

WILEY-VCH

Harnessing cascade Suzuki-cyclization reactions of pyrazolo[3,4*b*]pyridine for the synthesis of tetracyclic fused heteroaromatics

Hubert Lavrard,^[a] Florence Popowycz*^[a]

Abstract: Numerous procedures have been described for the functionalization of pyrazolo[3,4-*b*]pyridine, mainly nucleophilic substitutions on C-4 position and esterifications/amidations on C-5 position. Thus, we report herein a robust, easy to implement protocol for the Suzuki cross-coupling reaction of the chloroarene **2**, followed

Introduction

Over the years, the pyrazolo[3,4-*b*]pyridine has emerged as a multivalent scaffold involved in numerous pharmaceutically active compounds. A broad range of medicinal compounds such as analgesics,¹ anti-inflammatories,² vasodilators,³ anxiolytics,⁴ anti-diabetics,⁵ anti-tumoral agents,⁶ anti-retroviral⁷or anti-leishmanial⁸ molecules display this moiety, which is structurally related to purine bases⁹ and allopurinol.¹⁰ Such biological importance, along with the availability of pyrazolo[3,4-*b*]pyridines anxiolytic drugs like cartazolate, etazolate, tracazolate, BAY 41-2272 cardiovascular therapeutic¹¹ or GSK-3 inhibitor (Figure 1) make them desirable compounds for the screening of new biological activities.

Figure 1. Biologically active pyrazolo[3,4-b]pyridines

In addition to their wide potential, synthesis of the pyrazolo[3,4b]pyridine core is usually straightforward, relying on condensation reactions of either 1,3-dicarbonyl or α,β unsaturated carbonyl compounds with 5-aminopyrazoles,¹² or cyclization of hydrazines with properly-substituted derivatives of

 [a] H. Lavrard, F. Popowycz
 Université Lyon, Institut National des Sciences Appliquées, Université Claude BernardLyon1, CNRS, ICBMS, UMR 5246, 20, Avenue Albert Einstein, F-69621, Villeurbanne, France.
 E-mail: florence.popowycz@insa-Iyon.fr

Supporting information for this article is given via a link at the end of the document.

by *in situ* lactonisation to provide chromenopyrazolopyridines. The extension of the scope of the reaction to fused naphthyridinones is also reported. This strategy granted the access to ten original pyrazolopyridine-embedded tetracyclic compounds.

nicotinic acid.13 Some noteworthy improvements to these syntheses have been attained in this field, namely with the use of chromenones or isoflavones as Michael acceptors,14 multicomponent reactions,¹⁵ or hetero-Diels-Alder/microwave induced reactions.¹⁶ In specific cases, the pyrazolo[3,4b]pyridine pattern is inserted in more complex polycyclic molecular systems.^{14a,15a} Among them, the Gould-Jacobs reaction¹⁷ represents a high-yielding, easily scalable, userfriendly synthesis starting from inexpensive materials, which gives access to the 4-chloro-pyrazolo[3,4-b]pyridine 2. A four step synthesis (Scheme 1) starting from the condensation of phenylhydrazine with ethyl 2-cyano-3-ethoxyacrylate, followed by an acidic mediated decarboxylation afforded 5-aminopyrazole 1. Subsequent addition on diethyl ethoxymethylenemalonate followed by chlorinative cyclization in POCI₃ afforded 4-chloropyrazolo[3,4-b]pyridine 2 in 64% for 4 steps.

Scheme 1. Gould-Jacobs synthesis of pyrazolo[3,4-*b*]pyridine.

Despite the already proven prevalence of the pyrazolo[3,4*b*]pyridine scaffold, very few synthetic methods have been reported for the introduction of molecular diversity at the C-4 position on derivative **2**. The only published examples being classical nucleophilic substitutions with a broad range of alcohols, amines, anilines, or hydrazines¹⁸ apart from one patent by Jablonski which describes the sole example of a Suzuki cross-coupling reaction on a similar substrate.¹⁹ Due to the cooperative electron-withdrawing effects of the intracyclic nitrogen and the ester moiety, the C-Cl bond is weakened, and prone to oxidative addition on transition metal complexes, which usually needs electron-rich ligands or harsh reaction conditions.²⁰ Therefore, application of the Suzuki cross-coupling reaction²¹ with this chloropyridine moiety would afford an interesting functionalization method.

Results and Discussion

Some cross-coupling reactions on activated chloroheteroarenes have been already successful.²² Our preliminary experiments focused on three sets of cross-coupling conditions (Table 1) which were already described. The medium yields (77-84%) obtained by Jablonski¹⁹ under standard conditions (toluene, EtOH, 5 mol% Pd(PPh₃)₄) seemed surprisingly low. When these conditions were re-evaluated on the simple phenylboronic acid (Table 1, entry 1), the reactions were unreproducible, and yields down to 70%. Although no dehalogenation product **5** was observed, the main impurity was the ether product **6** coming from nucleophilic substitution on C-4 position by ethanol. Since the lability of the chlorine atom was hampering the coupling reaction, replacement of EtOH by less nucleophilic ¹BuOH increased the yield up to 97% (Table1, entry 4), without any trace of ether side product **6**.

Table 1. Pyrazolo[3,4-b]pyridines in Suzuki cross-coupling								
3a	Catalyst	Base	Solvent	Temp	Yield			
1.2 eq.	5 mol% Pd(PPh ₃) ₄	Na ₂ CO ₃	Toluene EtOH/water	75°C	70%			
1.2 eq.	2 mol% Pd(PPh ₃) ₄	Na ₂ CO ₃	Toluene EtOH/water	75°C	63%			
1.2 eq.	1 mol% Pd(PPh ₃) ₄	Na ₂ CO ₃	Toluene EtOH/water	75°C	57%			
1.2 eq.	5 mol% Pd(PPh ₃) ₄	Na ₂ CO ₃	Toluene ^t BuOH/water	75°C	97%			
1.2 eq.	5 mol% Pd(PPh ₃) ₄	K ₂ CO ₃	DME/water	100°C	5 (86%)			
1.5 eq.	5 mol% DAPCy	Cs ₂ CO ₃	Dioxane	100°C	97%			
Side products observed under some conditions:								
	 1. Pyrazo 3a 1.2 eq. 1.2 eq. 1.2 eq. 1.2 eq. 1.5 eq. Side p 	3a Catalyst 3a Catalyst 1.2 eq. 5 mol% Pd(PPh_3)_4 1.2 eq. 2 mol% Pd(PPh_3)_4 1.2 eq. 1 mol% Pd(PPh_3)_4 1.2 eq. 5 mol% Pd(PPh_3)_4 1.5 eq. 5 mol% DAPCy Side products observed	I. Pyrazolo[3,4-b]pyridines in Suzul 3a Catalyst Base 1.2 eq. 5 mol% Pd(PPh_3)_4 Na2CO3 1.2 eq. 2 mol% Pd(PPh_3)_4 Na2CO3 1.2 eq. 1 mol% Pd(PPh_3)_4 Na2CO3 1.2 eq. 1 mol% Pd(PPh_3)_4 Na2CO3 1.2 eq. 5 mol% Pd(PPh_3)_4 ScO3 1.5 eq. 5 mol% DAPCy Cs2CO3 Side products observed under sort Side products observed under sort	1. Pyrazolo[3,4-b]pyridines in Suzuki cross-coupling 3a Catalyst Base Solvent 1.2 eq. 5 mol% Pd(PPh_3)_4 Na2CO3 Toluene EtOH/water 1.2 eq. 2 mol% Pd(PPh_3)_4 Na2CO3 Toluene EtOH/water 1.2 eq. 1 mol% Pd(PPh_3)_4 Na2CO3 Toluene EtOH/water 1.2 eq. 5 mol% Pd(PPh_3)_4 Na2CO3 Discone 1.2 eq. 5 mol% DAPCy Cs2CO3 Dioxane Side products observed under some conditions: OEt OEt	1. Pyrazolo[3,4-b]pyridines in Suzuki cross-coupling 3a Catalyst Base Solvent Temp 1.2 eq. 5 m0l% Pd(PPh_3)4 Na2CO3 Toluene EtOH/water 75°C 1.2 eq. 2 m0l% Pd(PPh_3)4 Na2CO3 Toluene EtOH/water 75°C 1.2 eq. 1 m0l% Pd(PPh_3)4 Na2CO3 Toluene EtOH/water 75°C 1.2 eq. 5 m0l% Pd(PPh_3)4 Na2CO3 Toluene EtOH/water 75°C 1.2 eq. 5 m0l% Pd(PPh_3)4 Na2CO3 Toluene EtOH/water 75°C 1.2 eq. 5 m0l% Pd(PPh_3)4 Na2CO3 Toluene 'BuOH/water 75°C 1.2 eq. 5 m0l% Pd(PPh_3)4 K2CO3 DME/water 100°C 1.5 eq. 5 m0l% DAPCy Cs2CO3 Dioxane 100°C			

mild and phosphine-free Suzuki reaction, bis(dicyclohexylamine) palladium diacetate²⁵ (DAPCy) was tried as a catalyst, affording excellent yields (Table 1, entry 6).

Scheme 2. Extension of the Suzuki reaction with substituted boronic acids

The Gronowitz conditions,²³ which were successful with electron deficient chloropyridine^{22a-b} and with hindered boronic acids²⁴ were also tested (Table 1, entry 5), affording dehalogenated compound **5** (86%) as the sole product. Intending to perform a

With those two sets of conditions in hand, we tried to further expand the scope of this reaction. Unfortunately, while expanding our scope, the DAPCy catalyst proved to be less versatile than $Pd(PPh_3)_4$ under the studied conditions. No

WILEY-VCH

conversion was observed with electron-deficient or sterically hindered boronic acid, like **3h**, **3j** and **3p**. Therefore, the modified Jablonski's conditions were retained for the scope (Table 1, entry 4).

Almost all *para*-substituted boronic acids (Scheme 2) could be smoothly coupled to the pyrazolopyridine moiety, with excellent yields. The *meta*-substituted compounds furnished also satisfying yields. Challenging *ortho*-substituted boronic acids afforded good yields, with the only exception of much hindered **3r** and **3x**. Despite these excellent results, limitations were observed in the case of 4-bromophenylboronic acid which resulted in an intractable mixture of products – probably due to oligomerization of the reagent under these conditions – and the mesitylboronic acid, indisputably predictable due to high steric hindrance.

Surprisingly, no conversion was detected with 4hydroxyphenylboronic acid under the optimized conditions (Scheme 3). We assumed that the use of sodium carbonate resulted in the formation of the dianionic conjugated base of 4hydroxyphenylboronic acid, which low solubility in toluene inhibited the reaction. Changing Na₂CO₃ by Na₂HPO₄ and adding 1 equivalent of ^{tert}butylammonium bromide provided the expected product in 46% yield with a partial conversion of 50%.

Scheme 4. Domino Suzuki – cyclization

In addition to the good yields furnished by this domino reaction, no intermediate or by-product could be detected within the reaction medium.

However, owing to the limited availability of substituted 2hydroxyphenylboronic acids, the polycyclic compounds were prepared from the Suzuki products **4t-x**, which were demethylated with BBr₃ according to standard procedures.²⁶ Therefore, intramolecular transesterification occurred more or less smoothly and, in certain cases, might need the use of azeotropic distillation of water (Table 2).

1) BBr3, DCM, rt

2) H₂O

When using boronic acid ortho-substituted with a nucleophilic moietv. like 2-hydroxyphenylboronic acid or 2aminophenylboronic acid, a tandem Suzuki cross-coupling / cyclization occurred leading to tetracyclic derivatives 7a and 8a with good to excellent yields (Scheme 4). There is a noteworthy between the reactivity of 2and difference 4hydroxyphenylboronic acid. The ortho-substituted reagent behaves classically under our standard conditions without the need of additional weaker base or TBAB. This could be explained by the existence of an intramolecular hydrogen bond between the phenol and the acid moiety. Second deprotonation of the stabilized 2-hydroxyphenylboronate is disfavoured leading to a monoanionic species displaying much more affinity with the organic phase, allowing thus the cross-coupling reaction.

The same difficulties were addressed for the preparation of derivatives of 8a. A family of compound 8a has been patented by Pierre Fabre in 2012 as antineoplastic agent, with a completely different methodology.²⁷ Since substituted 2aminophenylboronic acids are not available, an alternate synthesis was considered. N-Boc protected boronic acids were prepared through ortho-lithiation of protected anilines. Investigation of the Suzuki coupling directly on N-Boc protected boronic acid 11a was first investigated (Table 3). Optimized conditions used on 2-N-Boc-aminophenylboronic acid led to a mixture of three products: starting material 2 (22%), Suzuki adduct 9a (33%), Suzuki / cyclization product 10a (45%) (Table 3, entry 1). Increasing the load of Pd to 7 or 10 mol% did not affect the conversion but compound 9a was always the major product (Table 3, entries 2 and 3). Total conversion was observed with 1.5 equivalent of boronic acid instead of 1.2 equivalents (Table 3, entries 4-6) and the best conditions (Table

10.1002/ejoc.201601242

WILEY-VCH

3, entry 4) were retained for the coupling step. Unfortunately, isolation of the three different products was difficult in most of the cases due to solubility or separation issues. Since **8a** was the only compound of interest, the crude mixture obtained after the cross-coupling step was simply treated with TFA, converting simultaneously **9a** and **10a** to **8a**. Tetracyclic derivative **8a** was finally isolated in yields ranging from 71% to 78% in two steps (Scheme 5).

Table 3. Optimization of coupling with ortho-NHBoc boronic acid

Entry	Boronic acid	Pd(PPh ₃) ₄	Conversion ^[a]	9a ^[a]	10a ^[a]	8a ^[a]
1	1.2 eq.	5 mol%	78%	33%	45%	0%
2	1.2 eq.	7 mol%	80%	60%	20%	0%
3	1.2 eq.	10 mol%	82%	53%	29%	0%
4	1.5 eq.	5 mol%	100%	58%	36%	6%
5	1.5 eq.	7 mol%	100%	66%	28%	6%
6	1.5 eq.	10 mol%	100%	80%	12%	8%

^[a] NMR ratios

Scheme 5. Two-step Suzuki - cyclization

Conclusion

In conclusion, we have developed a robust practical protocol for the cross-coupling of 4-chloro-pyrazolo[3,4-*b*]pyridine, affording biphenyl products in excellent yields. Capitalizing on this methodology, a family of 10 tetracyclic fused products was obtained with satisfying yields in the presence of *ortho*-hydroxyl or *ortho*-amino substituted phenylboronic acids.

Experimental Section

Reagents and solvents were supplied by Aldrich, Acros, Lancaster, Alfa Aesar, Fluka or TCI and purchased at the highest commercial quality to be used without further purification. NMR spectra were recorded on a Brüker 300 (¹H: 300 MHz; ¹³C: 75 MHz; ¹⁹F: 282 MHz), Bruker 400 (¹H: 400 MHz; ¹³C: 100 MHz; ¹⁹F: 376 MHz) spectrometers at 298 K, using CDCl₃, DMSO- d_6 , and TFA-d as solvents. The chemical shifts (δ , ppm) are referenced to the residual solvent peak and coupling constants (J) are reported in the standard fashion. Chemical shifts reference for ¹⁹F was CFCl₃. The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, hept. = heptuplet, m = multiplet, br = broad, app. = apparent. Electrospray ionization (ESI) mass spectrometry (MS) experiments were performed on a Thermo Finnigan LCQ Advantage mass spectrometer. High-resolution mass spectra (HRMS) were recorded on a Finnigan Mat 95xL mass spectrometer using either the electrospray (ESI) or atmospheric pressure ionization (APCI) technique. Analytical chemical thin-layer chromatography was carried out on silica gel Merck 60 D254 (0.25 mm). Flash chromatography was performed on Merck Si 60 silica gel (40-63 $\mu m).$ Infra-red (IR) spectra were recorded with an IRAffinity-1 Shimadzu spectrometer using attenuated total reflectance (ATRMiracle), and the wavenumbers were expressed in cm⁻¹. Melting points were measured using Büchi apparatus B-540.

Preparations of products 4a-x: In a round-bottom flask, compound **2** (150 mg, 0.497 mmol, 1 eq.), Pd(PPh₃)₄ (29 mg, 5 mol%), boronic acid **3a-x** (0.596 mmol, 1.2 eq.), and Na₂CO₃ (105 mg, 0.998 mmol, 2 eq.) were weighed, and carefully purged with Ar. Degassed toluene (3 mL), 'BuOH (1.5 mL), and water (0.5 mL) were added, and the solution was heated at 75°C for 5-18 hours. The crude mixture was cooled down to room temperature, diluted with a saturated aqueous solution of Na₂CO₃ (10 mL), and extracted with CH₂Cl₂ (3x20 mL). The organic layers were combined, washed with brine (10 mL), dried over Na₂SO₄, and evaporated under reduced pressure. Flash chromatography on silica gel (pentane/EtOAc 95:5 to 80:20) afforded pure products.

Ethyl 1,4-diphenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (4a): white powder, 97%, m.p.: 91°C. IR: 1701, 1587, 1502, 1369, 1307, 1257, 1153. ¹H-NMR (300 MHz, CDCl₃): \bar{o} = 9.16 (s, 1H), 8.26 (dd, 2H, *J* = 8.7 Hz, *J* = 1.1 Hz), 8.05 (s, 1H), 7.59-7.51 (m, 5H), 7.47-7.44 (m, 2H), 7.36 (tt, 1H, *J* = 7.4 Hz, *J* = 1.1 Hz), 4.18 (q, 2H, *J* = 7.1 Hz), 1.06 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (75 MHz, CDCl₃): \bar{o} = 166.8 (C_q), 151.6 (CH), 150.8 (C_q), 146.8 (C_q), 139.2 (C_q), 136.3 (C_q), 135.2 (CH), 129.3 (2 CH), 129.0 (CH), 128.6 (2 CH), 128.5 (2 CH), 126.8 (CH), 121.8 (2 CH), 120.1 (C_q), 117.5 (C_q), 61.3 (CH₂), 13.8 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₁H₁₈N₃O₂: 344.1394; found: 344.1390.

Ethyl 4-(4-methylphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4b): white crystals, 94%, m.p.: 100°C. IR: 2912, 1701, 1583, 1504, 1421, 1365, 1313, 1259, 1151, 1020, 983, 798, 754, 736. ¹H-NMR (300 MHz, DMSO-*d*₆): δ = 8.97 (s, 1H), 8.25 (s, 1H), 8.22 (dd, 2H, *J* = 8.0 Hz, *J* = 1.1 Hz), 7.58 (t, 2H, *J* = 8.0 Hz), 7.41-7.34 (m, 5H), 4.11 (q, 2H, *J* = 7.1 Hz), 2.41 (s, 3H), 1.01 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (75 MHz, DMSO-*d*₆): δ = 166.3 (Cq), 150.6 (CH), 150.1 (Cq), 145.7 (Cq), 138.7 (Cq), 138.6 (Cq), 135.3 (CH), 132.3 (Cq), 129.3 (2 CH), 129.1 (2 CH), 128.6 (2 CH), 126.6 (CH), 121.0 (2 CH), 120.3 (Cq), 116.5 (Cq), 61.0 (CH₂), 20.9 (CH₃), 13.5 (CH₃). HRMS-ESI: m/z [M+H]^{*} calcd. for C₂₂H₂₀N₃O₂: 358.1550; found: 358.1554.

Ethyl 4-([1,1'-biphenyl]-4-yl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4c): white powder, 96%, m.p.: 131°C. IR: 2993, 1697, 1573, 1502, 1313, 1259, 1151, 756, 732. ¹H-NMR (300 MHz, CDCl₃): δ = 9.18

(s, 1H), 8.28 (dd, 2H, J = 8.6 Hz, J = 1.1 Hz), 8.13 (s, 1H), 7.77 (d, 2H, J = 8.4 Hz), 7.71 (d, 2H, J = 8.4 Hz), 7.60-7.48 (m, 6H), 7.44-7.35 (m, 2H), 4.22 (q, 2H, J = 7.1 Hz), 1.11 (t, 3H, J = 7.1 Hz). ¹³C-NMR (75 MHz, CDCl₃): δ = 166.9 (Cq), 151.6 (CH), 150.8 (Cq), 146.5 (Cq), 141.9 (Cq), 140.4 (Cq), 139.2 (Cq), 135.2 (CH), 135.1 (Cq), 129.3 (2 CH), 129.2 (2 CH), 129.1 (2 CH), 127.9 (CH), 127.3 (2 CH), 127.2 (2 CH), 126.8 (CH), 121.8 (2 CH), 120.1 (Cq), 117.5 (Cq), 61.4 (CH₂), 13.9 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₇H₂₂N₃O₂: 420.1707; found: 420.1695.

Ethyl 4-(4-fluorophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4d): white crystals, 95%, m.p.: 139°C. IR: 3068, 2978, 1707, 1581, 1500, 1317, 1232, 1161, 796, 758, 736. ¹H-NMR (300 MHz, CDCl₃): δ = 9.16 (s, 1H), 8.25 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.02 (s, 1H), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.47-7.42 (m, 2H), 7.37 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 7.26-7.20 (m, 2H), 4.21 (q, 2H, *J* = 7.1 Hz), 1.13 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (75 MHz, CDCl₃): δ = 166.5 (Cq), 163.3 (d, *J* = 249 Hz, Cq), 151.7 (CH), 150.7 (Cq), 145.8 (Cq), 139.1 (Cq), 134.9 (CH), 132.2 (d, *J* = 4 Hz, Cq), 130.5 (d, *J* = 8 Hz, 2 CH), 129.3 (2 CH), 126.9 (CH), 121.8 (2 CH), 120.0 (Cq), 117.6 (Cq), 115.7 (d, *J* = 22 Hz, 2 CH), 61.4 (CH₂), 14.0 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -112.79. HRMS-ESI: m/z [M+Na]⁺ calcd. for C₂₁H₁₆FN₃NaO₂: 384.1119; found: 384.1110.

Ethyl 4-(4-chlorophenyl)-1-phenyl-1*H***-pyrazolo[3,4-***b***]pyridine-5carboxylate (4e): white powder, 93%, m.p.: 109°C. IR: 2978, 1712, 1581, 1496, 1423, 1313, 1165, 1087, 829, 796, 723. ¹H-NMR (400 MHz, CDCl₃): \delta = 9.18 (s, 1H), 8.24 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 1.1 Hz), 8.00 (s, 1H), 7.56 (t, 2H,** *J* **= 8.5 Hz,** *J* **= 7.5 Hz), 7.51 (dt, 2H,** *J* **= 8.5 Hz,** *J* **= 2.1 Hz), 7.40 (dt, 2H,** *J* **= 8.5 Hz,** *J* **= 2.1 Hz), 7.37 (tt, 1H,** *J* **= 7.5 Hz,** *J* **= 1.1 Hz), 4.21 (q, 2H,** *J* **= 7.1 Hz), 1.14 (t, 3H,** *J* **= 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \delta = 166.4 (Cq), 151.7 (CH), 150.7 (Cq), 145.6 (Cq), 139.0 (Cq), 135.2 (Cq), 134.8 (CH), 134.7 (Cq), 129.9 (2 CH), 129.3 (2 CH), 128.8 (2 CH), 126.9 (CH), 121.8 (2 CH), 119.7 (Cq), 117.4 (Cq), 61.5 (CH₂), 14.0 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₁H₁₇ClN₃O₂: 378.1004; found: 378.0994.**

Ethyl 4-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4f): white powder, 97%, m.p.: 80°C. IR: 2974, 1722, 1583, 1502, 1423, 1298, 1228, 1168, 1028, 827, 798, 750, 729. ¹H-NMR (400 MHz, CDCl₃): δ = 9.11 (s, 1H), 8.25 (dd, 2H, *J* = 8.5 Hz, *J* = 1.0 Hz), 8.09 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, 7.5 Hz), 7.42 (d, 2H, *J* = 8.7 Hz), 7.35 (tt, 1H, *J* = 7.5 Hz, 1.1 Hz), 7.06 (d, 2H, *J* = 8.7 Hz), 4.22 (q, 2H, *J* = 7.1 Hz), 3.90 (s, 3H), 1.14 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.1 (Cq), 160.4 (Cq), 151.5 (CH), 150.8 (Cq), 146.5 (Cq), 139.2 (Cq), 135.2 (CH), 130.2 (2 CH), 129.3 (2 CH), 128.3 (Cq), 126.7 (CH), 121.7 (2 CH), 120.1 (Cq), 117.5 (Cq), 114.0 (2 CH), 61.3 (CH₂), 55.5 (CH₃), 14.0 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₂₀N₃O₃: 374.1499; found: 374.1494.

Ethyl 1-phenyl-4-(4-(trifluoromethyl)phenyl)-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (4g): white powder, 93%, m.p.: 124°C. IR: 1693, 1583, 1502, 1319, 1263, 1161, 1134, 1066, 840, 800, 752, 734. ¹H-NMR (300 MHz, CDCl₃): $\bar{o} = 9.23$ (s, 1H), 8.25 (dd, 2H, J = 8.6 Hz, J = 1.1 Hz), 7.80 (d, 2H, J = 8.1 Hz), 7.59-7.54 (m, 4H), 7.38 (tt, 1H, J = 7.4 Hz, J = 1.1 Hz), 4.19 (q, 2H, J = 7.1 Hz), 1.09 (t, 3H, J = 7.1 Hz). ¹³C-NMR (75 MHz, CDCl₃): $\bar{o} = 166.1$ (Cq), 151.8 (CH), 150.7 (Cq), 145.3 (Cq), 140.1 (Cq), 139.0 (Cq), 134.7 (CH), 131.1 (q, J = 33 Hz, Cq), 129.4 (2 CH), 128.9 (2 CH), 127.0 (CH), 125.5 (q, J = 4 Hz, 2 CH), 124.1 (q, J = 272 Hz, CF₃), 121.8 (2 CH), 119.6 (Cq), 117.4 (Cq), 61.5 (CH₂), 13.8 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): $\bar{o} = -63.12$. HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₁₇F₃N₃O₂: 412.1267; found: 412.1260.

Ethyl 4-(4-formylphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4h): white powder, 99%, m.p.: 122°C. IR: 1693, 1581, 1502, 1309, 1261, 1168, 798, 752, 740. ¹H-NMR (300 MHz, CDCl₃): δ = 10.14 (s, 1H), 9.23 (s, 1H), 8.24 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.05 (d, 2H, *J* = 8.2 Hz), 7.96 (s, 1H), 7.62 (d, 2H, *J* = 8.2 Hz), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.37 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 4.19 (q, 2H, *J* = 7.1 Hz), 1.09 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (75 MHz, CDCl₃): δ = 191.8 (CH), 166.0 (Cq), 151.8 (CH), 150.7 (Cq), 145.5 (Cq), 142.5 (Cq), 138.9 (Cq), 136.4 (Cq), 134.7 (CH), 129.7 (2 CH), 129.4 (2 CH), 129.3 (2 CH), 127.0 (CH), 121.8 (2 CH), 119.4 (Cq), 117.2 (Cq), 61.5 (CH₂), 13.9 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for $C_{22}H_{18}N_3O_3$: 372.1343; found: 372.1324.

Ethyl 4-(4-nitrophenyl)-1-phenyl-1*H***-pyrazolo[3,4-***b***]pyridine-5carboxylate (4i): white crystals, 96%, m.p.: 155°C. IR: 1710, 1577, 1516 1500, 1348, 1336, 1307, 1259, 1151, 1134, 983, 852, 800, 756, 738. ¹H-NMR (400 MHz, CDCl₃): \delta = 9.26 (s, 1H), 8.40 (dt, 2H,** *J* **= 8.8 Hz,** *J* **= 2.2 Hz), 8.24 (dd, 2H,** *J* **= 8.6 Hz,** *J* **= 1.1 Hz), 7.93 (s, 1H), 7.62 (dt, 2H,** *J* **= 8.8 Hz,** *J* **= 2.2 Hz), 7.56 (dd, 2H,** *J* **= 8.6 Hz,** *J* **= 7.5 Hz), 7.38 (tt, 1H,** *J* **= 7.5 Hz,** *J* **= 1.1 Hz), 4.22 (q, 2H,** *J* **= 7.1 Hz), 115 (t, 3H,** *J* **= 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \delta = 165.6 (C_q), 131.9 (CH), 150.7 (C_q), 148.1 (C_q), 144.5 (C_q), 143.0 (C_q), 138.9 (C_q), 134.4 (CH), 129.5 (2 CH), 129.4 (2 CH), 127.1 (CH), 123.7 (2 CH), 121.8 (2 CH), 119.1 (C_q), 117.1 (C_q), 61.6 (CH₂), 14.0 (CH₃). HRMS-ESI: m/z [M+H]* calcd. for C₂₁H₁₇N₄O₄: 389.1244; found: 389.1242.**

Ethyl 1-phenyl-4-(4-pyridinyl)-1*H***-pyrazolo[3,4-***b***]pyridine-5carboxylate (4j): white powder, 97%, m.p.: 178°C. IR: 1708, 1581, 1494, 1315, 1261, 1166, 985, 752. ¹H-NMR (400 MHz, CDCl₃): \delta = 9.23 (s, 1H) 8.79 (bs, 2H), 8.23 (dd, 2H,** *J* **= 8.0 Hz,** *J* **= 1.0 Hz), 7.94 (s, 1H), 7.55 (t, 2H,** *J* **= 8.0 Hz), 7.38-7.34 (m, 3H), 4.19 (q, 2H,** *J* **= 7.1 Hz), 1.09 (t, 3H, J = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \delta = 165.7 (C_q), 151.8 (CH), 150.7 (C_q), 149.9 (2 CH), 144.5 (C_q), 143.8 (C_q), 138.9 (C_q), 134.4 (CH), 129.3 (2 CH), 127.0 (CH), 123.1 (2 CH), 121.7 (2 CH), 119.0 (C_q), 116.8 (C_q), 61.6 (CH₂), 13.8 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₀H₁₇N₄O₂: 345.1346; found: 345.1344.**

Ethyl 4-(3-fluorophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4k): white powder, 97%, m.p.: 125°C. IR: 1695, 1575, 1498 1311, 1163, 1016, 756. ¹H-NMR (400 MHz, CDCl₃): δ = 9.18 (s, 1H), 8.24 (dd, 2H, *J* = 8.5 Hz, *J* = 1.5 Hz), 8.02 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.48 (td, 1H, *J* = 8.0 Hz, *J* = 5.8 Hz), 7.36 (t, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 7.24-7.16 (m, 3H), 4.20 (q, 2H, *J* = 7.1 Hz), 1.10 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.3 (C_q), 162.6 (d, *J* = 247 Hz, CF), 151.6 (CH), 150.7 (C_q), 145.2 (d, *J* = 2 Hz, C_q), 139.0 (C_q), 138.3 (d, *J* = 8 Hz, C_q), 134.8 (CH), 130.2 (d, *J* = 9 Hz, CH), 129.3 (2 CH), 126.9 (CH), 124.3 (d, *J* = 3 Hz, CH), 121.7 (2 CH), 119.8 (C_q), 117.3 (C_q), 115.9 (d, *J* = 21 Hz, CH), 115.8 (d, *J* = 23 Hz, CH), 61.4 (CH₂), 13.8 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -113.06. HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₁H₁₇FN₃O₂: 362.1299; found: 362.1311.

Ethyl 4-(3-chlorophenyl)-1-phenyl-1*H***-pyrazolo[3,4-***b***]pyridine-5carboxylate (4): white powder, 98%, m.p.: 133°C. IR: 1708, 1581, 1497, 1368, 1308, 1258, 1164, 983, 786. ¹H-NMR (400 MHz, CDCl₃): \delta = 9.19 (s, 1H), 8.25 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 1.1 Hz), 8.01 (s, 1H), 7.55 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 7.5 Hz), 7.51-7.44 (m, 3H), 7.36 (tt, 1H,** *J* **= 7.5 Hz,** *J* **= 1.1 Hz), 7.33 (dt, 1H,** *J* **= 7.1 Hz,** *J* **= 1.6 Hz), 4.20 (q, 2H,** *J* **= 7.1 Hz), 1.11 (t, 3H,** *J* **= 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \delta = 166.3 (C_q), 151.7 (CH), 150.7 (C_q), 145.1 (C_q), 139.0 (C_q), 138.0 (C_q), 134.8 (CH), 134.4 (C_q), 129.8 (CH), 129.3 (2 CH), 129.0 (CH), 128.6 (CH), 126.9 (CH), 126.7 (CH), 121.7 (2 CH), 119.7 (C_q), 117.3 (C_q), 61.4 (CH₂), 13.9 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₁H₁₇ClN₃O₂: 378.1004; found: 378.1004.**

Ethyl 4-(3-methoxyphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (4m): white powder, 95%, m.p.: 95°C. IR: 1697, 1577, 1315,

1244, 1159, 1018, 785, 754, 690. ¹H-NMR (400 MHz, CDCl₃): δ = 9.13 (s, 1H), 8.25 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.07 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.43 (t, 1H, *J* = 7.9 Hz), 7.36 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 7.06-7.02 (m, 2H), 7.00-6.99 (m, 1H), 4.19 (q, 2H, *J* = 7.1 Hz), 3.86 (s, 3H), 1.09 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.8 (C_q), 159.6 (C_q), 151.4 (CH), 150.7 (C_q), 146.5 (C_q), 139.1 (C_q), 137.5 (C_q), 135.2 (CH), 129.6 (CH), 129.3 (2 CH), 126.8 (CH), 121.7 (2 CH), 121.0 (CH), 120.2 (C_q), 117.4 (C_q), 114.4 (CH), 114.2 (CH), 61.3 (CH₂), 55.5 (CH₃), 13.9 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₂₀N₃O₃: 374.1499; found: 374.1501.

Ethyl 4-(3,5-bis(trifluoromethyl)phenyl)-1-phenyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (4n): white crystals, 98%, m.p.: 128°C. IR: 1698, 1576, 1314, 1273, 1190, 1162, 1125, 1108, 896, 799, 706. ¹H-NMR (400 MHz, CDCl₃): δ = 9.30 (s, 1H), 8.24 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.05 (bs, 1H), 7.94 (s, 1H), 7.91 (bs, 2H), 7.57 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.40 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 4.20 (q, 2H, *J* = 7.1 Hz), 1.09 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 165.5 (C_q), 152.2 (CH), 150.8 (C_q), 129.4 (2 CH), 128.9 (q, *J* = 3 Hz, 2 CH), 127.2 (CH), 123.2 (q, *J* = 273 Hz, 2 CF₃), 122.7 (vquint., *J* = 4 Hz, CH), 121.9 (2 CH), 119.3 (C_q), 117.2 (C_q), 61.7 (CH₂), 13.8 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -63.28. HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₃H₁₆F₆N₃O₂: 480.1141; found: 480.1128.

Ethyl 4-(3-nitrophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (40): purified on flash column chromatography with pure CH₂Cl₂ as the eluent, white powder, 90%, m.p.: 152°C. IR: 1709, 1579, 1529, 1500, 1348, 1315, 1262, 1143, 797. ¹H-NMR (400 MHz, CDCl₃): δ = 9.27 (s, 1H), 8.38 (ddd, 1H, *J* = 7.9 Hz, *J* = 2.3 Hz, *J* = 1.4 Hz), 8.33 (dd, 1H, *J* = 2.3 Hz, *J* = 1.4 Hz), 8.24 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 7.95 (s, 1H), 7.78 (dt, 1H, *J* = 7.9 Hz, *J* = 1.4 Hz), 7.72 (t, 1H, *J* = 7.9 Hz), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.37 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 4.22 (q, 2H, *J* = 7.1 Hz), 1.14 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 165.6 (Cq), 152.0 (CH), 150.7 (Cq), 148.2 (Cq), 144.2 (Cq), 138.9 (Cq), 137.9 (Cq), 134.5 (CH), 134.4 (CH), 129.5 (CH), 129.3 (2 CH), 127.1 (CH), 123.73 (CH), 123.69 (CH), 121.8 (2 CH), 119.2 (Cq), 117.3 (Cq), 61.6 (CH₂), 14.0 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₁H₁₇N₄O₄: 389.1244; found: 389.1240.

Ethyl 4-(2-methylphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4p): colorless oil, 100%. IR: 1708, 1583, 1500, 1311, 1155, 891, 754, 729. ¹H-NMR (400 MHz, CDCl₃): δ = 9.28 (s, 1H), 8.28 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 7.86 (s, 1H), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.41-7.29 (m, 4H), 7.17 (dd, 1H, *J* = 7.5 Hz, *J* = 1.2 Hz), 4.14 (q, 2H, *J* = 7.1 Hz), 1.02 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.1 (C_q), 151.8 (CH), 150.7 (C_q), 147.1 (C_q), 139.1 (C_q), 136.2 (C_q), 135.3 (CH), 135.0 (C_q), 130.0 (CH), 129.3 (2 CH), 128.6 (CH), 127.8 (CH), 126.7 (CH), 125.6 (CH), 121.6 (2 CH), 120.0 (C_q), 117.8 (C_q), 61.1 (CH₂), 19.9 (CH₃), 13.7 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₂₀N₃O₂: 358.1550; found: 358.1555.

Ethyl 4-(2-fluorophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5carboxylate (4q): white powder, 98%, m.p.: 92°C. IR: 1709, 1585, 1504, 1313, 1255, 1149, 1016, 987, 894, 756, 534. ¹H-NMR (400 MHz, CDCl₃): δ = 9.27 (s, 1H), 8.26 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.01 (s, 1H), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 1.7 Hz), 8.01 (s, 1H), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.52-7.50 (m, 1H), 7.45 (td, 1H, *J* = 7.4 Hz, *J* = 1.7 Hz), 7.39-7.31 (m, 2H), 7.23 (t, 1H, *J* = 9.1 Hz), 4.23 (qd, 2H, *J* = 7.1 Hz, *J* = 3.7 Hz), 1.13 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.0 (C_q), 159.4 (d, *J* = 248 Hz, CF), 151.8 (CH), 151.0 (C_q), 140.6 (C_q), 139.1 (C_q), 135.0 (CH), 131.0 (d, *J* = 8 Hz, CH), 130.3 (d, *J* = 3 Hz, CH), 120.4 (2 CH), 126.9 (CH), 124.3 (d, *J* = 21 Hz, CH), 61.4 (C_q), 121.8 (2 CH), 120.3 (C_q), 117.7 (C_q), 115.9 (d, *J* = 21 Hz, CH), 61.4 (CH₂), 13.9 (CH₃). $^{19}F\text{-NMR}$ (282 MHz, CDCl₃): δ = -115.01. HRMS-ESI: m/z [M+H]^+ calcd. for C_{21}H_{17}FN_3O_2: 362.1299; found: 362.1295.

Ethyl 1-phenyl-4-(2-(trifluoromethyl)phenyl)-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (4r): white crystals, 64%, m.p.: 90°C. IR: 1726, 1498, 1311, 1168, 1103, 1031. 898, 754, 534, ¹H-NMR (400 MHz, CDCl₃): δ = 9.34 (s, 1H), 8.27 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 7.85 (d, 1H, *J* = 7.4 Hz), 7.79 (s, 1H), 7.70-7.61 (m, 2H), 7.56 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.37 (tt, 1H, *J* = 7.5 Hz, *J* = 1.1 Hz), 7.32 (d, 1H, *J* = 7.0 Hz), 4.12 (q, 2H, *J* = 7.1 Hz), 1.00 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 165.4 (Cq), 151.9 (CH), 150.5 (Cq), 144.4 (Cq), 139.0 (Cq), 135.3 (q, *J* = 2.1 Hz, Cq), 135.0 (CH), 131.6 (CH), 129.7 (CH), 129.4 (2 CH), 128.7 (CH), 128.0 (q, *J* = 31 Hz, Cq), 126.9 (CH), 126.3 (q, *J* = 4.9 Hz, CH), 123.9 (q, *J* = 274 Hz, CF₃), 121.7 (2 CH), 119.6 (Cq), 118.1 (Cq), 61.1 (CH₂), 13.7 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): δ = 59.61. HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₁₇F₃N₃O₂: 412.1267; found: 412.1262.

Ethyl 4-(2-formylphenyl)-1-phenyl-1*H***-pyrazolo[3,4-***b***]pyridine-5carboxylate (4s): white powder, 95%, m.p.: 105^{\circ}C. IR: 1689, 1583, 1311 1153, 985, 758, 638. ¹H-NMR (400 MHz, CDCl₃): \bar{\delta} = 9.81 (s, 1H), 9.33 (s, 1H), 8.25 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 1.1 Hz), 8.10 (dd, 1H,** *J* **= 7.5 Hz,** *J* **= 1.3 Hz), 7.79 (s, 1H), 7.74 (td, 1H,** *J* **= 7.5 Hz,** *J* **= 1.5 Hz), 7.68 (td, 1H,** *J* **= 7.5 Hz,** *J* **= 1.3 Hz), 7.79 (s, 1H), 7.76 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 7.5 Hz), 7.68 (td, 1H,** *J* **= 7.5 Hz,** *J* **= 1.3 Hz), 7.56 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 7.5 Hz), 7.40-7.33 (m, 2H), 4.13 (q, 2H,** *J* **= 7.1 Hz), 1.05 (t, 3H,** *J* **= 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \bar{\delta} = 190.6 (CH), 165.4 (Cq), 151.9 (CH), 150.6 (Cq), 144.4 (Cq), 138.91 (Cq), 138.86 (Cq), 134.8 (CH), 133.8 (Cq), 133.7 (CH), 129.54 (CH), 129.45 (CH), 129.4 (2 CH), 129.3 (CH), 127.0 (CH), 121.8 (2 CH), 119.8 (Cq), 118.3 (Cq), 61.4 (CH₂), 13.8 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₁₈N₃O₃: 372.1343; found: 372.1341.**

Ethyl 4-(2-methoxyphenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (4t): off-white powder, 97%, m.p.: 110°C. IR: 1720, 1585, 1490, 1417, 1288, 1242, 1157, 1028, 889, 800, 744. ¹H-NMR (400 MHz, CDCl₃): δ = 9.16 (s, 1H), 8.25 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 8.02 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.48 (ddd, 1H, *J* = 8.3 Hz, *J* = 7.5 Hz, *J* = 1.7 Hz), 7.39-7.33 (m, 2H), 7.14 (td, 1H, *J* = 7.5 Hz, *J* = 0.9 Hz), 7.03 (d, 1H, *J* = 8.3 Hz), 4.17 (q, 2H, *J* = 7.1 Hz), 3.75 (s, 3H) 1.08 (t 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.7 (Cq), 156.3 (Cq), 151.2 (CH), 151.1 (Cq), 143.3 (Cq), 139.2 (Cq), 135.4 (CH), 130.5 (CH), 129.9 (CH), 129.3 (2 CH), 126.7 (CH), 125.3 (Cq), 121.7 (2 CH), 121.1 (Cq), 120.8 (CH), 117.8 (Cq), 110.8 (CH), 61.0 (CH₂), 55.5 (CH₃), 13.9 (CH₃). HRMS-ESI: m/z [M+Na]⁺ calcd. for C₂₂H₁₉NaN₃O₃: 396.1319; found: 396.1304.

Ethyl 4-(5-fluoro-2-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4b]pyridine-5-carboxylate (4u): white powder, 98%, m.p.: 116°C. IR: 1718, 1498, 1244, 1157, 1029, 922, 744. ¹H-NMR (400 MHz, CDCl₃): δ = 9.19 (s, 1H), 8.26 (dd, 2H, J = 8.5 Hz, J = 1.1 Hz), 8.01 (s, 1H), 7.55 (dd, 2H, J = 8.5 Hz, J = 7.5 Hz), 7.36 (tt, 1H, J = 7.5 Hz, J = 1.1 Hz), 7.17 (ddd, 1H, J = 9.0 Hz, J = 8.0 Hz, J = 3.1 Hz), 7.11 (dd, 1H, J = 8.3 Hz, J = 3.1 Hz), 6.95 (dd, 1H, J = 9.0 Hz, J = 4.3 Hz), 4.20 (q, 2H, J = 7.1 Hz), 3.71 (s, 3H), 1.13 (t, 3H, J = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.4 (C_q), 157.0 (d, J = 240 Hz, CF), 152.5 (d, J = 2 Hz, C_q), 151.3 (CH) 151.1 (C_q), 141.9 (d, J = 2 Hz, C_q), 139.2 (C_q), 135.0 (CH), 129.3 (2 CH), 126.8 (CH), 126.6 (d, J = 8 Hz, C_q), 121.8 (2 CH), 120.9 (C_q), 117.5 (C_q), 116.8 (d, J = 25 Hz, CH), 116.3 (d, J = 23 Hz, CH), 111.8 (d, J = 8 Hz, CH), 61.2 (CH₂), 56.1 (CH₃), 14.0 (CH₃). ¹⁹F-NMR (376 MHz, CDCl₃): δ = -123.97. HRMS-ESI: m/z [M+Na]⁺ calcd. for C₂₂H₁₈FN₃NaO₃: 414.1224; found: 414.1218.

Ethyl 4-(4-fluoro-2-methoxyphenyl)-1-phenyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (4v): white powder, 98%, m.p.: 109°C. IR: 1724, 1500, 1276, 1176, 1026, 948, 842, 767, 694. ¹H-NMR (400 MHz,

CDCl₃): δ = 9.16 (s, 1H), 8.25 (dd, 2H, *J* = 8.5 Hz, *J* = 1.1 Hz), 7.99 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.37-7.31 (m, 2H), 6.85 (vtd, 1H, *J* = 8.2 Hz, *J* = 2.4 Hz), 6.76 (dd, 1H, *J* = 11 Hz, *J* = 2.3 Hz), 4.20 (q, 2H, *J* = 7.1 Hz), 3.73 (s, 3H), 1.14 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.6 (C_q), 164.4 (d, *J* = 249 Hz, CF), 157.7 (d, *J* = 10 Hz, C_q), 151.3 (CH), 151.1 (C_q), 142.4 (C_q), 139.2 (C_q), 135.1 (CH), 130.7 (d, *J* = 10 Hz, CH), 129.3 (2 CH), 126.7 (CH), 121.7 (2 CH), 121.2 (d, *J* = 3 Hz, C_q), 121.0 (C_q), 117.8 (C_q), 107.4 (d, *J* = 22 Hz, CH), 99.5 (d, *J* = 26 Hz, CH), 61.1 (CH₂), 55.8 (CH₃), 14.0 (CH₃). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -109.67. HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₁₉FN₃O₃: 392.1405; found: 392.1405.

Ethyl 4-(5-isopropyl-2-methoxyphenyl)-1-phenyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (4w): colorless oil, 96%. IR: 2956, 1712, 1500, 1244, 1159, 1206, 754, 690. ¹H-NMR (400 MHz, CDCl₃): δ = 9.14 (s, 1H), 8.26 (dd, 2H, *J* = 8.5 Hz, *J* = 1.5 Hz), 8.04 (s, 1H), 7.55 (dd, 2H, *J* = 8.5 Hz, *J* = 7.5 Hz), 7.37-7.31 (m, 2H), 7.24 (d, 1H, *J* = 2.3 Hz), 6.94 (d, 1H, *J* = 8.5 Hz), 4.17 (q, 2H, *J* = 7.1 Hz), 3.73 (s, 3H), 2.96 (hept., 1H, *J* = 6.9 Hz), 1.30 (d, 3H, *J* = 6.9 Hz), 1.29 (d, 3H, *J* = 6.9 Hz), 1.06 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.9 (C_q), 154.3 (C_q), 151.1 (C_q), 151.0 (CH), 143.5 (C_q), 141.2 (C_q), 139.2 (C_q), 135.5 (CH), 129.3 (2 CH), 128.2 (CH), 128.0 (CH), 126.6 (CH), 124.9 (C_q), 33.4 (CH), 24.4 (CH₃), 24.2 (CH₃), 13.8 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₅H₂₆N₃O₃: 416.1969; found: 416.1962.

Ethyl 4-(2-methoxynaphthalen-1-yl)-1-phenyl-1*H***-pyrazolo[3,4***b***]pyridine-5-carboxylate (4x): white powder, 46%, m.p.: 147°C. IR: 1720, 1587, 1498, 1417, 1238, 1170, 889, 806, 750, 534. ¹H-NMR (400 MHz, CDCl₃): \delta = 9.38 (s, 1H), 8.30 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 1.1 Hz), 8.02 (d, 1H,** *J* **= 9.0 Hz), 7.88 (d, 1H,** *J* **= 7.5 Hz), 7.71 (s, 1H), 7.57 (dd, 2H,** *J* **= 8.5 Hz,** *J* **= 7.5 Hz), 7.43 (d, 1H,** *J* **= 9.0 Hz), 7.39-7.34 (m, 2H), 7.31 (ddd, 1H,** *J* **= 8.3 Hz,** *J* **= 6.8 Hz,** *J* **= 1.5 H), 7.16 (d, 1H,** *J* **= 8.3 Hz), 3.96 (q, 2H,** *J* **= 7.1 Hz), 3.82 (s, 3H), 0.72 (t, 3H,** *J* **= 7.1 Hz). ¹³C-NMR (100 MHz, CDCl₃): \delta = 166.1 (Cq), 153.3 (Cq), 152.1 (CH), 151.0 (Cq), 142.8 (Cq), 139.3 (Cq), 135.7 (CH), 124.2 (CH), 124.0 (CH), 121.73 (Cq), 121.68 (2 CH), 119.2 (Cq), 118.7 (Cq), 113.1 (CH), 60.8 (CH₂), 56.6 (CH₃), 13.5 (CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₆H₂₂N₃O₃: 424.1656; found: 424.1640.**

Domino preparation of tetracyclic compound 7a and 8a: In a roundbottom flask, compound **2** (150 mg, 0.497 mmol, 1 eq.), Pd(PPh₃)₄ (29 mg, 5 mol%), boronic acid **3a-x** (0.596 mmol, 1.2 eq.), and Na₂CO₃ (105 mg, 0.998 mmol, 2 eq.) were weighed, and carefully purged with Ar. Degassed toluene (3 mL), ^{*t*}BuOH (1.5 mL), and water (0.5 mL) were added, and the solution was heated at 75°C for 18 hours. The crude mixture was cooled to room temperature, diluted with water (10 mL) and CH₂Cl₂ (10 mL), and filtered to afford the product with satisfying purity.

3-Phenylchromeno[4,3-d]pyrazolo[3,4-b]pyridin-6(3*H***)-one (7a): purple powder, 83%, m.p.: 250°C (dec.). IR: 1720, 1593, 1571, 1548, 1502, 1448, 1425, 1328, 1261, 1207, 1151, 981, 840, 752. ¹H-NMR (400 MHz, TFA-***d***): \delta = 9.85 (s, 1H), 9.58 (s, 1H), 8.90 (d, 1H,** *J* **= 7.8 Hz), 8.13 (t, 1H,** *J* **= 7.8 Hz), 7.88 (t, 1H,** *J* **= 7.8 Hz), 7.85-7.78 (m, 5H), 7.76 (d, 1H,** *J* **= 7.8 Hz). ¹³C-NMR (100 MHz, TFA-***d***): \delta = 163.4 (C_q), 156.5 (C_q), 149.7 (CH), 149.3 (C_q), 145.3 (C_q), 140.6 (CH), 139.4 (CH), 136.0 (C_q), 134.2 (CH), 132.7 (2 CH), 130.4 (CH), 129.6 (CH), 127.4 (2 CH), 121.1 (CH), 116.8 (C_q), 116.1 (C_q), 114.0 (C_q). HRMS-APCI:** *m/z* **[M+H]⁺ calcd. for C₁₉H₁₃N₃O₂: 314.0924; found: 314.0919.**

3-Phenyl-3*H***-benzo[c]pyrazolo[4,3-f][2,7]naphthyridin-6(7***H***)-one (8a): purple powder, 100%, m.p.: > 365°C (dec). IR: 2879, 1680, 1595, 1575, 1504, 1421, 1342, 1292, 987, 927, 804, 742. ¹H-NMR (400 MHz,** TFA-*d*): δ = 9.93 (s, 1H), 9.56 (s, 1H), 8.93 (d, 1H, *J* = 8.0 Hz), 8.04 (t, 1H, *J* = 8.0 Hz), 7.78 (t, 1H, *J* = 8.0 Hz), 7.75-7.69 (m, 5H), 7.67 (d, 1H, *J* = 8.0 Hz). ¹³C-NMR (100 MHz, TFA-*d*): δ = 163.5 (C_q), 149.1 (C_q), 147.8 (CH), 143.0 (C_q), 141.8 (C_q), 140.2 (CH), 139.6 (CH), 135.8 (C_q), 134.4 (CH), 132.9 (2 CH), 130.7 (CH), 128.9 (CH), 127.4 (2 CH), 120.6 (CH), 117.9 (C_q), 117.8 (C_q), 117.0 (C_q). HRMS-APCI: *m*/*z* [M+H]⁺ calcd. for C₁₉H₁₃N₄O: 313.1084; found: 313.1084.

Preparation of chromenone derivatives 7a-7e through BBr₃ cyclization: To a solution of 4t-4x (0.14 mmol) in CH₂Cl₂ (0.8 mL) was added BBr₃ (4 eq., 560 µL, 1M solution in CH₂Cl₂). After stirring at room temperature for 18 hours, a KOH solution (20 eq., 2M in water) was added, and stirred for 15 minutes. The organic and aqueous layers were separated, and the latter was extracted with CH₂Cl₂ (3 x 50mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated *in vacuo*. The product was purified by flash column chromatography (SiO₂, pure EtOAc or CH₂Cl₂/MeOH 9:1).

In the case of compounds **7c** and **7e**, the same procedure was followed at the beginning. After stirring at room temperature for 18 hours, water (2 mL) and toluene (10 mL) were added, and heated at reflux with a Dean-Stark apparatus for 18 h. Concentration of the crude mixture, followed by purification by flash column chromatography (SiO₂, pure EtOAc or CH₂Cl₂/MeOH 9:1) afforded the expected compounds.

3-Phenylchromeno[4,3-d]pyrazolo[3,4-b]pyridin-6(3H)-one (7a): white powder, 86%.

10-Fluoro-3-phenylchromeno[4,3-*d***]pyrazolo[3,4-***b***]pyridin-6(***3H***)-one (7b):** white powder, 94%, m.p.: 360°C (dec.). IR: 1730, 1575, 1552, 1500 1448, 1259, 1182, 1122, 1008, 839, 750. ¹H-NMR (400 MHz, TFA-*d*): $\bar{\delta} =$ 9.68 (s, 1H), 9.33 (s, 1H), 8.32 (dd, 1H, *J* = 7.9 Hz, *J* = 2.2 Hz), 7.74-7.66 (m, 7H). ¹³C-NMR (100 MHz, TFA-*d*): $\bar{\delta} =$ 163.7 (C_q), 162.7 (d, *J* = 250 Hz, CF), 152.4 (d, *J* = 1.6 Hz, C_q), 151.5 (CH), 147.5 (C_q), 147.0 (C_q), 138.4 (CH), 136.4 (C_q), 133.9 (CH), 132.6 (2 CH), 127.6 (2 CH), 127.1 (d, *J* = 25 Hz, CH), 122.9 (d, *J* = 8.6 Hz, CH), 117.9 (C_q), 115.5 (d, *J* = 26 Hz, CH), 115.1 (C_q), 113.9 (C_q). ¹⁹F-NMR (282 MHz, DMSO-*d*₆): $\bar{\delta} =$ -115.51. HRMS-ESI: m/z [M+H]⁺ calcd. for C₁₉H₁₁FN₃O₂: 332.0830; found: 332.0832.

9-Fluoro-3-phenylchromeno[4,3-d]pyrazolo[3,4-b]pyridin-6(3H)-one

(7c): yellow powder, 53%, m.p.: 197°C. IR: 1741, 1727, 1602, 1503, 1333, 1271, 1153, 759. ¹H-NMR (400 MHz, TFA-*d*): $\bar{\delta}$ = 9.62 (s, 1H), 9.34 (s, 1H), 8.75 (dd, 1H, *J* = 9.0 Hz, *J* = 5.4 Hz), 7.62-7.57 (m, 5H), 7.39 (dd, 1H, *J* = 9.0 Hz, *J* = 6.7 Hz), 7.24 (dd, 1H, *J* = 8.3 Hz, *J* = 2.1 Hz). ¹³C-NMR (100 MHz, TFA-*d*): $\bar{\delta}$ = 170.9 (d, *J* = 266 Hz, CF), 163.1 (Cq), 158.3 (d, *J* = 14 Hz, Cq), 150.5 (CH), 148.3 (Cq), 146.0 (Cq), 139.1 (CH), 136.1 (Cq), 134.2 (CH), 133.1 (d, *J* = 12 Hz, CH), 132.7 (2 CH), 127.6 (2 CH), 118.1 (d, *J* = 24 Hz, CH), 115.4 (Cq), 113.8 (d, *J* = 3 Hz, Cq), 113.3 (Cq), 108.6 (d, *J* = 26 Hz, CH). ¹⁹F-NMR (282 MHz, TFA-*d*): $\bar{\delta}$ = -99.13. HRMS-ESI: m/z [M+H]⁺ calcd. for C₁₉H₁₁FN₃O₂: 332.0830; found: 332.0828.

10-Isopropyl-3-phenylchromeno[4,3-d]pyrazolo[3,4-b]pyridin-6(3H)-

one (7d): white powder, 83%, m.p.: 217°C (dec). IR: 1718, 1595, 1502, 1219, 1112, 979, 815, 750, 671. ¹H-NMR (400 MHz, TFA-*d*): δ = 9.62 (s, 1H), 9.31 (s, 1H), 8.42 (d, 1H, *J* = 1.8 Hz), 7.83 (dd, 1H, *J* = 8.7 Hz, *J* = 1.8 Hz), 7.61-7.56 (m, 5H), 7.46 (d, 1H, *J* = 8.7 Hz), 3.11 (hept., 1H, *J* = 6.9 Hz), 1.31 (d, 6H, *J* = 6.9 Hz). ¹³C-NMR (100 MHz, TFA-*d*): δ = 163.7 (C_q), 154.9 (C_q), 152.0 (C_q), 149.8 (CH), 149.6 (C_q), 145.1 (C_q), 139.6 (CH), 139.4 (CH), 136.1 (C_q), 134.2 (CH), 132.8 (2 CH), 127.5 (2 CH), 127.5 (CH), 121.1 (CH), 116.7 (C_q), 116.2 (C_q), 114.0 (C_q), 36.1 (CH), 24.5 (2 CH₃). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₂H₁₈N₃O₂: 356.1394; found: 356.1395.

WILEY-VCH

13-Phenylbenzo[5,6]chromeno[4,3-*d*]pyrazolo[3,4-*b*]pyridin-3(13*H*)one (7e): yellow powder, 64%, m.p.: 205°C (dec). IR: 2922, 1735, 1560, 1506, 1311, 1220, 1112, 1018, 979, 750, 692, 680. ¹H-NMR (400 MHz, TFA-*d*): δ = 9.68 (s, 1H), 9.16 (s, 1H), 8.72 (d, 1H, *J* = 8.4 Hz), 8.36 (d, 1H, *J* = 9.0 Hz), 8.06 (d, 1H, *J* = 8.0 Hz), 7.81 (dd, 1H, *J* = 8.4 Hz, *J* = 7.2 Hz), 7.73 (dd, 1H, *J* = 8.0 Hz, *J* = 7.2 Hz), 7.67-7.61 (m, 5H), 7.55 (d, 1H, *J* = 9.0 Hz). ¹³C-NMR (100 MHz, TFA-*d*): δ = 163.4 (C_q), 158.4 (C_q), 148.9 (C_q), 148.8 (CH), 144.5 (C_q), 143.4 (CH), 141.2 (CH), 136.0 (C_q), 134.6 (C_q), 134.3 (CH), 132.9 (2 CH), 132.11 (CH), 132.06 (CH), 131.3 (C_q), 130.6 (CH), 127.4 (2 CH), 126.9 (CH), 118.7 (CH), 117.5 (C_q), 114.3 (C_q), 112.6 (C_q). HRMS-ESI: m/z [M+H]⁺ calcd. for C₂₃H₁₄N₃O₂: 364.1081; found: 364.1068.

Preparation of naphthyridinones-derivatives 8a-e: In a round-bottom flask, compound **2** (150 mg, 0.497 mmol, 1 eq.), Pd(PPh₃)₄ (29 mg, 5 mol%), boronic acid **11a-e** (0.746 mmol, 1.5 eq.), and Na₂CO₃ (210 mg, 1.966 mmol, 4 eq.) were weighed, and carefully purged with Ar. Degassed toluene (3 mL), ^{*I*}BuOH (1.5 mL), and water (0.5 mL) were added, and the solution was heated at 75°C for 5-18 hours. The crude mixture was cooled down to room temperature, diluted with a saturated aqueous solution of Na₂CO₃ (10 mL), and extracted with CH₂Cl₂ (3 x 20 mL). The organic layers were combined, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The crude mixture was filtered on silica gel (pentane/EtOAc 80:20), evaporated, and the crude mixture for 18h. Evaporation under reduced pressure followed by trituration in CH₂Cl₂ afforded the product with satisfying purity.

3-Phenyl-3*H*-benzo[*c*]pyrazolo[4,3-*f*][2,7]naphthyridin-6(7*H*)-one (8a): white powder, 71%.

10-Fluoro-3-phenyl-3H-benzo[c]pyrazolo[4,3-f][2,7]naphthyridin-

6(7*H***)-one (8b)**: white powder, 77%, m.p.: > 360°C. IR: 1685, 1577, 1446, 1337, 1281, 1197, 951, 868, 816, 754. ¹H-NMR (400 MHz, TFA-*d*): $\bar{\sigma}$ = 9.78 (s, 1H), 9.35 (s, 1H), 8.37 (dd, 1H, *J* = 8.4 Hz, *J* = 1.6 Hz), 7.61-7.54 (m, 7H). ¹³C-NMR (100 MHz, TFA-*d*): $\bar{\sigma}$ = 163.5 (C_q), 162.6 (d, *J* = 250 Hz, CF), 148.7 (CH), 147.6 (d, *J* = 4 Hz, C_q), 143.9 (C_q), 138.9 (CH), 138.1 (d, *J* = 2 Hz, C_q), 136.0 (C_q), 134.3 (CH), 132.8 (2 CH), 128.1 (d, *J* = 25 Hz, CH), 127.5 (2 CH), 122.7 (d, *J* = 9 Hz, CH), 118.6 (d, *J* = 9 Hz, C_q), 118.1 (C_q), 116.7 (C_q), 115.7 (d, *J* = 25 Hz, CH). ¹⁹F-NMR (282 MHz, DMSO-*d*₆): $\bar{\sigma}$ = -118.60. HRMS-APCI: *m*/*z* [M+H]⁺ calcd. for C₁₉H₁₂FN₄O: 331.0990; found: 331.0986.

10-Chloro-3-phenyl-3H-benzo[c]pyrazolo[4,3-f][2,7]naphthyridin-

6(7*H***)-one (8c)**: white powder, 71%, m.p.: > 360° C. IR: 2867, 1677, 1592, 1573, 1501, 1424, 1332, 1007, 932, 800, 756. ¹H-NMR (400 MHz, TFA-*d*): δ = 9.69 (s, 1H), 9.29 (s, 1H), 8.58 (d, 1H, *J* = 2.0 Hz), 7.70 (dd, 1H, *J* = 8.9 Hz, *J* = 2.0 Hz), 7.51-7.46 (m, 5H), 7.39 (d, 1H, *J* = 8.9 Hz). ¹³C-NMR (100 MHz, TFA-*d*): δ = 163.5 (C_q), 148.6 (CH), 147.2 (C_q), 143.9 (C_q), 140.0 (C_q), 139.7 (CH), 139.0 (CH), 136.0 (C_q), 135.0 (C_q), 134.3 (CH), 132.8 (2 CH), 129.5 (CH), 127.5 (2 CH), 121.9 (CH), 118.7 (C_q), 118.1 (C_q), 116.6 (C_q). HRMS-APCI: *m*/*z* [M+H]⁺ calcd. for C₁₉H₁₂ClN₄O: 347.0694; found: 347.0697.

10-Methyl-3-phenyl-3H-benzo[c]pyrazolo[4,3-f][2,7]naphthyridin-

6(*TH*)-one (8d): white powder, 73%, m.p.: 358°C (dec.). IR: 2862, 1661, 1594, 1577, 1499, 1420, 1333, 985, 942, 800. ¹H-NMR (400 MHz, TFAd): δ = 9.73 (s, 1H), 9.36 (s, 1H), 8.49 (s, 1H), 7.70 (d, 1H, *J* = 8.4 Hz), 7.54-7.52 (m, 5H), 7.39 (d, 1H, *J* = 8.4 Hz), 2.47 (s, 3H). ¹³C-NMR (100 MHz, TFA-d): δ = 163.5 (C_q), 148.8 (C_q), 147.9 (CH), 142.9 (C_q), 141.9 (CH), 140.4 (C_q), 139.8 (C_q), 139.6 (CH), 135.8 (C_q), 134.3 (CH), 132.9 (2 CH), 129.8 (CH), 127.4 (2 CH), 120.6 (CH), 117.9 (C_q), 117.8 (C_q), 116.9 (C_q), 21.8 (CH₃). HRMS-APCI: *m/z* [M+H]⁺ calcd. for C₂₀H₁₅N₄O: 327.1240; found: 327.1231.

10-Methoxy-3-phenyl-3H-benzo[c]pyrazolo[4,3-f][2,7]naphthyridin-

6(7*H***)-one (8e)**: yellow powder, 78%, m.p.: 332°C. IR: 1667, 1578, 1504, 1231, 1100, 1036, 991, 815, 750. ¹H-NMR (400 MHz, TFA-*d*): δ = 9.90 (s, 1H), 9.51 (s, 1H), 8.28 (d, 1H, *J* = 1.7 Hz), 7.70-7.64 (m, 7H), 4.08 (s, 3H). ¹³C-NMR (100 MHz, TFA-*d*): δ = 163.2 (C_q), 159.9 (C_q), 148.3 (CH), 148.0 (C_q), 143.2 (C_q), 139.3 (CH), 136.3 (C_q), 135.9 (C_q), 134.3 (CH), 132.9 (2 CH), 128.1 (CH), 127.4 (2 CH), 122.2 (CH), 118.8 (C_q), 117.9 (C_q), 116.8 (C_q), 113.4 (CH), 57.8 (CH₃). HRMS-APCI: *m*/z [M+H]⁺ calcd for C₂₀H₁₅N₄O₂: 343.1190; found: 343.1184.

Acknowledgements

The authors are indebted to the French ministère de la Recherche for a grant to H.L.

Keywords: pyrazolo[3,4-*b*]pyridine • Suzuki • tandem reaction • chromenopyrazolopyridine • naphthyridinones

- (a) M. A. Gaston, L. R. S. Dias, A. C. C. Freitas, A. L. P. Miranda, E. J. Barreiro, *Pharm. Acta Helv.* **1996**, *71*, 213–219. (b) H. Höhn, T. Denzel, U.S. Patent Appl. 3,755,340, **1973**.
- [2] (a) H. Ochiai, A. Ishida, T. Ohtani, K. Kusumi, K. Kishikawa, S. Yamamoto, H. Takeda, T. Obata, H. Nakai, M. Toda, *Bioorg. Med. Chem.* 2004, *12*, 4089–4100. (b) L. Revesz, E. Blum, F. E. Di Padova, T. Buhl, R. Feifel, H. Gram, P. Hiestand, U. Manning, U. Neumann, G. Rucklin, *Bioorg. Med. Chem. Lett.* 2006, *16*, 262–266. (c) D. Allen, D. M Coe, C. M. Cook, M. D. Dowle, C. D. Edlin, J. N. Hamblin, M. R. Johnson, P. S. Jones, R. G. Knowles, M. K. Lindvall, C. J. Mitchell, A. J Redgrave, N. Trivedi, P. Ward, Appl. Int. WO 024,728, 2004. (d) V. Palle, S. Balanchandran, N. Gupta, V. Khairnar, R. Ramaiah, A. Ray, S. Dastidar, Appl. Int. WO 031,838, 2007.
- [3] A. Straub, J. Benet-Buckholz, R. Fröde, A. Kern, C. Kohlsdorfer, P. Schmitt, T. Schwarz, H.-M. Siefert, J.-P. Stasch, *Bioorg. Med. Chem.* 2002, *10*, 1711–1717.
- [4] (a) J. B. Patel, J. B. Malick, A. I. Salama, M. E. Goldberg, *Pharmacol. Biochem. Behav.* **1985**, *23*, 675–680. (b) T. M. Bare, C. D. McLaren, J. B. Campbell, J. W. Firor, J. F. Resch, C. P. Walters, A. I. Salama, B. A. Meiners, J. B. Patel, *J. Med. Chem.* **1989**, *32*, 2561–2573. (c) T. M. Bare, P. West Chester, U.S. Patent Appl. 4,552,883, **1985**.
- [5] H. Höhn, I. Polacek, E. Schulze, *J. Med. Chem.* **1973**, *16*, 1340–1346.
 [6] S. Huang, R. Lin, Y. Yu, Y. Lu, P. J. Connolly, G. Chiu, S. Li, S. L. Emanuel, S. A. Middleton, *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1243–1245.
- [7] T. J. Tucker, J. T. Sisko, R. M. Tynebor, T. M. Williams, P. J. Felock, J. A. Flynn, M.-T. Lai, Y. Liang, G. McGaughey, M. Liu, et al., *J. Med. Chem.* 2008, *51*, 6503–6511.
- [8] H. de Mello, A. Echevarria, A. M. Bernardino, M. Canto-Cavalheiro, L. L. Leon, J. Med. Chem. 2004, 47, 5427-5432.
- [9] (a) P. Schmidt, K. Eichenberger, M. Wilhelm, *Angew. Chemie* **1961**, *73*, 15–22. (b) Y. S. Sanghvi, S. B. Larson, R. C. Willis, R. K. Robins, G. R. Revankar, *J. Med. Chem.* **1989**, *32*, 945–951.
- [10] I. Chu, B. M. Lynch, J. Med. Chem. 1975, 18, 161–165.
 - 1] G. Boerrigter, J. C. Burnett, Cardiovasc. Drug Rev. 2007, 25, 30–45.
- [12] (a) H. Höhn, T. Denzel, W. Janssen, J. Heterocycl. Chem. 1972, 9, 235–253. (b) J. Quiroga, S. Cruz, B. Insuasty, R. Abonia, J. Cobo, A. Sánchez, M. Nogueras, J. N. Low, J. Heterocycl. Chem. 2001, 38, 53–60. (c) V. K. Ahluwalia, B. Goyal, Synth. Commun. 1996, 26, 1341–1348. (d) R. Benoit, G. Dupas, J. Bourguignon, G. Quéguiner, Synthesis 1987, 1124–1126. (e) C. Liu, Z. Li, L. Zhao, L. Shen, Arkivoc 2009, 2009(ii), 258–268.
- [13] (a) B. M. Lynch, M. A. Khan, H. C. Teo, F. Pedrotti, *Can. J. Chem.* **1988**, *66*, 420–428. (b) R. Hayes, O. Meth-Cohn, *Tetrahedron Lett.* **1982**, *23*, 1613–1616. (c) A. M. Soliman, *J. Heterocycl. Chem.* **2011**, *48*, 592–596. (d) B. Dyck, D. E. Grigoriadis, R. S. Gross, Z. Guo, M. Haddach, D. Marinkovic, J. R. McCarthy, M. Moorjani, C. F. Regan, J. Saunders, M. K. Schwaebe, T. Szabo, J. P. Williams, X. Zhang, H. Bozigian, T. K. Chen, J. Med. Chem. **2005**, *48*, 4100–4110. (e) G. P. Sagitullina, L. A. Lisitskaya, M. A. Vorontsova, R. S. Sagitullin, *Mendeleev Commun.* **2007**, *17*, 192–193. (f) W. J. Lominac, M. L. D'Angelo, M. D. Smith, D. A. Ollison, J. M. Hanna, *Tetrahedron Lett.* **2012**, *53*, 906–909.

10.1002/ejoc.201601242

WILEY-VCH

- (a) J. Chen, W. Liu, J. Ma, H. Xu, J. Wu, X. Tang, Z. Fan, P. Wang, J. [14] Org. Chem. 2012, 77, 3475-3482. (b) Z.-T. Zhang, Y. Liang, Y.-Q. Ma, D. Xue, J.-L. Yang, J. Comb. Chem. 2010, 12, 600-603.
- [15] (a) R. Ghahremanzadeh, S. Ahadi, A. Bazgir, Tetrahedron Lett. 2009, (a) R. Ghanremanzaden, S. Anadi, A. Bazgir, *Tetranedron Lett.* 2009, 50, 7379–7381. (b) M. A. El-Borai, H. F. Rizk, M. F. Abd-Aal, I. Y. El-Deeb, *Eur. J. Med. Chem.* 2012, 48, 92–96. (c) P. Gunasekaran, P. Prasanna, S. Perumal, *Tetrahedron Lett.* 2014, 55, 329–332.
 (a) A. Díaz-Ortiz, J. R. Carrillo, F. P. Cossío, M. J. Gómez-Escalonilla, A. de la Hoz, A. Moreno, P. Prieto, *Tetrahedron* 2000, 56, 1569–1577.
 (b) N. M. Nascimento-Júnior, T. C. F. Mendes, D. M. Leal, C. M. N. Ozmán. D. T. Oután. O. Tetrahedron 2000, 56, 1669–1577.
- [16] Corrêa, R. T. Sudo, G. Zapata-Sudo, E. J. Barreiro, C. A. M. Fraga, Bioorg. Med. Chem. Lett. 2010, 20, 74-77.
- [17] R. G. Gould, W. A. Jacobs, J. Am. Chem. Soc. 1939, 61, 2890-2895.
- (a) A. M. R. Bernardino, A. R. Azevedo, L. C. S. pinheiro, J. C. Borges, I. C. P. Paixão, M. Mesquita, T. M. L. Souza, M. S. dos Santos, *Org. Med. Chem. Lett.* **2012**, *2*:3; (b) A. M. R. Bernardino, H. C. Castro, I. C. [18] P.P. Frugulhetti, N. I. V. Loureiro, A. R. Azevedo, L. C. S. Pinheiro, T. M. L. Souza, V. Giongo, F. Passamani, U. O. Magalhäes, M. G. Albuquerque, L. M. Cabral, C. R. Rodrigues, *Bioorg. Med. Chem.* **2008**, 16, 313-321; (c) M. A. Khan, F. Pedrotti, Mon. Für Chem. 1982, 113, 123-127.
- (a) P. Jablonski, M. Nettekoven, A. Patiny-Adam, H. Ratni, H. Stadler, Appl. Int. WO 131571, 2011. (b) P. Jablonski, M. Nettekoven, A. Patiny-Adam, H. Ratni, H. Stadler, U.S. Patent Appl. 0257402, 2011.
 V. V Grushin, H. Alper, *Chem. Rev.* 1994, 94, 1047–1062. [19]
- [20]
- [21] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.

- (a) O. Lohse, Synlett 1999, 45-48. (b) J. Zhu, M. Ning, C. Guo, L. [22] Zhang, G. Pan, Y. Leng, J. Shen, Eur. J. Med. Chem. 2013, 69, 55-68. (c) B. Hu, R. Bernotas, R. Unwalla, M. Collini, E. Quinet, I. Feingold, A. Goos-Nilsson, A. Wilhelmsson, P. Nambi, M. Evans, et al., Bioorg. Med. Chem. Lett. 2010, 20, 689–693. (d) B. Budzik, V. Garzya, D. Shi, G. Walker, Y. Lauchart, A. J. Lucas, R. A. Rivero, C. J. Langmead, J. Watson, Z. Wu, et al., *Bioorg. Med. Chem. Lett.* 2010, 20, 3545–3549.
 (e) I. A. Yule, L. G. Czaplewski, S. Pommier, D. T. Davies, S. K. Narramore, C. W. G. Fishwick, *Eur. J. Med. Chem.* 2014, 86, 31–38.
 S. Gronowitz, V. Beberik, V. Lawitz, Chem. Soc. 1024, 409, 409.
- S. Gronowitz, V. Bobosik, K. Lawitz, Chem. Scr. 1984, 23, 120-122. [23]
- [24] H. Zhang, F. Y. Kwong, Y. Tian, K. S. Chan, J. Org. Chem. 1998, 63, 6886-6890.
- B. Tao, D. W. Boykin, Tetrahedron Lett. 2003, 44, 7993-7996. [25]
- (a) M. Flegel, M. Lukeman, L. Huck, P. Wan, J. Am. Chem. Soc. 2004, 126, 7890–7897.
 (b) I. Hussain, V. T. H. Nguyen, M. A. Yawer, T. T. Dang, C. Fischer, H. Reinke, P. Langer, J. Org. Chem. 2007, 72, 6255–6258.
 (c) E. J. Carlson, A. M. S. Riel, B. J. Dahl, Tetrahedron Lett. 2012 [26] 53, 6245-6249.
- R. Rabot, K. Bedjeguelal, E. B. Kaloun, P. Schmitt, N. Rahier, P. Mayer, E. Fournier, Appl. Int. WO 140114, **2012**.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 2:

FULL PAPER

Preparation of chromenopyrazolopyridine and naphthyridinone families is described from well-known intermediate **2** *via* a sequential Suzuki cross-coupling reaction / acidic cyclization.

Heterocycles*

Page No. – Page No.

Harnessing cascade Suzukicyclization reactions of pyrazolo[3,4b]pyridine for the synthesis of tetracyclic fused heteroaromatics