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Triarylaminium Radical Cation Promoted Coupling of Catharanthine with Vindoline: 
Diastereospecific Synthesis of Anhydrovinblastine and Reaction Scope 

Byron A. Boon and Dale L. Boger* 

Department of Chemistry and The Skaggs Institute of Chemical Biology, 10550 N. Torrey Pines Road, 
La Jolla, California 92037 

Abstract. A new triarylaminium radical cation promoted coupling of catharanthine with vindoline is 
disclosed, enlisting tris(4-bromophenyl)aminium hexachlororantimonate (BAHA, 1.1 equiv) in aqueous 
0.05 N HCl/trifluoroethanol (1–10:1) at room temperature (25 °C), that provides anhydrovinblastine in 
superb yield (85%) with complete control of the newly formed quaternary C16’ stereochemistry. A 
definition of the scope of aromatic substrates that participate with catharanthine in the BAHA-mediated 
diastereoselective coupling reaction and simplified indole substrates other than catharanthine that 
participate in the reaction are disclosed that identify key structural features required for participation in 
the reaction, providing a generalized indole functionalization reaction that bears little structural 
relationship to catharanthine or vindoline.  

 

 

 

 

INTRODUCTION 

As a result of their clinical use as antitumor drugs, vinblastine (1) and vincristine (2) are the most widely 

recognized members of the bis-indole Vinca alkaloids (Figure 1).1,2 They were originally isolated in 

trace quantities from Cantharanthus roseus1 and their biological activity was among the first to be 

shown to arise from targeting tubulin, resulting in disruption of microtubulin dynamics, inhibition of 

microtubule formation, and mitotic block that is still regarded today as one of the more successful 

oncology drug targets.3 We reported the total synthesis of vinblastine and its unnatural enantiomer in 

studies that are complementary to earlier pioneering efforts.4-11 Our approach enlisted a powerful 

biomimetic Fe(III)-promoted coupling of vindoline (3) with catharanthine (4) as a key step.12 When 

combined with a subsequent in situ Fe(III)-promoted hydrogen atom transfer (HAT) oxidation reaction 

that we developed for the introduction of the C20’ tertiary alcohol,11,13,14 this provided a remarkable two-

step, one-pot procedure for use in the synthesis of vinblastine that we additionally utilized in the total 

synthesis of a series of related natural products, including vincristine (2),11 and in the preparation of an 

extensive series of analogs (Figure 1).4d  
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Figure 1. Natural products and Fe(III)-promoted coupling. 
 

 Since its discovery by Kutney,12 insights into this coupling reaction have been disclosed although 

there are mechanistic features of this reaction that are still not completely defined. The Fe(III)-promoted 

coupling reaction is conducted in acidic aqueous solvent and exhibits a remarkable stereochemical 

selectivity for formation of a quaternary center that produces exclusively the natural C16’ diastereomer 

at 25 °C  in yields as high as 90% (Figure 1). This stands in contrast to the alternative Polonovski 

fragmentation5,6 (Figure 2), which is not nearly as diastereoselective. Although this reaction favors 

formation of the natural C16’ stereochemistry at –40 °C (5:1), it provides mainly the opposite unnatural 

C16’ stereochemistry at 0 or 25 °C (1:3).15 Moreover, solvent (H2O) or nucleophile (Cl–) trap of putative 

reactive intermediates are not observed under the acidic aqueous conditions of the Fe(III)-promoted 

reaction and catharanthine is recovered unchanged when subjected to the reaction conditions in the 

absence of vindoline (2 h, NaBH4 workup).15,16 This indicates that the azabenzfulvene intermediate 

central to the Polonovski fragmentation and related couplings may not be a subsequent (further 
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oxidized) participant in the Fe(III)-promoted coupling reaction. We have suggested that the Fe(III)-

mediated coupling reaction itself is radical mediated, involving reversible generation and subsequent 

reaction of a persistent, charge-separated cation radical (Figure 2).16 Consistent with this proposal, we 

were able to demonstrate that simple electron-deficient radicals cleanly and regioselectively add to 

vindoline at the same C15 site. An intramolecular one-electron two-center bonding interaction between 

the radical site alpha to the methyl ester and the iminium carbon in the fragmented radical cation B or 

an electrophilic fully delocalized radical cation best formulated as C may impose a mechanistic as well 

as conformational stereochemical control over the reaction in which the upper face of the radical is not 

only sterically disfavored, but that requires the reaction to proceed with exclusive inversion of the 

catharanthine C16’ stereochemistry, thus accounting for the diastereospecific nature of the coupling 

reaction. Combined, this proposal suggests that the initial indole radical cation A and its fragmented 

cation radical B or the delocalized radical cation C may possess a unique blend of stability, persistence, 

electrophilic character, and conformational properties at room temperature to effectively react 

selectively with vindoline.  
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Figure 2. BAHA-promoted single-electron oxidative coupling. 
 
 In addition to other Fe(III) salts (FeCl3, 90% > Fe2(SO4)3, 71% > Fe2(ox)3, 0%), we have shown 

that additional oxidants (Mn(OAc)3, 79% and Ce(NH4)2(NO3)6, 51%) under near identical reaction 

conditions also promote the coupling of catharanthine and vindoline to provide 5.16 In addition, 

electrochemical,17 photochemical,18 and enzymatic19 coupling reactions have been described, and a 

photoredox-catalyzed fragmentation of catharanthine has been reported.20 Herein, we disclose studies 

on a new complementary triarylaminium radical cation promoted coupling reaction of catharanthine and 

vindoline and initial studies on the scope of the reaction.  

 Triarylaminium radical cation salts have found use in a variety of transformations, including 

protecting group manipulations (PMB ether, dithioacetal, and dithioketal deprotections), glycosidation 
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reactions of phenylseleno- and ethylthioglycosides, radical rearrangements, as well as a number of 

radical cation mediated pericyclic reactions including [4+2],21 [2+2],22 and [3+2]23 cycloaddition 

reactions.24 In addition, triarylaminium radical cation salts have been shown to oxidize a variety of 

tertiary amines and electron rich aromatics.25 Based on this precedent, we anticipated that 

triarylaminium radical cation salts might also promote the coupling of catharanthine and vindoline, 

leading to the generation of anhydrovinblastine (5). If successful, this would constitute the first example 

of the use of an organic oxidant for promoting the vindoline/catharanthine coupling reaction, provide a 

useful alternative to inorganic oxidants, further clarify key elements of the reaction mechanism, 

potentially expand the scope of such reactions, permit the use of more carefully tuned oxidants, and 

further extend the synthetic utility of organic single-electron oxidants like BAHA.  

RESULTS AND DISCUSSION 

Initial studies were directed at promoting the oxidative coupling of catharanthine with vindoline 

using tris(4-bromophenyl)aminium hexachloroantimonate (BAHA, 6) as a stochiometric radical cation 

oxidant. The use of organic solvents such as CH2Cl2, MeCN, EtOAc, CHCl3, and hexafluoroisopropanol 

(HFIP) did not lead to productive coupling reactions in the presence of BAHA (Figure 3, entries 1-5). 

However, the formation of anhydrovinblastine (5) was observed in a modest 18% yield in 2,2,2-

trifluoroethanol (TFE, entry 6). This notable discovery represented the first use of an organic single-

electron oxidant for promoting the coupling of catharanthine and vindoline, providing an alternative to 

inorganic oxidants. Reactions conducted in water gave low yields of coupling product (7%, entry 7), but 

the reaction yield improved to 45% in aqueous TFE (entry 8). Appreciable yields of 5 (46%) were 

obtained when the reaction was conducted in aqueous 0.05 N HCl (entry 9) where it is thought 

protonation of the tertiary amines protect their competitive oxidation. Significantly, a combined 0.05 N 

aqueous HCl/TFE solvent system (10:1) afforded anhydrovinblastine in 83% yield, likely due to 

increased solubility of the starting materials in the acidic, aqueous reaction media (entry 10). Mixed 

solvent systems with higher ratios of HFIP or TFE to aqueous 0.05 N HCl provided similar reaction 

Page 5 of 16

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



yields (entries 11 and 12). Although not extensively investigated, use of alternative acids (H2SO4, TFA 

vs HCl), while supporting the reaction, did not further improve the coupling reaction (entries 13 and 14).  

 

Figure 3. Examination of reaction solvent.  
 
 Based on a proposed mechanism, we had anticipated the reaction to require 2 equiv of oxidant 

for full conversion to product (Figure 2). Yet, the reaction of catharanthine with vindoline in the presence 

of 1.1 equiv of BAHA (6) provided 5 in 85% yield (Figure 4, entry 1). With this observation, we came to 

appreciate that the counterion SbCl6–, for which a variety of oxidation reactions are known,26 was acting 

as a second milder oxidant responsible for the presumed oxidation of the subsequent vindoline addition 

product that leads to the final aromatization. To confirm the effect of counterion and to further examine 

alternative triarylaminium radical cations, we prepared a series of triarylaminium radical cation salts. 

Salts 7 and 8 differ from BAHA in that they contain non-oxidizing BF4
– and PF6

– counterions.27 Reactions 

conducted with 1.1 equiv of 7 or 8 gave low yields of coupling product, reflecting the integral 

participation of the SbCl6– counterion (entries 3 and 5). In contrast to BAHA, yields nearly doubled when 

2 equiv of oxidants 7 or 8 were employed (entries 4 and 6). These results are consistent with the 

presumption that the BF4
– and PF6

– counterions are non-participatory counterions, whereas the SbCl6– 
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counterion found in BAHA serves as a second mild oxidant to support the coupling reaction. Reaction 

with 1.1 equiv of the less powerful oxidant 9, differing from BAHA (6) in the substitution of the aryl group 

(Me vs Br) gave low yields of anhydrovinblastine (34%, entry 7), whereas increasing this oxidants 

loading to 2 equiv increased the yield to 74% (entry 8). The efficient reactivity of BAHA (6) relative to 

oxidant 9 may be attributed to the difference in oxidation potential of the tris(4-bromophenyl)aminium 

radical cation in BAHA (6, E°' = +1.10 V vs SCE in MeCN) versus the tris(4-methylphenyl)aminium 

group in oxidant 9 (E°' = +0.78 V vs SCE in MeCN).28 The combination of effective oxidation potential 

and counterion established BAHA as the oxidant of choice for the remainder of the study.  

 

Figure 4. Examination of the triarylaminium radical cation. 
 
 We turned our attention to the coupling reaction of catharanthine with substrates other than 

vindoline. A variety of electron-rich aryl and heteroaromatic coupling partners were found to participate 

in effective coupling reactions with catharanthine promoted by BAHA (Figure 5). Remarkably, each 

reaction provided a single diastereomer (diastereospecific), matching the natural C16’ stereochemistry 

of vinblastine. Each reaction is also regioselective favoring the site anticipated for electrophilic radical 

addition or aromatic substitution of the catharanthine coupling partner. These results indicate that the 
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stereochemistry of the coupling reaction is controlled by catharanthine alone and that it is independent 

of the structure of its reaction partner (e.g.; vindoline). Moreover and because BAHA and especially the 

related reagents 7 and 8 produce the single-electron oxidation product as a free discrete radical cation 

(i.e., C), there is no need to invoke an inner shell electron transfer or metal-bound intermediate in the 

analogous reactions mediated by inorganic oxidants (e.g.; Fe(III), Mn(III), Ce(IV)) to account for the 

remarkable stereochemical outcome of the reactions.16 The scope of the Polonovski fragmentation-

based coupling and related reactions that proceed through an azabenzfulvene has not been examined. 

The limited examples that are reported display an analogous regioselectivity and a similar requirement 

for electron-rich aromatic substrates, but the reactions exhibit a temperature-dependent stereochemical 

outcome, producing predominately (e.g., 5:1) but not exclusively the natural C16’ stereochemistry at 

low temperatures (e.g.; –40 °C) and the opposite unnatural C16’ stereochemistry at higher 

temperatures (e.g.; 1:>3 at 0–25 oC °C).15 The diastereospecific nature of now both the BAHA as well 

as the FeCl3 promoted reactions are analogous and involves exclusive inversion of the catharanthine 

C16’ stereochemistry that we now can more confidently suggest occurs through requisite backside 

attack on the electrophilic delocalized radical cation C. These reactions are now even more clearly 

mechanistically distinguishable from the Polonovski fragmentation and related couplings where 

temperature-dependent conformational features of the catharanthine-derived azabenfulvene controls 

the variable reaction diastereoselectivity.15 Coupling reactions conducted with BAHA with the electron-

rich aromatics N,N-dimethylaniline (10b), 1,3-dimethoxybenzene (10c), and indole (10g) gave a single 

product in high yield. Sterically hindered electron-rich aryl substrates also gave reaction products 10e 

and 10f in excellent yield and diastereoselectivity. Moderate yields were observed with the coupling of 

pyrrole (10h) and furan (10i). Highly electron-rich substrates such as 10a gave low yields due to 

competing oxidative oligomerization reactions of the aryl substrate. Whereas strongly electron-rich 

aromatic substrates were found to participate in the coupling reaction effectively, less electron-rich 

substrates (e.g.; anisole), neutral aromatic substrates (benzene and thiophene), and electron-deficient 

aromatic substrates (e.g.; methyl benzoate) failed to couple with catharanthine.  
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Figure 5. Catharanthine coupling with aromatic substrates. 
 

A variety of substrates other than catharanthine were also examined for their coupling with 

vindoline (Figure 6). Synthetic modification of the catharanthine C16 substituent provided a series of 

substrates with alternative C16 electron-withdrawing groups (11a-c) as well the compound 11d with 

simple C16 hydrogen substitution.29 Catharanthine derivatives with electron-withdrawing C16 

substituents participated in effective BAHA-promoted coupling reactions with vindoline to provide 14a-

c (58-76%).29 In contrast, compound 11d, bearing no C16 substituent, provided a low yield (8%) of 

coupling product 14d, indicating that electron-withdrawing C16 substituents are required to support the 

coupling reaction, presumably stabilizing the radical cation intermediate (Figure 2). Like catharanthine, 

each of these modified C16 catharanthine derivatives underwent coupling with vindoline with complete 

diastereoselectivity. Substantially expanding the scope of the reactions, simplified indole derivatives 12 

and 13, lacking the catharanthine bicyclic structure and tertiary amine, also underwent successful 

coupling reactions with vindoline. With 12 and 13, the reaction products were formed as a mixture of 

diastereomers, highlighting the role catharanthine plays in the substrate controlled diastereoselectivity. 

Significantly, these results indicate that a single-electron indole oxidation is sufficient for the coupling 
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reaction to occur and that the oxidation reaction does not require the presence or participation of the 

catharanthine tertiary amino group.16,30 In fact, it is thought that the use of the aqueous acidic reaction 

conditions for the coupling reaction serves to protect the substrate tertiary amines from oxidation by 

virtue of their protonation. Like catharanthine, the reactions of 12 and 13 are conducted at room 

temperature in acidic aqueous solution (0.05 N aq HCl/CF3CH2OH) without competitive nucleophilic 

solvent (H2O) or counter anion (Cl-–) participation, suggesting that the reactions are also unlikely to 

proceed through an indole-derived azabenzfulvene derived from a second single-electron oxidation. 

Since the reaction no longer requires the reduction of the catharanthine-derived iminium ion in the 

reaction product, NaBH4 is no longer required for reductive workup of the reactions.31 

 

Figure 6. BAHA-promoted coupling of vindoline with catharanthine derivatives and simpler indoles. 
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Finally, we examined the reaction of a simplified substrate (13) other than catharanthine with a 

coupling partner other than vindoline (eq 1). The simplified indole 13 displayed the identical reactivity 

observed with catharanthine itself, coupling with an electron-rich aromatic substrate (1 equiv) and 

providing 17 as the only observed product in good yield (57%) under mild reaction conditions (1.1 equiv 

BAHA, 2 h, 25 oC) in the mixed reaction solvent system (1:1 aq 0.05 N HCl/TFE). Interestingly and 

although not optimized or investigated in detail, this coupling also proceeded effectively (40%) in TFE 

alone. Presumably this reflects in part the role aqueous acid plays in protonation protection of oxidizable 

amines, which is not needed for this set of substrates. More broadly, it suggests this generalized 

coupling reaction using BAHA as an organic oxidant, unlike the analogous FeCl3 mediated reactions, 

can be utilized in the organic media alone where the latter is solubility limited. Significantly, these 

combined studies define a generalization of the reaction to substrates that bear no close structural 

resemblance to either catharanthine or vindoline, providing powerful new methodology for the synthesis 

of indole-containing products structurally unrelated to vinblastine. Notably, the methodology represents 

quaternary center generation adjacent to indole by a reaction mediated by BAHA and conducted at 

room temperature. 

 
 

CONCLUSIONS 

A powerful new triarylaminium radical cation promoted coupling of catharanthine with vindoline is 

disclosed that is conducted in aqueous 0.05 N HCl/TFE (2–10:1) at room temperature, enlisting BAHA 

(1.1 equiv). The reaction provides anhydrovinblastine in excellent yield (85%) with complete 

regioselectivity and diastereoselectivity for formation of the newly generated quaternary C16’ 

stereochemistry. The diastereospecific nature of now both the BAHA as well as the analogous FeCl3 

promoted reactions, which proceed with exclusive inversion of the catharanthine C16’ stereochemistry, 

is such that we can now more confidently conclude that they are mechanistically distinguishable from 
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and do not involve the same intermediates observed in the Polonovski fragmentation and related 

couplings. Moreover, whereas temperature-dependent conformational features of the intermediate 

catharanthine-derived azabenfulvene controls the condition-dependent diastereoselectivity of the latter, 

the former displays characteristics of a diastereospecific reaction in which we suggest the 

stereochemical outcome is mechanistically imposed by the requisite backside attack of vindoline on the 

electrophilic delocalized radical cation C. An examination of alternative aromatic substrates other than 

vindoline and simplified indole substrates other than catharanthine defined the scope of this 

organoradical cation promoted reaction, identifying key structural features required for participation in 

the reaction. This provided a generalized indole functionalization reaction and powerful new 

methodology for the synthesis of indole-containing natural products as well expanded opportunities for 

the preparation of previously inaccessible vinblastine analogs. Such extensions of the studies are in 

progress and will be disclosed in due course. 
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