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ABSTRACT: The synthesis of an octa-armed 24-membered cyclic octaamine (1) is
reported. When 4-benzyl-1,4,7,10-tetraazacyclododecane-2,6-dione (3a) was prepared
by the reaction of diethylenetriamine with diethyl N-benzyliminodiacetate (2), a
dimeric macrocycle (3b) was obtained as a byproduct in a 5% yield. An octa-armed 24-
membered cyclic octaamine (1), named Cosmosen, was prepared via the reductive
amination and reduction of 3b. The binding constants for the 1:1 and 2:1 (Ag+/1)
complexation of 1 were estimated to be ca. 7.9 and 13.9, respectively, by titration
experiments using UV−vis spectrometry in methanol and chloroform (v/v, 9:1)
solutions at 298 K.

The macrocyclic polyamines of the series [3m]aneNm (m >
6) have attracted substantial attention not only because

of the possibility to bind more than one metal ion within the
macrocyclic cavity1−17 but also because of the development of
anion coordination chemistry.18,19 In the case of 12-membered
macrocyclic polyamines, the formation of mononuclear
complexes is preferred. Unlike 12-membered macrocyclic
polyamines, as the size of these macrocycles increases, their
flexibility increases, and the coordination features of their
metal complexes depend on the metal ions.8−17 Additionally,
the stabilities of the binuclear complexes increase in the case of
large macrocyclic polyamines. The crystal structures of
dinuclear complexes of [24]aneN8 and [30]aneN10 with
Cu(II), Zn(II), Pd(II), and Ni(II) have already been
reported.11−17

The general method for synthesizing large macrocyclic
polyamines has been reported to include the cyclization of the
appropriate polyamine, as described by Atkins.20 The reported
synthetic reactions have a large number of steps and occur
under vigorous reaction conditions. Additionally, the overall
yield seriously decreases as the size of the macrocycle
increases. Another proposed synthetic method for a large
macrocycle is 2:2 cyclization. The syntheses of Schiff and non-
Schiff base-type large macrocycles based on 2:2 cyclization
have been abundantly reported.21−29 Usually, the synthesis of
macrocyclic compounds is carried out under high-dilution
conditions to increase the yield of the cyclic compounds and
decrease the formation of polymers.27−34

Our group has synthesized tetra-armed cyclens with
aromatic side arms and their silver(I) complexes. When

silver(I) complexes were formed, the aromatic side arms in the
armed cyclens covered the Ag+ incorporated into the cyclen
cavities via Ag+−π and CH−π interactions, similar to an
insectivorous plant (Venus flytrap).35−41 We called the armed
cyclens argentivorous molecules.42 We also reported that a
silver(I) complex of a double-armed 24-membered macrocycle,
which consisted of two nitrogen atoms and six sulfur atoms,
formed a 2:1 (Ag+:ligand) complex.27 In the silver(I) complex,
each aromatic side arm encapsulated the silver(I) ion from the
opposite side. Therefore, we were interested in the
conformation of the aromatic side arms in an octa-armed 24-
membered macrocyclic octaamine when they formed com-
plexes with multiple silver ions. In addition, we thought that
the analysis of these conformational changes of the aromatic
side arms would provide helpful information for the develop-
ment of a new argentivorous molecule.
During the preparation of 4-benzyl-2,6-dioxocyclen (3a in

Scheme 1), we accidentally found a benzyl-substituted 24-
membered macrocyclic byproduct. Following our previous
works on tetra-armed cyclens, we started to prepare an octa-
armed 24-membered cyclic octaamine. A tetra-armed 24-
membered macrocyclic tetraoxooctaamine43 and an octa-
armed 24-membered octameric cyclic peptoid44 have been
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reported (Figure 1). However, there is no example of an octa-
armed 24-membered cyclic octaamine. Since Cosmos has eight

flower petals, we named the octa-armed cyclic octaamine
Cosmosen. We also report the binding constants for 1:1 and 1:2
complexes (1/Ag+), which were measured by UV−vis titration
experiments.
The five-step synthesis of target compound 1, an octa-armed

cyclen with benzyl groups, starting from benzylamine is shown
in Scheme 1. The N-benzyl cyclen is an important starting
material to adopt two or more aromatic rings in the side arms.
Although Tweedle and co-workers have reported the synthesis
of 3a under high-dilution conditions in ethanol,45 the 2:2
cyclization product (3b) has not been reported. In this paper,
we attempted to synthesize compound 3b as a key precursor,
which was expected to be obtained as a byproduct. A mixture
of 3a and 3b was obtained by 1:1 and 2:2 reactions of 2 with
diethylenetriamine under high-dilution conditions at 70 °C for
7 days. The majority of 3a in the reaction mixture was
obtained by recrystallization from methanol. After the crystals
were filtered, the filtrate was concentrated, and the remaining
reddish-yellow oil was separated by silica gel column
chromatography. The second fraction was collected and
concentrated. The oily substance was recrystallized from
methanol to obtain 3b as a white powder in a 5% yield. It is
important to note that the 2:2 cyclization product was
obtained in a 10% yield when it was converted to the 1:1
cyclization product. The resulting products 3a and 3b were

characterized by 1H and 13C{1H} NMR spectra, fast atom
bombardment (FAB) mass spectrometry, and elemental
analysis (Figures S1 and S2). The 1H NMR spectra of 3a
and 3b clearly show the successful separation of the mixture’s
two components (Figures S1 and S2, respectively). When the
1H NMR spectrum of 3b was compared with that of 3a (Figure
2), the H3 proton signal of 3b was shifted downfield (+0.2

ppm) because the H3 protons in 3a were located in the
shielding region of the neighboring CO groups;39 on the
other hand, the H3 protons in 3b were not. As we mentioned
above, 3a has already been reported without 3b.45 Finally, the
FAB mass spectra of 3a and 3b are m/z 291 (M + H+) and m/
z 581 (M + H+), respectively, confirming that they are the 1:1
and 2:2 cyclization products. Our result is the first instance of a
2:2 cyclization by the reaction of diethylenetriamine with a
diethyl iminodiacetate derivative.
The benzyl side arms were attached to the tetraoxo 24-

membered cyclic octaamine 3b by reductive amination. The
reaction of 3b, benzaldehyde, and sodium triacetoxyborohy-
dride (NaBH(OAc)3) in 1,2-dichloroethane for seven days
gave compound 4. The purification of 4 was conducted via

Scheme 1. Synthesis of Cosmosen (1)

Figure 1. Examples of previously reported armed 24-membered cyclic
tetraoxo and octaoxo macrocyclic octaamines.

Figure 2. Comparison between the 1H NMR spectra (aliphatic
region) of 3a and 3b in CD2Cl2.
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recrystallization from methanol instead of column chromatog-
raphy. The 1H and 13C{1H} NMR spectra of 4 are shown in
Figure S3. The structure of 4 was also characterized by single-
crystal X-ray analysis (Figures 3 and S4). The colorless single

crystal of 4 suitable for X-ray analysis was obtained by
recrystallization from methanol. Compound 4 crystallizes in
the triclinic space group P1̅ (Table S1). In the crystal structure,
two crystallographically different macrocycles with similar
conformations are arranged side by side with an adjacent
macrocycle. The cyclen unit of 4 is quite planar and elongated,
and the four benzyl arms show a 1,2-alternate conformation. It
was confirmed by NMR and mass spectra as well as single-
crystal X-ray diffraction data that the 2:2 cyclization reaction
was again accomplished. As we expected, the H3 protons in 4
were not located in the shielding area of the neighboring C
O groups (Figure S3a).
The reduction of 4 by diisobutylaluminum hydride (DIBAL-

H) gave the reduction product 5. The isolation of 5 was
performed by silica gel column chromatography (chloroform/
methanol/ammonia = 5:1:0.5) as a reddish yellow oil in a 66%
yield. Compound 5 was characterized by 1H and 13C{1H}
NMR spectra, FAB-MS, and elemental analysis (Figure S5).
Ag+ ion-induced cold ESI mass and UV−vis spectral changes

were carried out to investigate the complexation behavior
toward Ag+ ions. We performed cold electrospray ionization
mass spectrometry (CSI-MS) experiments by varying the Ag+

content (0.0−3.0 equiv) in the presence of 5, and the
formation of complexes with different stoichiometries was
confirmed (Figure S6). The mass spectrum of 5 with 1.0 equiv
of Ag+ was dominated by fragment ion peaks for the 1:1
complex at m/z 811, indicating that the species present was [5
+ Ag+]+. When 2.0 equiv of Ag+ was added, a new fragment ion
peak arising from the 1:2 species, [5 + 2Ag+ + OTf−]+, was
observed at m/z 1067.
To estimate the binding constants between 5 and the Ag+

ions, a UV−vis titration experiment was performed by varying
the silver(I) content (0.0−2.5 equiv) in the presence of 5 (8.0
× 10−4 M) in a mixture of methanol and chloroform (v/v, 9:1)
(Figure S7a). The stability constants (logβ1 and logβ2) for the
1:1 and 1:2 (5/Ag+) complexations were calculated by
HyperSpec software46 to afford 6.5(3) and 13.0(5),
respectively, suggesting the formation of the stable 1:2 complex
(Figure S7b).
The octabenzyl-armed 24-membered cyclic octaamine (1)

was prepared by the reductive amination of 5 with
benzaldehyde in the presence of NaBH(OAc)3 in 1,2-
dichloroethane. The reaction mixture was separated and
purified by silica gel column, affording 1 as a pale yellow oil
in a 22% yield. The structure of 1 was confirmed by 1H and
13C{1H} NMR spectra, CSI-MS, and elemental analysis
(Figures 4 and S8). To the best of our knowledge, the
compound is the first example of an octa-armed cyclic
octaamine. Structural information on the Ag+ complex with 1
in a solution was obtained by Ag+ ion-induced CSI-MS and
UV−vis titration experiments (Figures 5 and S9 and S10,
respectively).
A CSI-MS titration experiment was performed by varying

the Ag+ content (0−3.0 equiv) in the presence of 1 (Figures 5
and S9). When 0.5 equiv of Ag+ was added to 1, a fragment ion
peak for [1 + Ag+]+ appeared at m/z 1172. The mass spectrum
of 1 with 1.0 equiv of Ag+ was monopolized by peaks for the
1:2 (1/Ag+) complex at m/z 639 and 1427, indicating that the
species were [1 + 2Ag+]2+ and [1 + 2Ag+ + OTf−]+,
respectively. The addition of over 1.5 equiv of Ag+ led to a
new set of multi-silver(I) complexes. In particular, as more
excess Ag+ was added, the peak intensity of high equivalents of
the silver complex increased (Figure 5) because these high

Figure 3. Crystal structure of the precursor macrocycle 4. Hydrogen
atoms are omitted.

Figure 4. 1H NMR (400 MHz, CDCl3) spectrum of 1.
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equivalents of silver complexes would form clusters under the
ESI mass conditions.
A UV−vis titration experiment was performed by varying the

silver(I) content (0.0−2.5 equiv) in the presence of 1 (4.1 ×
10−5 M) in a methanol and chloroform (v/v, 9:1) solution at
298 K. According to the addition of AgOTf, the absorption
increased (Figure S10a) due to the complexation of the cyclen
ring with Ag+. As shown in the titration curve at 229 nm
(Figure S10a), the absorbance of 1 gradually increased
between 0.0 and 2.0 equiv of silver(I). Above 2.0 equiv., the
absorbance shows a much smaller increase, suggesting the
formation of a stable 1:2 (ligand-to-metal) complex as a
primary product. From the titration data, the stability constants
for the 1:1 and 1:2 (1/Ag+) complexation between silver(I)
and 1 were obtained using HyperSpec software,46 and the
logβ1 and logβ2 values were estimated to be 7.9(2) and
13.9(3), respectively (Figure S10b). The binding constants
suggest the formation of 1:2 complex that was more stable than
the 5/Ag+ complex due to the Ag+−π interactions between the
silver(I) ions incorporated in the cyclic amine and the aromatic
side arms.
In conclusion, we have developed a synthetic method for the

preparation of an octa-armed 24-membered cyclen (Cosmosen,
1). In the case of the key precursor 3b, we successfully
obtained it as a byproduct via a 2:2 cyclization reaction. The
synthetic reaction process of the 24-membered cyclen is mild
and short compared to the reported method for [24]aneN8.
The intermediates and final compound were obtained at
reasonable yields. We believe that 1 can be used as a key
pseudo-rotaxane compound, which consists of a cationic
macrocyclic wheel molecule and an anionic axial molecule.

The study of rotaxane with a cationic wheel and an anionic axis
is now in progress.

■ EXPERIMENTAL SECTION
General. All reagents were of standard analytical grade and were

used without further purification. Melting points were obtained with a
Mel-Temp capillary apparatus and were not corrected. The FAB mass
spectra were obtained using a JEOL 600 H mass spectrometer. 1H
and 13C{1H} NMR spectra were measured on a JEOL ECP400
spectrometer (400 MHz). UV−vis spectra were recorded on a JASCO
V-650 spectrophotometer. Stability constants were calculated using
HyperSpec ver. 1.1.33.46 Cold ESI mass spectra were recorded on a
JEOL JMST100CS mass spectrometer. The elemental analysis was
carried out on a Yanako MT-6 CHN microcorder.

Synthesis of 4-Benzyl-1,4,7,10-tetraazacyclododecane-2,6-
dione (3a) and 4,16-Dibenzyl-1,4,7,10,13,16,19,22-octaazacy-
clotetracosane-2,6,14,18-tetraone (3b). Compound 2 (16.7 g,
60.0 mmol) and diethylenetriamine (9.69 g, 93.9 mmol) were
dissolved in MeOH (1.9 L). Then, the mixture was stirred and
refluxed at 70 °C (in a heating mantle) under a nitrogen atmosphere
for seven days. Then, the solvent was evaporated, and white
macrocycle 3a was afforded as a white powder by recrystallization
from methanol. The residue was finally purified by column
chromatography (chloroform/methanol/aqueous ammonia =
5:1:0.06) to obtain 3a and 3b. Flash column chromatography
afforded products 3a and 3b as white solids in a 22% yield (3.91 g)
and pale yellow solids in a 5% yield (0.93 g), respectively.

3a. mp: 155.4−156.0 °C. 1H NMR (400 MHz, CD2Cl2): δ 7.39−
7.27 (m, 7H), 3.81 (s, 2H), 3.20−3.16 (m, 8H), 2.74 (t, J = 5.7 Hz,
4H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.7, 137.7, 129.3, 129.1,
128.3, 62.9, 60.8, 45.4, 38.1. FAB-MS (matrix DTT/TG = 1:1) m/z
291 ([M + H]+, 100%). Anal. Calcd for [C15H22N4O2+0.5H2O]: C,
60.18; H, 7.74; N, 18.71. Found: C, 60.22; H, 7.64; N, 18.96.

3b. mp: 181.6−182.9 °C. 1H NMR (400 MHz, CD2Cl2): δ 7.46 (t,
J = 5.1 Hz, 4H), 7.38−7.27 (m, 10H), 3.72 (s, 4H), 3.36 (q, J = 5.6

Figure 5. CSI mass spectra of 1 (9.2 × 10−4 M) in the presence of different molar ratios of AgOTf in a mixture of CHCl3 and CH3OH (1:19) at
298 K.
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Hz, 8H), 3.16 (s, 8H), 2.73 (t, J = 5.5 Hz, 8H). 13C{1H} NMR (100
MHz, CDCl3): δ 171.1, 137.7, 129.5, 129.1, 128.4, 60.9, 59.2, 48.9,
39.2. FAB-MS (matrix DTT/TG = 1:1) m/z 581 ([M + H]+, 30%).
Anal. Calcd for C30H44N8O4+0.25H2O: C, 61.57; H, 7.66; N, 19.15.
Found: C, 61.43; H, 7.67; N, 19.04.
Synthesis of 4,10,16,22-Tetrabenzyl-1,4,7,10,13,16,19,22-

octaazacyclotetracosane-2,6,14,18-tetraone (4). Compound
3b (0.17 g, 0.295 mmol) and benzaldehyde (0.430 g, 4.05 mmol)
were added to 1,2-dichloroethane (25 mL), and the mixture was
stirred for six days at room temperature under a nitrogen atmosphere.
Then, sodium triacetoxyborohydride (1.40 g, 6.62 mmol) was added
to the reaction mixture, and the mixture was stirred for one day at
room temperature under a nitrogen atmosphere. A saturated sodium
hydrogen carbonate solution (10 mL) was added, and the mixture was
extracted with chloroform (20 mL, three times). The organic layer
was separated, dried over anhydrous sodium sulfate, filtered, and
evaporated. The residue was subjected to column chromatography
(chloroform/methanol = 10:1) to remove impurities. Silica gel
column chromatography (chloroform/methanol/aqueous ammonia =
5:1:0.2) was performed to produce purified 4. Yield: 56% (0.126 g).
mp: 153.8−154.2 °C. 1H NMR (400 MHz, CD2Cl2): δ 7.32−7.22
(m, 20H), 7.11 (t, J = 5.0 Hz, 4H), 3.70 (s, 4H), 3.58 (s, 4H), 3.28
(q, J = 5.6 Hz, 8H), 3.10 (s, 8H), 2.55 (t, J = 5.7 Hz 8H). 13C{1H}
NMR (100 MHz, CDCl3): δ 170.6, 138.7, 137.5, 129.2, 129.1, 128.5,
128.4, 127.7, 127.4, 59.7, 59.0, 57.8, 53.8, 37.4. FAB-MS (matrix
Glycerin) m/z 761 ([M + H]+, 20%). Anal. Calcd for
C44H56N8O4+0.5H2O: C, 68.64; H, 7.46; N, 14.55. Found: C,
68.83; H, 7.41; N, 14.47.
Synthesis of 1,7,13,19-Tetrabenzyl-1,4,7,10,13,16,19,22-oc-

taazacyclotetracosane (5). Ten milliliters of a diisobutylaluminum
hydride solution in THF (1 M) was slowly added to compound 4
(0.113 g, 0.148 mmol) at 0 °C. Then, the mixture was stirred for one
day at room temperature under an argon atmosphere. The reaction
mixture was cooled to 0 °C. Benzene (27 mL) and sodium fluoride
(1.47 g, 35.1 mmol) were added, and the mixture was stirred for 1 h at
room temperature. The reaction mixture was cooled again to 0 °C,
and 4 mL of water was added to the reaction mixture. The reaction
mixture was stirred for one day at room temperature and then
evaporated with chloroform (30 mL, three times). The organic layer
was separated, dried over anhydrous sodium sulfate, filtered, and
evaporated. The residue was subjected to column chromatography
(chloroform/methanol/aqueous ammonia = 5:1:0.5) to obtain 5 in a
reddish yellow oil state. Yield: 66% (0.068 g). mp: 153.8−154.2 °C.
1H NMR (400 MHz, CD2Cl2): δ 7.31−7.19 (m, 20H), 3.57 (s, 8H),
2.61−2.53 (m, 32H). 13C{1H} NMR (100 MHz, CDCl3): δ 139.1,
129.0, 128.3, 127.1, 59.6, 53.3, 47.1. FAB-MS (matrix Glycerin) m/z
707 ([M + H]+, 15%). Anal. Calcd for C44H64N8+0.3 CHCl3: C,
71.82; H, 8.75; N, 15.12. Found: C, 71.65; H, 8.70; N, 14.86.
Synthes is o f 1 ,4 ,7 ,10 ,13 ,16 ,19 ,22-Octabenzy l -

1,4,7,10,13,16,19,22-octaazacyclotetracosane (1). Compound
5 (0.61 g, 0.087 mmol), benzaldehyde (0.10 g, 0.96 mmol), and
sodium triacetoxyborohydride (0.21 g, 0.98 mmol) were added to 1,2-
dichloroethane (25 mL), and the mixture was stirred for eight days at
room temperature under a nitrogen atmosphere. Saturated sodium
hydrogen carbonate solution (40 mL) was added, and the mixture was
extracted with chloroform (20 mL, three times). The organic layer
was separated, dried over anhydrous sodium sulfate, filtered, and
evaporated. The residue was subjected to column chromatography
(chloroform/methanol/aqueous ammonia = 10:1:0.06) to remove
impurities. After silica gel column chromatography (chloroform/
methanol = 40:1) was performed, compound 1 was obtained as a pale
yellow oil. Yield: 22% (0.020 g). 1H NMR (400 MHz, CD2Cl2): δ
7.23−7.17 (m, 40H), 3.47 (s, 16H), 2.57 (m, 32H). 13C{1H} NMR
(100 MHz, CDCl3): δ 139.7, 128.8, 128.1, 126.7, 59.4, 52.6. CSI-MS
m/z 1065.88 ([M + H]+). Anal. Calcd for C72H88N8·0.6CHCl3: C,
76.68; H, 7.85; N, 9.85. Found: C, 76.57; H, 7.64; N, 9.72.
X-ray Crystallographic Analysis. X-ray data were collected on a

Bruker SMART APEX II ULTRA diffractometer equipped with
graphite monochromated Mo Kα radiation (λ = 0.71073 Å) generated
by a rotating anode. The cell parameters for the compounds were

obtained from a least-squares refinement of the spot. Data collection,
data reduction, and semiempirical absorption correction were carried
out using the software package APEX2.47 All of the calculations for
the structure determination were carried out using the SHELXTL
package.48 In all cases, nonhydrogen atoms were refined anisotropi-
cally, and hydrogen atoms were placed in idealized positions and
refined isotropically in a riding manner along with their respective
parent atoms. The relevant collected crystal data and refinement data
for the crystal structures are summarized in Table S1. CCDC
2071938 (4) contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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