.4, 73.2, 73.0, 72.4, 72.3, 72.0, 71.8, 70.1, 70.0, 69.5, 69.3, 69.2, 68.3, 68.2, 62.4 (C-6); ³¹P NMR (161.9 MHz, CDCl₃): δ –10.6; MS: calcd for C₁₆₀H₁₆₅NaO₃₃P: 2668.0868; found: 2668.6484.

3.12. 6^A-Carboxylic acid-6^DO-phosphate-α-cyclodextrin (24)

A solution of 6^A-O-(diphenylphosphate)-hexadeca-O-benzyl-αcyclodextrin 22 (0.36 g, 0.13 mmol) and Dess-Martin periodinane reagent (171 mg, 0.40 mmol) in CH₂Cl₂ (10 mL) was kept at room temperature overnight and then quenched by addition of Et₂O (25 mL) and satd aq NaHCO₃ containing 5% of Na₂S₂O₃ (25 mL). Then, the organic layer was separated, dried over MgSO₄ and concentrated to dryness. To a solution of the residue in 2-methylbut-2-ene (4 mL), ^tBuOH (10 mL) and THF (4 mL) was added a solution of NaClO₂ (0.32 g, 3.54 mmol) and NaH₂PO₄ (0.29 g, 2.42 mmol) in water (2 mL) and the corresponding mixture was kept stirring at room temperature overnight. The reaction was quenched by addition of 1 M HCl (50 mL) and the product was extracted with EtOAc (3×30 mL). The organic phase was dried over MgSO₄, filtered and the filtrate was concentrated to dryness and purified by flash chromatography (1:3 EtOAc-pentane \rightarrow 1:2 EtOAc-pentane containing 1% HCOOH) to give 6^A-carboxylic acid- $6^{\rm D}$ -O-(diphenylphosphate)-hexadeca-O-benzyl- α -cyclodextrin **23** (190 mg, 53%, two steps).

Compound **23** (0.19 g, 0.17 mmol) was dissolved in 1:1 MeOH– EtOAc (10 mL). Then, Pd(OH)₂ (151 mg) and TFA (cat.) were added and the mixture was kept stirring under hydrogen atmosphere for 2 days. Filtration and removal of the solvents afforded intermediate 6^{A} -carboxylic acid- 6^{D} -O-(diphenylphosphate)- α -cyclodextrin. This compound was dissolved in 1:1 MeOH–H₂O (20 mL), and to the solution was added PtO₂ (120 mg); the corresponding mixture was vigorously stirred under hydrogen atmosphere (15 atm) for 2 days. The solid was filtered off and the solvent was removed in vacuo; the residue was dissolved in water (20 mL) and washed with CH₂Cl₂ (2×15 mL). Removal of water furnished title compound (47 mg, 65%).

$$\label{eq:alpha} \begin{split} & [\alpha]_{D}^{23} + 56 \; (c\; 0.5, \, H_2 O); \, ^1H\; NMR\; (400\; MHz, \, DMSO-d_6); \; \delta\; 5.01\; (d, \\ & 1H, J_{1,2} = 3.2\; Hz, \; H-1), \; 5.0-4.92\; (m, \; 5H, \; H-1), \; 4.66\; (br\; s), \; 4.14-4.04, \\ & 3.90-3.72, \; 3.70-3.52\; (4m, \; 50H, \; H2-H6, \; -OH); \; ^{13}C\; NMR\; (100\; MHz, \\ & D_2 O); \; \delta\; 172.2\; (CO), \; 102.0, \; 101.9, \; 101.8, \; 101.6, \; 101.4, \; 101.0\; (C-1), \; 81.7, \\ & 81.6, \; 81.3, \; 81.0, \; 80.0, \; 73.3, \; 73.1, \; 72.9, \; 72.2, \; 71.9, \; 71.6, \; 71.4, \; 71.1, \; 71.0, \\ & 70.0, \; 64.3, \; 60.4, \; 60.3, \; 59.8; \; ^{31}P\; NMR\; (161.9\; MHz, \; D_2 O); \; \delta\; 1.4; \; MS: \\ & \text{calcd for } C_{36}H_{58}Na_2O_{34}P; \; 1111.2342; \; found: \; 1110.3525. \end{split}$$

Acknowledgements

We thank the Lundbeck Foundation for generous financial support.

References and notes

- 1. Hedges, A. R. Chem. Rev. 1998, 98, 2035-2044.
- Ferrari, F.; Sorrenti, M.; Rossi, S.; Catenacci, L.; Sandri, G.; Bonferoni, M. C.; Caramella, C.; Bettinetti, G. Pharm. Dev. Technol. 2008, 13, 65–73.
- 3. Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. ACS Nano 2007, 1, 50-56.
- Masar, M. S., III; Gianneschi, N. C.; Oliveri, C. G.; Stern, C. L.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 10149–10158.
- 5. Carlqvist, P.; Maseras, F. Chem. Commun. 2007, 748-750.
- Davis, A. P.; Wareham, R. S. Angew. Chem., Int. Ed. **1999**, 38, 2979–2996.
 Shpigun, O. A.; Ananieva, I. A.; Budanova, N. Yu.; Shapovalova, E. N. Russ. Chem. Rev. **2003**, 72, 1035–1054.
- 8. Villalonga, R.; Cao, R.; Fragoso, A. Chem. Rev. **2007**, 107, 3088–3116.
- 9. Engeldinger, E.; Armspach, D.; Matt, D. *Chem. Rev.* **2003**, 103, 4147–4173.
- 10. Motherwell, W. B.; Bingham, M. J.; Six, Y. Tetrahedron **2001**, *57*, 4663–4686.
- 11. Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997-2011.
- Rousseau, C.; Ortega-Caballero, F.; Nordstrøm, L. U.; Christensen, B.; Petersen, T. E.; Bols, M. Chem.—Eur. J. 2005, 11, 5094–5101.
- 13. Helmreich, E. J. M.; Klein, H. W. Angew. Chem., Int. Ed. Engl. **1980**, 19, 441–455. 14. Palm, D.; Blumenauer, G.; Klein, H. W.; Blanc-Muesser, M. Biochem. Biophys. Res.
- Commun. 1983, 111, 530–536. 15. Takagi, M.; Fukui, T.; Shimomura, S. Proc. Natl. Acad. Sci. U.S.A. 1982, 79,
- 3716–3719. 16. Klein, H. W.; Im, M. J.; Palm, D. *Eur. J. Biochem.* **1986**, 157, 107–114.
- Rekharsky, M. V.; Inoue, Y. J. Am. Chem. Soc. 2002, 124, 813–826.
- 18. Cho, A.; Ochoa Lara, K. L.; Yatsimirsky, A. K.; Eliseev, A. V. *Org. Lett.* **2000**, *2*, 1741–1743.
- 19. Eliseev, A. V. PCT WO 2004/050709, A2, 2004.
- Mlynarz, P.; Rudzinska, E.; Berlicki, L.; Kafarski, P. Curr. Org. Chem. 2007, 11, 1593–1609.
- 21. Cherenok, S.; Dutasta, J.-P.; Kalchenko, V. Curr. Org. Chem. 2006, 10, 2307–2331.
- 22. Siegel, B.; Pinter, A.; Breslow, R. J. Am. Chem. Soc. 1977, 99, 2309-2312.
- 23. Tarelli, E.; Lemercinier, X.; Wheeler, S. Carbohydr. Res. 1997, 302, 27-34.
- Inoue, H.; Kawashita, T.; Nakayama, H.; Tsuhako, M. Carbohydr. Res. 2005, 340, 1766–1772.
 Inoue, H.; Tone, N.; Nakayama, H.; Tsuhako, M. Carbohydr. Res. 2003, 338
- Inoue, H.; Tone, N.; Nakayama, H.; Tsuhako, M. Carbohydr. Res. 2003, 338, 2067–2074.
 Liv, V. Li, L. Li, Y. Y., Zhang, H. Y., Wada, T., Lang, Y. L. Org, Chem. 2003, 69.
- Liu, Y.; Li, L.; Li, X.-Y.; Zhang, H.-Y.; Wada, T.; Inoue, Y. J. Org. Chem. 2003, 68, 3646–3657.
- Liu, Y.; Li, B.; Han, B.-H.; Li, Y.-M.; Chen, R. T. J. Chem. Soc., Perkin Trans. 2 1997, 1275–1278.
- 28. Liu, Y.; Han, B.-H.; Chen, Y.-T. J. Phys. Chem. B 2002, 106, 4678-4687.
- 29. Pearce, A. J.; Sinaÿ, P. Angew. Chem., Int. Ed. 2000, 39, 3610-3612.
- Wang, W.; Pearce, A. J.; Zhang, Y.; Sinaÿ, P. Tetrahedron: Asymmetry 2001, 12, 517–523.
- 31. Guieu, S.; Sollogoub, M. J. Org. Chem. 2008, 73, 2819-2828.
- Bistri, O.; Sinaÿ, P.; Barbero, J. J.; Sollogoub, M. Chem.—Eur. J. 2007, 13, 9757–9774.
- Lecourt, T.; Herault, A.; Pearce, A. J.; Sollogoub, M.; Sinay, P. Chem.—Eur. J. 2004, 10, 2960–2971.
- 34. Bjerre, J.; Nielsen, E. H.; Bols, M. Eur. J. Org. Chem. 2008, 745-752.
- 35. López López, O.; Marinescu, L.; Bols, M. Tetrahedron 2007, 63, 8872-8880.
- Bjerre, J.; Hauch Fenger, T.; Marinescu, L. G.; Bols, M. Eur. J. Org. Chem. 2007, 704–710.
- 37. Marinescu, L. G.; Bols, M. Angew. Chem., Int. Ed. 2006, 45, 4590-4592.
- 38. Ortega-Caballero, F.; Bols, M. Can. J. Chem. 2006, 84, 650–658.
- 39. Ortega-Caballero, F.; Bjerre, J.; Lausten, L. S.; Bols, M. J. Org. Chem. 2005, 70, 7217–7226.

- 40. Ortega-Caballero, F.; Rousseau, C.; Christensen, B.; Petersen, T. E.; Bols, M. J. Am. Chem. Soc. 2005, 127, 3238-3239.
- 41. Marinescu, L.; Mølbach, M.; Rousseau, C.; Bols, M. J. Am. Chem. Soc. 2005, 127, 17578-17579.
- Rousseau, C.; Christensen, B.; Bols, M. Eur. J. Org. Chem. 2005, 2734–2739.
 Rousseau, C.; Christensen, B.; Petersen, T. E.; Bols, M. Org. Biomol. Chem. 2004, 2,
- 3446-3482.
- 44. Yu, K. L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979–982.

- 45. Freimund, S.; Baldes, L.; Huwig, A.; Giffhorn, F. Carbohydr. Res. 2002, 337, 1585–1587.
- Hernurt, T.; Mallet, J.-P.; Sinaÿ, P. C.R. Chim. 2003, 6, 87–90.
 Clausen, M. H.; Jørgensen, M. R.; Thorsen, J.; Madsen, R. J. Chem. Soc., Perkin Trans. 1 2001, 543–551.
- 48. McElroy, W. D.; Glass, B. Phosphorus Metabolism; Johns Hopkins University Press: Baltimore, MD, 1951; Vol. I.
- Remko, M.; Van Duijnen, P. T.; von der Lieth, C.-W. J. Mol. Struct. (Theochem) 2007, 814, 119–125.