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The development of new means of activating molecules and bonds for chemical reactions is a fundamental objective for
chemists. In this regard, visible-light photoredox catalysis has emerged as a powerful technique for chemoselective
activation of chemical bonds under mild reaction conditions. Here, we report a visible-light-mediated photocatalytic alcohol
activation, which we use to convert alcohols to the corresponding bromides and iodides in good yields, with exceptional
functional group tolerance. In this fundamentally useful reaction, the design and operation of the process is simple, the
reaction is highly efficient, and the formation of stoichiometric waste products is minimized.

V
isible-light sensitization is an attractive means to initiate
organic reactions1,2 because of the lack of absorbance of
visible light by organic compounds. This means that the

side reactions often associated with the use of high-energy UV
light are minimized3,4. Photocatalysts such as Ru(bpy)3Cl2 (bpy¼
2,2′-bipyridine) offer a means to selectively functionalize organic
molecules; however, their use in initiating chemical reactions rel-
evant to organic chemistry has been, until recently, very limited5.
In 2008, work on asymmetric aldehyde alkylations (MacMillan)6

and formal [2þ 2] cycloaddition reactions (Yoon)7 demonstrated
that visible-light photoredox catalysis was capable of initiating
powerful transformations in organic synthesis. The development
of new ways of activating molecules for chemical reactions is a fun-
damental objective in chemistry, both for target-oriented8 and
method-driven9,10 purposes. In particular, the development of new
methods in catalysis has brought to light new reactivity and/or
selectivity for synthetic transformations11–15. These selective pro-
cesses enable the synthesis of complex molecules without the neces-
sity for protective groups16 or unnecessary redox manipulations17,18.
Visible-light photoredox catalysis represents another mode of
selectively activating organic molecules towards chemical trans-
formations, and it has recently been shown to be applicable to a
variety of complex synthetic reactions19–25. We have been particu-
larly interested in using photoredox catalysis as a new means to acti-
vate carbon–halogen and carbon–hydrogen bonds via the reductive
quenching pathway available to photoredox catalysts.

The transformation of alcohols to the corresponding halides is
one of the most widely used reactions in organic synthesis. Several
methods are available, making use of various stoichiometric
reagents including thionyl chloride26, phosphorous halides27,28, phe-
nylmethyleniminium29, benzoxazolium30, Vilsmeier–Haack
reagents31, Viehe’s salts32 and cyclopropenium ions33. However,
these methods often require advanced preparation of the reagents
or harsh conditions. The mildest of these transformations, the
Appel reaction, uses PPh3 in combination with an electrophilic
halogen source such as CCl4, CBr4 or I2. Furthermore, triphenyl-
phosphine, and related compounds, are among the most ubiquitous
reagents in organic synthesis, functioning as two-electron reduc-
tants in the Mitsunobu, Wittig and Staudinger reactions, and in
the conversion of alcohols to halides. It is also one of the least
atom-economical reagents34, often affecting just a single atom
replacement during the course of a reaction. In addition, the

stoichiometric waste by-product triphenylphosphine oxide is often
difficult to remove from the reaction mixture. Supported phosphine
reagents can be used to alleviate the purification issue35; however,
these reactions still generate stoichiometric waste by-products.
Given the wide variety of reactions that can be accessed using
these reagents, the innovation of catalytic methods is a primary
goal for the development of environmentally friendly chemical
approaches for the nucleophilic substitution of alcohols36.

In this Article, we report a mild and operationally simple method
for the transformation of alcohols to the corresponding bromides
and iodides using 1.0 mol% of a visible-light-activated photocata-
lyst. Specifically, with respect to both reaction efficiency and sub-
sequent reaction purification, the minimization of stoichiometric
chemical waste makes this method an industrially viable and
green alternative to the existing methodologies (Fig. 1).

Exploring new reactivity concepts in the area of photoredox
catalysis is an integral part of our ongoing research endeavours.
Recently, we have demonstrated the reductive dehalogenation of
activated C–X bonds using the visible-light-activated photoredox
catalyst Ru(bpy)3Cl2. We further expanded the scope of photoredox
catalysis in C–C bond-forming reactions via intra- and intermolecu-
lar radical addition onto indoles, pyrroles and olefins22–24 and oxi-
dative aza-Henry reaction of tetrahydroisoquinolines25. All of
these transformations proceed through the reductive quenching of
the excited catalyst [Ru(bpy)3

2þ* or Ir(ppy)2(dtbbpy)þ*] and rely
upon the strong reducing properties of Ru(bpy)3

þ or Ir(ppy)2(dtbbpy)
[ppy¼ 2-phenylpyridine; dtbbpy¼ 4,4′-di-tert-butyl-2,2′-bipyridine].
Although oxidative quenching of Ru(bpy)3

2þ* provides the strong
oxidant Ru(bpy)3

3þ (1.27 V vs. saturated calomel electrode
[SCE])5, it has found very limited application in organic
synthesis37–39. This deficiency has also been noted in a recent com-
munication by the Yoon group detailing the intramolecular [2þ 2]
cycloaddition of electron-rich styrenes using the oxidative quench-
ing cycle40. Recent research has shown that reduction of tetra-
halomethanes (CCl4 and CBr4) in dimethylformamide (DMF)
using super stoichiometric quantities of Fe and Cu powder can
convert alcohols into the corresponding halides via a Vilsmeier–
Haack type reagent (Fig. 1)41. We therefore envisioned that
catalytic generation of Vilsmeier–Haack reagents could be achieved
under mild conditions through the oxidative quenching of
Ru(bpy)3

2þ* with polyhalomethanes CBr4 (E1/2¼20.30 V vs.
SCE)42 or CHI3 (E1/2¼20.49 V vs. SCE)42 in DMF, which
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eventually serves to activate the alcohol for a nucleophilic substitution
reaction. In this case, substitution by a nucleophilic halide would
provide a phosphine-free halogenation of alcohols using commercially
available and easily handled reagents, which can be manipulated
on the bench without the need for specialized equipment.

Results
To test our hypothesis, we used carbon tetrabromide as both the
halogen source and oxidative quencher in the photocatalytic cycle.
We were delighted to find that visible-light irradiation (blue light-
emitting diode (LED), lmax¼ 435 nm) of alcohol 1a (0.5 mmol)
and CBr4 (2.0 equiv.) in DMF in the presence of Ru(bpy)3Cl2
(1.0 mol%) at 25 8C for 5 h furnished the corresponding bromide
2a in 70% isolated yield. Further optimization of the reaction
found that the addition of an external halide source, such as NaBr
(2.0 equiv.), improved the yield to 90% (Fig. 2).

However, a solvent screen, including CH3CN, tetrahydrofuran
(THF) and CH2Cl2, failed to afford the desired product in any
appreciable yield. Meanwhile, control reactions also showed that
rigorous exclusion of light or the absence of Ru(bpy)3Cl2 failed to
produce any bromide product at room temperature. Low reactivity
(,20% conversion) was observed without Ru(bpy)3Cl2 only if the
reaction was heated at 80 8C for 12 h, presumably due to the liber-
ation of HBr. These results support the necessity of the photoredox
catalyst in the observed halogenation reaction.

The scope of the reaction under optimized conditions was
explored using a set of alcohols (Table 1). Primary alcohols
(entries 1–11) were smoothly transformed to their corresponding
bromides with 77–98% yields. The reaction is highlighted by out-
standing functional group tolerance and can be carried out in the
presence of ethers (entries 1–3), silyl ethers (entry 11), alkenes
(entries 3–5), alkynes (entry 9), carbamates (entries 5–8), esters
(entries 6, 12) and phenols (entry 10). Acyclic, secondary alcohols
were also viable substrates for the bromination reaction (entries

12 and 13), although the reaction rate was attenuated compared
to primary alcohols. Interestingly, the use of cyclic secondary
alcohol 1o resulted in the isolation of formate ester 4o as the sole
product, even after a prolonged reaction time (24 h), providing
information on potential reactive intermediates produced during
the course of the reaction (vide infra).

With the success of the bromination of alcohols, we next focused
on the complementary iodination reaction. To achieve iodination,
we simply changed the halogen source from carbon tetrabromide
to iodoform. Transformation of alcohols (entries 15–20) to their
corresponding iodides was achieved in similar yields as for bromina-
tion. As well as the good yields and wide scope of this process, func-
tional group tolerance was also remarkable. As presented in Table 1,
alkynes, alkenes (including sensitive cis-allylic alcohols), acid-sensi-
tive trisubstituted alkenes, electron-rich aromatics, carbamates, sul-
fonamides and esters were not affected under the conditions. Acid-
sensitive functional groups such as tert-butyl carbamates and silyl
ethers were also tolerated if 2,6-lutidine was added. The success of
the reaction in the presence of these acid-labile protective groups
makes this method very attractive and competitive with known
methods for the transformation of alcohols to halides.
Furthermore, it is also noteworthy that the halogenations can be
conducted on gram scales. In this case, tetrabutylammonium
bromide was used instead of sodium bromide to improve the solu-
bility in DMF. The bromination of alcohol 1c produced bromide 2c
in nearly identical yield compared with discovery-scale experiments,
further demonstrating the efficiency of the Ru(bpy)3Cl2/CBr4
photocatalytic system.

Mechanistic investigation and discussion
A key piece of mechanistic evidence was obtained from the observed
formate ester product 4o (Table 1, entry 14). Indeed, premature
quenching of the reaction of primary alcohols also led to the iso-
lation of formate ester by-products. To delineate the source of the
formate ester, we subjected alcohol 1f to the bromination conditions
in DMF-d7 and stopped the reaction after 4 h (Fig. 3a). Together
with the unconsumed starting material, the reaction provided a
mixture of bromide 2f and formate ester 4f, with 100% deuterium
incorporation. This result indicates that DMF is involved in this
photocatalytic transformation, and the reactive intermediate generated
may be an iminium species derived from the reaction of the alcohol
with an in situ generated Vilsmeier–Haack reagent. Furthermore,
the prolonged reaction times required for secondary alcohols in com-
parison to primary alcohols suggest that the reaction proceeds via an
SN2 pathway. This hypothesis was also supported by the isolation of
formate ester 4o, and none of the desired bromide, when 1o was
exposed to the same reaction conditions. The increased steric
demand of the cyclic alcohols appears to preclude the SN2 pathway.

Léonel has proposed a carbene mechanism, consistent with their
data, to account for the halogenation of alcohols using the
Fe/Cu/CBr4 system43. However, evidence collected to date for
photoredox reactions related to the chemistry in this paper are con-
sistent with single-electron processes and the corresponding radical
reactions. Indeed, we have found that CBr4 quenches the Ru(bpy)3

2þ

excited state, as indicated by luminescence quenching experiments
(Stern–Volmer constant, KSV¼ 14.4 M21), to provide the

Ru2+*

Ru2+

Ru3+

Ph3PPPh3

ROH CX4 RX

Phosphine-mediated halogenation (Appel reaction)
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Ru(bpy)3Cl2 (1.0 mol%), CBr4 or CHI3
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OH X
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Figure 1 | Phosphine-free halogenation of alcohols using visible-light

photoredox catalysis. Design of a catalytic Appel reaction using visible-light

photoredox catalysis. Encouraging literature was authored by Léonel and

coworkers on the stoichiometric metal-mediated reduction of

polyhalomethanes for the generation of alkyl halides from alcohols. The

photoredox catalyst, Ru(bpy)3Cl2 replaces stoichiometric Ph3P in the

halogenation reaction. DMF¼N,N-dimethylformamide.

Ru(bpy)3Cl2 (1.0 mol%)
CBr4 (2.0 equiv.)

DMF, blue LEDs, 
25 °C, 5 h: 70% 1a 2a

OH Br

Addition of NaBr (2.0 equiv.): 90%

Figure 2 | Ru(bpy)3Cl2 catalysed bromination of alcohol 1a. The reaction

afforded bromide product 2a in 70% yield without an external halide source.

With the addition of 2.0 equiv. NaBr, the yield was improved to 90%.
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tribromomethyl radical. To distinguish between the radical pathway
and a potential carbene mechanism, we conducted additional
experiments using radical traps (such as a-methylstyrene) as sub-
strates with Ru(bpy)3Cl2 (1.0 mol%) and CBr4 (2.0 equiv.) in
both DMF and CH3CN (Fig. 3b). In CH3CN, the Fe/Cu-mediated
reaction reported by Léonel provides only the corresponding

dibromocyclopropane product, consistent with the generation of
dibromocarbene. However, using Ru(bpy)3Cl2, dibromocyclopro-
pane product 6 was not observed in either solvent after 12 h.
Instead, compound 5b was the only product observed, a conse-
quence of the addition of tribromomethyl radical to styrene to
generate 5a followed by oxidation (by Ru3þ or CBr4) then

Table 1 | Conversion of alcohols 1 to bromides 2 or iodides 3 using photoredox catalysis.

Ru(bpy)3Cl2 (1.0 mol%)

CBr4 (2.0 equiv.) or CHI3 (2.0 equiv.)

NaBr (2.0 equiv.) or NaI (2.0 equiv.)
DMF, blue LEDs, 25–30 °C, 5–15 h 

R1 OH

R2
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R2

X

2 (X = Br) or 3 (X = I)1

Entry Substrate Product Yield (%)* Entry Substrate Product Yield (%)*
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*Isolated yield after purification by chromatography on SiO2; †The reaction was performed on a 5 mmol scale, 14% of starting material was recovered; ‡2,6-lutidine (3.0 equiv.) was added to buffer HX (X¼ Br, I) that
was produced; §No bromide product was observed.

ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.949

NATURE CHEMISTRY | VOL 3 | FEBRUARY 2011 | www.nature.com/naturechemistry142

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/compfinder/10.1038/nchem.949_comp5b
http://www.nature.com/doifinder/10.1038/nchem.949
www.nature.com/naturechemistry


elimination. These results support a mechanism of single-electron
reduction of CBr4 using photocatalyst Ru(bpy)3Cl2 to initiate the
halogenation reaction. With respect to these results and our lumi-
nescence quenching experiments, we propose a mechanism in
which the single-electron reduction of CBr4 by Ru(bpy)3

2þ* forms
Ru(bpy)3

3þ and †CBr3. Trapping of the electron-deficient radical
by DMF generates a highly stabilized radical 7, which can be oxi-
dized by Ru(bpy)3

3þ (1.27 V vs. SCE) to form the iminium inter-
mediate 8, regenerating the photocatalyst Ru(bpy)3

2þ. Alternatively,
7 can be oxidized by reaction with another molecule of CBr4 as
observed in atom-transfer radical chain reactions44. At this stage,
two reasonable pathways may be considered for the formation of
product 2. The first proceeds with direct addition of alcohol 1 to
iminium 8 to form intermediate 10, which can undergo SN2 displa-
cement by bromide to provide the final product (path A). In the
second pathway, addition of the bromide ion to 8 produces the
Vilsmeier–Haack reagent 9, which reacts with alcohol 1 to afford
the intermediate 10 (path B). In addition, COBr2 is generated as
a by-product in both pathways, and it has been shown to react
with DMF to produce 9 with liberation of CO2 (ref. 45), funnelling
both of the reaction pathways to the common intermediate 10,
which upon premature quenching with water can provide the
observed formate ester by-product 4 (Fig. 3c).

Although the data up to this point were consistent with an SN2
displacement of the activated iminium ester, treatment of the

optically pure alcohol 11 (99% e.e.) under the optimized reaction
conditions provided bromide 12 as a racemic mixture, provoking
a reevaluation of our mechanistic interpretation of this transform-
ation (Fig. 4a). However, the analysis of isolated bromide 12,
after only 35% conversion of 11, indicated that a stereospecific
displacement was occurring, as 12 was found to be still highly
optically enriched (90% e.e.). This result provided further evidence
against a solvolysis mechanism. To further satisfy our hypothesis
that an SN1 mechanism was not viable, chiral HPLC analysis
(Chiralcel OD, 5% hexanes/isopropanol) of the formate ester 13
(after saponification with K2CO3 in MeOH) confirmed that racemi-
zation was also not occurring at the stage of our proposed reactive
iminium intermediate. In other words, solvolysis or degenerate
displacement of the activated intermediate by DMF was not
occurring. On the basis of these observations, the activated inter-
mediate appears to be configurationally stable and racemization
can be attributed to the SN2 displacement of bromide in 12 with
NaBr (ref. 45). This displacement and subsequent racemization is
observed in the time-dependent loss of optical activity during the
subjection of optically enriched 12 (99% e.e.) to the reaction
conditions (Fig. 4b).

Conclusions
We have developed a catalytic, phosphine-free method for the bro-
mination and iodination of alcohols using visible-light
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Figure 3 | Mechanistic investigation of the photocatalytic halogenation. a, 100% deuterium incorporation in 4f indicates that DMF is involved in the

transformation, and the reactive intermediate may be an iminium species derived from the reaction of alcohol with a Vilsmeier–Haack type reagent.

b, Trapping of the reactive species with a-methylstyrene (in both DMF and CH3CN) led to product 5b, indicating that the reaction is proceeding via a radical

pathway, but the lack of observation of product 6 ruled out the possibility of the carbene pathway using photocatalysis, in contrast to the Fe/Cu halogenation

system of Léonel. c, A plausible mechanism is proposed, starting with the oxidative quenching of Ru(bpy)3
2þ by CBr4 to give †CBr3, which combines with

DMF to form intermediate 7. Oxidation by Ru(bpy)3
3þ or CBr4 gives the Vilsmeier–Haack type reagent, which reacts with alcohol 1 followed by nucleophilic

displacement to give bromide product 2, or upon premature aqueous workup to give formate ester 4.
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photocatalysis. The reaction is highlighted by its exceptional func-
tional group tolerance, avoidance of stoichiometric oxidized phos-
phine by-products, and generation of the halogenated compounds
in high yields under mild reaction conditions. Moreover, the cost-
effective nature of Ru(bpy)3Cl2, low catalyst loadings, operational
simplicity and activity under visible-light irradiation makes this
transformation industrially valuable.

Methods
A flame-dried 10 ml Schlenk flask with a rubber septum and magnetic stir bar was
charged with tris(2,2′-bipyridyl)ruthenium(II) chloride hexahydrate (5.0 mmol,
0.010 equiv.), the corresponding alcohol (0.50 mmol, 1.0 equiv.), carbon tetrabromide
(1.0 mmol, 2.0 equiv.) and sodium bromide (1.0 mmol, 2.0 equiv.). The flask was
purged with a stream of nitrogen, and dry DMF (5.0 ml) was added with a syringe. The
mixture was degassed by the freeze–pump–thaw procedure (three cycles), and placed in
a 250 ml beaker with blue LEDs wrapped inside (the reaction reaches temperatures
between 25 and 30 8C upon exposure to the blue LEDs). The reaction mixture was
stirred until it was complete (as judged by thin layer chromatography analysis). The
mixture was poured into a separatory funnel containing 25 ml Et2O and 25 ml H2O.
The layers were separated and the aqueous layer was extracted with Et2O (2 × 25 ml).
The combined organic layers were washed with saturated Na2S2O3 solution, brine,
dried (MgSO4) and concentrated in vacuo. The residue was purified by
chromatography on silica gel to afford the desired product.
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