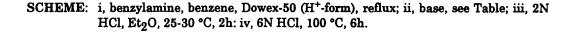
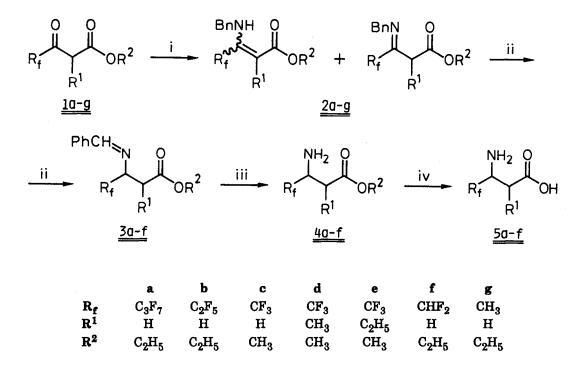
Transamination of Fluorinated B-Keto Carboxylic Esters. A Biomimetic Approach to B-Polyfluoroalkyl-B-amino Acids.

Vadim A. Soloshonok^{*}, Alexander G. Kirilenko, and Valery P. Kukhar'

Institute of Bioorganic Chemistry and Petrol Chemistry, Ukrainian Academy of Sciences, Kiev, 253160, Kharkovskoe Shausse 50, Ukraine.


Giuseppe Resnati


CNR-Centro di Studio per le Sostanze Organiche Naturali, Dipartimento di Chimica, Politecnico, via Mancinelli 7, 20131 Milano, Italy.

ABSTRACT: The base-catalyzed isomerization of N-benzylimines (or enamines) of β -polyfluoroalkyl- β -ketocarboxylic esters cleanly affords the N-benzylidene derivatives of β -polyfluoro- β -aminocarboxylic esters which are hydrolyzed to corresponding amino acids in high overall yields.

Fluorine containing amino acids have found a wide range of applications in enzymology and pharmaceutical, medicinal, agricultural chemistry as a consequence of their usefulness in studying biochemical processes and modifying biological activity.¹ Whereas the literature is rich in methodologies for the preparation of fluorinated α -amino acids, examples of synthetic procedures for β -amino acids are notably rare.² In living organisms α -keto acids are routinely transformed into α -amino acids.³ The key-step of the process is a 1,3-proton shift which allows the interconversion of two isomeric imines. Chemical syntheses which mimic these biochemical transformations usually require severe reaction conditions⁴ and this problem has to be overcome in order to have preparatively useful processes. No satisfactory results are reported in the literature for the synthesis of β -amino acids from corresponding β -ketoacids.

Our interest in studying the chemistry of fluorinated β -amino acids⁵ and in proving the usefulness of fluorinated β -ketoesters as versatile synthesis⁶ prompted us to develop the efficient synthesis of β -fluoroalkyl- β -amino acids here described.

Specifically, we have found that β -perfluoroalkyl- β -ketoesters 1a-g gave corresponding enamines 2a-g in 50-87% yields by treatment with benzylamine under acid catalysis.^{7,8} Unexpectedly we have found that in the presence of triethylamine perfluoropropyl- and perfluoroethyl-enamines 2a,b easily underwent two 1,3-proton shifts at room temperature and gave corresponding Schiff bases of β -amino acids 3a,b (Table, entries 1-4). About 98% convertion of 2a,b was achieved in 35h and 42h, respectively, at 22 °C. The heating of the reaction mixture greatly accelerated isomerization. The trifluoromethyl containing enamine 1c required elevated temperature for complete conversion to occur within a convenient time span.⁹ Similary α -alkyl substituted compounds 2d,e were isomerized into the Schiff bases 3d,e (Table, entries 5-7). The reaction proceeded with low diastereoselectivity affording an approximate 2:1 mixture of diastereoisomers at the adjacent carbon stereocentres.

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,3-diazabicyclo[2.2.2] octane (Dabco) were more effective in catalyzing the isomerization. However, higher yields and cleaner reaction mixtures generally resulted from the use of triethylamine.

т	ał	d	e
-		-	~

Entry	R _f	R ¹	R ²	1,3-Proton shift ^a			Yields (%) ^b	
				Base ^c	temp./(°C)	time/(h)	3a-f	5a-f
1	C_3F_7	н	C_2H_5	Et ₃ N	r.t.	35	72	83
2	C_3F_7	н	C_2H_5	Et ₃ Nd	70	6	70	-
3	C_2F_5	н	C_2H_5	Et ₃ N	r.t.	42	87	70
4	C_2F_5	H	C_2H_5	Et ₃ Nd	70	8	74	-
5	CF ₃	н	CH ₃	Et ₃ N	90	12	76	84
6	CF ₃	CH_3	CH ₃	Et ₃ N	r.t.	40	94	75
7	CF ₃	C_2H_5	CH ₃	Et ₃ N	r.t.	38	86	78
8	CHF ₂	Н	C_2H_5	Et ₃ N	90	24	no reac.	-
9	CHF_2	н	C_2H_5	DBUe	110	21	61	67
10	CH ₃	н	C_2H_5	$\mathbf{DBU^f}$	150	24	no reac.	-

^aConversion of starting material >95%. ^bYields are based on isolated, analytically pure products. ^cExcept where noted, reactions were done in Et₃N solution. ^d1:1 mixture of Et₃N/hexane. ^eEnamine/DBU ratio 1:0,1. ^fEnamine/DBU ratio 1:1.

The reaction was more difficult with enamine 2f bearing less electron withdrawing difluoromethyl group. Thus, triethylamine was ineffective to catalyze isomerisation of 2f to 3f. Howewer, a complete conversion was observed when DBU was used (Table, entries 8, 9).

In contrast to fluorine-containing enamines 2a-f, hydrocarbon enamine 2g could not be transformed into corresponding Schiff base, even in the presence of more than 1 equivalent of DBU at 150 °C (Table, entry 10).

It is possible to conclude that there is a qualitative correlation between the behaviour of the enamines **2a-g** and the electron-withdrawing effets (σ_m) of substituent in the β -position,¹⁰ the order of reactivity in fact parallels σ_m values: **2a>2b** $(\sigma_m=0.47)>$ **2c**,d,e(0.44)>>2f(0.29).

 β -Fluoroalkyl- β -aminoacids 5a-f can be produced by one step hydrolysis of Schiff bases 3a-f in 6N HCl. Howewer, yields were higher when 2N HCl was used for splitting off the benzylidene groups followed by ester hydrolyses with 6N HCl. Purification of the intermediated amino esters 4a-f was not necessary. The free amino acids 5a-f were purified by chromatography on ion-exchange column (Dowex-50).

In conclusion, we have reported a versatile and efficient method for the preparation of β -fluoroalkyl- β -amino acids via transamination of fluorinated β -ketocarboxylic esters with

benzylamine. In view of the ready availability of starting compounds and the simplicity of the synthetic procedure, this protocol represents a useful, new entry to fluorine-containing β -amino acids.

The overall transformation here described is a reductive amination. It is performed resorting to prototropic shifts while the unique reported procedure for the reductive amination of trifluoromethyl ketones employs hydride reagents.¹¹ The two procedure can therefore be considered complementary.

Acknowledgments. We are obliged to Prof. Pierfrancesco Bravo (Dipartimento di Chimica, Politecnico di Milano, Italy) for providing us with a starting fluorinated material.

References and notes

- Welch, J. T.; Eswarakrischnan, S., Fluorine in Bioorganic Chemistry, J. Wiley and Sons, New York, 1991. Bravo, P.; Resnati, G., Tetrahedron Asymm., 1990, 1, 661. Welch, J. T., Tetrahedron, 1987, 43, 3123. Sieler, M.; Jung, M. J.; Koch-Waser, Enzyme-Activated Irreversible Inhibitors, Elsevier, Amsterdam, 1988, p. 396.
- Kukhar', V. P.; Yagupolskii, Yu. L.; Soloshonok, V., A., Russ. Chem. Rev., 1990, 59, 89. Kukhar', V. P.; Soloshonok, V. A., ibid., 1991, 60, 850.
- Dunathan, H. C.; Davis, L.; Kury, P. G.; Kaplan, M., Biochemistry, 1968, 7, 4532. Kochetkov, K. A.; Belikov, V. M., Russ. Chem. Rev., 1987, 56, 1832. Staunton, J., Primary metabolism, a mechanistic approach, Clarendon Press, Oxford, 1978.
- 4. Guthrie, R. D.; Jaeger, D. A.; Meister, W.; Cram, D. J., J. Am. Chem. Soc., 1971, 93, 5137. Jaeger, D. A.; Cram, D. J., *ibid.*, 1971, 93, 5153.
- Soloshonok, K.; Svedas, V. K.; Kukhar', V. P.; Kirilenko, A. G.; Rybakova, A. V.; Solodenko, V. A.; Galaev, I. Yu.; Kozlova, E. V.; Shishkina, I. P.; Galushko, S. V., SYNLETT, 1993, in press.
- 6. Bravo, P.; Diliddo, D.; Resnati, G., Heterocycles, 1992, 34, 1703.
- α-Unsubstituted-β-ketocarboxylic esters 1a-c,f,g afforded exclusively (Z)-enamines 2ac,f,g probably as a consequence of a stabilizing intramolecular hydrogen bond. α-Substituted-β-ketocarboxylic esters 1d,e gave a mixture of imine, (Z)- and (E)-enamines in approximate 3.5:1.2:1.0 ratio. Ahlbrecht, H.; Henk, H., Chem. Ber., 1976, 109, 1516. Tomioka, K.; Ando, K.; Takemasa, Y.; Koga, K., J. Am. Chem. Soc., 1984, 106, 2718.
- 8. All isolated compounds showed expected ¹H, ¹⁹F NMRs, IR, mass spectra. Correct microanalyses (C, H) were obtained for new compounds.
- 9. A typical procedure is as follows. A solution of (Z)-enamine 2c (91g, 0.35 mol) in triethylamine (150 mL) was refluxed for 12h. Triethylamine was evaporated in vacuum (40-50 °C, 10-15 mmHg) and distillation of the residue (136-139 °C, 10 mmHg) yielded 70g (76%) of the Shiff base 3c. $\delta_{\rm H}$ (DMSO_{d-6}): 2.78, 2.92 (ABX system, 2H, J=16.5, 9.6, 3.3 Hz, CH₂), 3.52 (m, 3H, CH₃), 4.29 (ddq, 1H, J=9.6, 3.3, 7.5 Hz, CH), 7.35-7.45 (m, 5H, CH_{ar}), 8.47 (s, 1H, CH=N). The described synthetic sequence allowed the preparation of more than 50g of β -trifluoromethyl- β -alanine 5c in one experiment, thus proving the efficiency and reliability of the methodology.
- 10. Yagupolskii, L. M.; Il'chenko, A, Y.; Kondratenko, N. V., Russ. Chem. Rev., 1974, 43, 64.
- 11. Barney, C. L.; Huber, E. W.; McCarthy, J. R., Tetrahedron Lett., 1990, 31, 5547.

(Received in UK 10 February 1993)