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Montmorillonite K10 was found to catalyze the Michael addition of indoles or pyrrole with

nitroalkenes efficiently under solventless condition. The short reaction time, simple workup,

and excellent yields were noteworthy. The green catalyst could be reused for three runs

without considerable variation in yield.
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INTRODUCTION

The Michael reaction has attracted much attention as one of the most
important carbon–carbon (C–C) bond-formation reactions in organic synthesis.
Particularly, it is a completely atom-efficient procedure.[1] Among the Michael
acceptors, nitroalkenes are very attractive, because the nitro group is one of the most
electron-withdrawing groups known.[2] The use of the nitroalkenes as Michael
acceptors opens the way to synthetically useful C–C bond-forming reactions.[3]

The nitro group can be transformed subsequently into a range of different function-
alities.[2] The adducts of indole with nitroalkenes are versatile intermediates for the
synthesis of many biologically active indole derivatives.[4–6] Usually, Michael
addition of arenes to nitroalkenes was catalyzed by Lewis acid or organocatalysts.
Several catalysts, such as Bi(NO3)3,

[7] I2,
[8] SmI3,

[9] CeCl3 � 7H2O-NaI-SiO2,
[10] and

H3PW12O40
[11] have emerged for the Michael addition. However, to the best of

our knowledge, there are few reports about the reaction catalyzed by solid catalysts
in solvent-free conditions.[10,12,13] Because of the importance of indole derivatives
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and increasing environmental concerns, it is desirable to develop new, metal-free,
efficient, and cost-effective catalysts for the Michael addition. Thus, we attempted
to carry out the reaction on solid mineral supports without any solvent.

On the other hand, montmorillonite clays are known for their acidic properties
and have generated widespread interest in synthetic organic chemistry.[14–17] In parti-
cular, they make the reaction convenient, more economical, and environmentally
benign. Their importance is likely to increase with demanding environmental legis-
lation, public pressure, and the drive toward clean technology. To our knowledge,
there is no report on the Michael addition of nitroalkene to indole catalyzed by
montmorillonite K10. In a continuation of our interest in the development of K10
as catalyst in organic synthesis,[18] we report herein our results on the neat reaction
of nitroalkenes with indoles or pyrrole in the presence of K10.

RESULTS AND DISCUSSION

The Michael reaction of indole (1.0mmol) and b-nitrostyrene (1.1mmol) was
performed first at room temperature in the presence of K10; it was very slow, but
3-(20-nitro-10-phenylethyl)-1H-indole 4a was obtained in 87% yield after 10 h
(Table 1, entry 1). When conventional heating was employed, the reaction remark-
ably accelerated (Scheme 1; Table 1, entry 5). It was completed within 15min in
91% yield. Then, the addition of indole to b-nitrostyrene was chosen as the test reac-
tion to explore the effect of catalyst loading (Scheme 1). As shown in Table 1,
although more catalyst could reduce the reaction time, the yield was not improved
accordingly (Table 1, entry 6). The product was obtained in comparable yield even
if 0.2 g of K10 was used, albeit the reaction time was a bit longer (Table 1, entry 3).
Much less catalyst could not bring favorable results in terms of reaction time and
yield (Table 1, entry 2). Thus, 0.2 g of K10 was sufficient to promote the reaction
of indole and b-nitrostyrene.

To gain more insight into the scope and limitations of the catalyst, different
indoles were reacted with b-nitrostyrenes, and 3-substituted indole derivatives were
obtained exclusively in good to excellent yields (Scheme 2; Table 2, entries 1–3 and
5–13). An exception was that the electrophilic substitution occurred at the 2-position
of 3-methyl indole (Table 2, entry 4). The interesting regioselectivity demonstrates

Table 1. Effect of catalyst loading of K10 on the synthesis of 3-(20-nitro-10-phenylethyl)-
1H-indole (4a)a

Entry Catalyst loading (g) Time Yield (%)b

1 0.5 10 h 87c

2 0.1 35min 82

3 0.2 20min 94

4 0.4 15min 93

5 0.5 15min 91

6 1 10min 87

aReaction conditions: indole 1.0mmol, b-nitrostyrene 1.1mmol, oil bath heating at 60 �C.
bIsolated yield.
cPerformed at room temperature.
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that the 3-position of the indole is the preferred site for electrophilic attack, as
expected[19–21] Moreover, the electronic and steric effects were also examined. The
electronic density of the heterocycle plays an important role in the reaction. For
example, an indole with an electron-withdrawing group, such as 5-bromoindole,
required fairly longer times than those of indoles carrying electron-donating groups,
and the yield was less (Table 2, entry 2). It may be that the bromo atom reduces the
overall nucleophilicity.[10,13] On the other hand, neither electron-donating nor
electron-withdrawing groups in the nitroalkene moiety had significant effect on
the yield and reaction time (Table 2, entries 1, 11 and entries 6, 7).

Furthermore, we found that the hindered substituent near the reaction center
of indole had a negative effect on the reaction. For example, the reaction of 4-
methylindole with b-nitrostyrene needed less time and resulted in greater yield than
that of 4-benzyloxyindole (Table 2, entries 5 and 6). It is noteworthy that the substi-
tution of 3-methylindole occurred at the 2-position, which was probably formed by
initial attack of b-nitrostyrene at C-3, followed by a 1,2-shift in the intermediate cat-
ion.[19] This may explain why the reaction of 3-methylindole required longer time
(Table 2, entry 4). In addition, the reaction of 3-methylindole with b-nitrostyrene
completed smoothly at room temperature in 12 h (Table 2, entry 4), which was much
less than the other catalyst in this case (2 days).[8]

It is known that the a-position of pyrrole is the electron-rich site for Michael
addition.[20,21] As shown in Table 3, pyrrole also readily reacted with several
nitroalkenes under the same reaction conditions in good to excellent yields
(Scheme 2; Table 3, entries 1–5), affording the corresponding 2-((10-aryl-20-nitro)-
ethyl)pyrrole. As shown in Tables 2 and 3, 1,4-bis-(trans-2-nitrovinyl)-benzene
derived from benzenedicarboxaldehyde could also afford the corresponding Michael
adducts (Table 2, entry 9; Table 3, entry 4).

Scheme 2. The Friedel–Crafts alkylation of indoles and pyrrole with nitroalkenes.

Scheme 1. The Michael reaction of indole and b-nitrostyrene.
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Table 2. Michael addition of indoles to nitroalkenes catalyzed by K10 under solvent-free conditionsa

Entry Indole Nitroalkene Product Product label Time (min) Yield (%)b

1 4a 20 94

2 4b 60 83

3 4c 20 94

4 4d 60 (12 h)c 86 (88)c

5 4e 20 92

6 4f 60 84

7 4g 75 81

8 4h 30 92

9 4i 30 84

10 4j 45 85

11 4k 15 96

(Continued )
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Finally, the reusability of the catalyst was investigated. When the reaction
of indole with b-nitrostyrene was completed, the catalyst montmorillonite K10
was filtered off, washed with acetone, dried in an oven at 110 �C for 3 h, and sub-
jected to a second run with the same substrate. After three runs, the recovered
catalyst was satisfactory and did not give considerable variation in yield
(Table 4, entries 2–4).

Table 2. Continued

Entry Indole Nitroalkene Product Product label Time (min) Yield (%)b

12 4l 60 87

13 4m 45 91

aReaction conditions: indole 1.0mmol, b-nitrostyrene 1.1mmol, oil bath heating at 60 �C.
bIsolated yield.
cThe reaction was carried out at room temperature.

Table 3. Michael addition of pyrrole to nitroalkenes catalyzed by K10 under solvent-free conditionsa

Entry Pyrrole Nitroolefin Product Product label Time (min) Yield (%)b

1 5a 20 93

2 5b 35 89

3 5c 30 84

4 5d 30 93

5 5e 35 90

aReaction conditions: pyrrole 1.5mmol, b-nitrostyrene 1.0mmol, oil bath heating at 60 �C.
bIsolated yield.
cThe reaction was carried out at room temperature.
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CONCLUSION

In summary, we have demonstrated a novel, highly efficient, and environmen-
tally benign protocol for Friedel–Crafts alkylation of indole or pyrrole with several
nitroalkenes under solventless conditions. This procedure offers the advantages such
as high yields, simple workup, green and reusable catalyst, dry reaction and short
reaction time, which makes it an attractive addition to the present methodology
for the synthesis of these important heterocycles.

EXPERIMENTAL

Montmorillonite K10 was purchased from Alfa-Aesar company. It was used as
obtained.

General Procedure for the Synthesis of Compound 4a

Indole (0.12 g, 1mmol), b-nitrostyrene (0.17 g, 1.1mmol), and montmorillonite
K10 (0.2 g) were added to a vial. Then the vial was submerged into a hot oil bath
(about 60 �C) for an appropriate time. On completion of the reaction (monitored
by thin-layer chromatography, TLC), the catalyst was filtered off, and the reaction
mixture was washed with acetone. The filtrate was evaporated to dryness prior to
column chromatography (acetone–petroleum ether 1:8 as eluent) to give 0.25 g of
pure 4a (yield 94%). The structures of all products were confirmed by 1H NMR
and 13C NMR.
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