ORIGINAL PAPER

Nano-CuFe₂O₄-supported sulfonic acid as a novel and recyclable nanomagnetic acid for diazotization of aromatic amines: efficient synthesis of various azo dyes

Firouzeh Nemati¹ · Ali Elhampour¹ · Mahshid B. Natanzi¹ · Samaneh Sabaqian¹

Received: 17 September 2015 / Accepted: 14 January 2016 © Iranian Chemical Society 2016

Abstract A novel heterogeneous sulfonic acid functionalized nanomagnetic CuFe₂O₄ was successfully prepared and characterized by analyzing different obtained data including Fourier transform infrared spectroscopy, X-ray powder diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, dynamic light scattering and vibrating sample magnetometer. Then the novel acidic reagent was examined in synthesis of various azo-containing compounds from coupling of aryl diazonium ferrite sulfate salts with aromatic and non-aromatic compounds. The procedure starts by diazotization of aromatic amines with NaNO₂ and wet CuFe₂O₄–SO₃H and then coupling reaction of aryl diazonium ferrite sulfate salts with appropriate reagent. The prepared nano-solid acid showed high activity in synthesis of variety of aryl diazonium salts. In addition the as-prepared aryl diazonium ferrite sulfate salts are stable at room temperature for many hours and reacted efficiently in coupling reactions of aryl diazonium salts. All the azo dyes are synthesized in high yields and simple reaction conditions at room temperature. Moreover, the nanomagnetic solid acid was easily recovered from the reaction mixture and reused five runs without significant loss of activity.

Keywords Nanomagnetic-supported sulfonic acid · Diazonium salt · Azo dye · Aromatic amine

Introduction

Compounds containing azo groups linked to methine or aromatic-sp² hybridized-C atoms are the most important group of pharmaceutically important materials in the literature [1]. These compounds have received much attention and have wildly used in many practical applications such as coloring fiber, photoelectronic applications, printing systems, optical storage technology and in analytical chemistry [2]. Many azo compounds have been applied as chromogenic reagents for the determination of several metal ions [3]. The synthesis of azo dyes is usually carried out at low temperature in two steps: diazotization of arylamines with sodium nitrite in the presence of aqueous Bronsted acid, followed by reaction with electron-rich compounds or enol-type coupling components. The former is an interesting type of compound since they potentially have several tautomeric forms in solution and solid state [4]. The main limitation of such synthetic processes is their environmental incompatibility. The acidic effluents produce permanent damage to the environment and disturb the ecological balance.

One of the most important aims of "green chemistry" is to find alternative catalysts or reagents being readily available, inexpensive, selective, recyclable and environmentally benign [5]. In this context, supported heterogeneous acid catalysts have been actively investigated instead of harmful homogeneous acids such as H_2SO_4 , HF, and H_3PO_4 [6].

Recently, magnetic nanoparticles have increasingly attracted interest as a support, due to their lack of toxicity, high thermal and mechanical stability, and adaptability for large-scale production and low price [7]. Remarkably, magnetic separation of the magnetic nanoparticles is more efficient than conventional filtration, simple, effective and economical and industrial applications. Among their various

[☑] Firouzeh Nemati fnemati_1350@yahoo.com; fnemati@semnan.ac.ir

¹ Department of Chemistry, Semnan University, Semnan 35131-19111, Iran

Scheme 1 Preparation of $CuFe_2O_4$ -SO₃H nanoparticles

magnetic nanoparticles, mixed metal oxide nanoparticles became the strong candidates in the past few years and the improvements of modern organic synthesis are followed [8–10]. Hence, because of high catalytic activity of mixed metal oxide nanoscale, they are preferable than individual component oxides in diverse reactions [11, 12]. To this end, nanoscale copper ferrite particles are of great interest as a result of their efficient recycling, high stability, cleaning reaction profile and unique magnetic property [13].

Aryl diazonium salts are important intermediates that can be readily converted into a diverse functionality group [14]. High activity of diazonium group $(-N_2^+)$ cases aryl diazonium salts possess sufficient potential energy to react spontaneously with generally low transition state barriers [15]. However, the key factors in the operation of such transformations are the easy availability, stability and safety of diazonium salts. So many researchers have investigated how to use them in a safer and more sustainable ways [16].

Therefore, considering the points above and in continuation of our studies in design of heterogeneous nanocatalysts [17–19] and successful attempt for the stabilization of aryl diazonium salts [20, 21], the aim of this work is to report the preparation and characterization of novel magnetic nano-acid, a superior heterogeneous acid, in the synthesis of aryl diazonium ferrite sulfate salts. Then the diazonium salts, ArN_2^+ [–]OSO₃CuFe₂O₄, as stable precursors were used for the efficient synthesis of various azo compounds from diazo coupling of aryl diazonium ferrite sulfate salts with active aromatic and non-aromatic compounds under solvent-free grinding condition (Scheme 1).

Experimental

Preparation of nano-CuFe₂O₄-SO₃H

Firstly, the nano-CuFe₂O₄ particles were prepared according to literature report [22]. Then, in a flask, equipped with a constant-pressure dropping funnel and a gas inlet tube for conducting HCl gas over an adsorbing solution, nano-CuFe₂O₄ (1 g) was charged. Then, neat chlorosulfonic acid (3.3 mmol) was added drop-wise over a period of 0.5 h at 0–5 °C. HCl gas immediately evolved from the reaction vessel. After that, the mixture was shaken for 1 h at room temperature and nano-CuFe₂O₄–SO₃H was collected as a brown solid (1.25 g).

Loading of H^+

The loading of H^+ for the acidic magnetic nanoparticles was determined using potentiometric titration and it found to be 2.5 mmol/g.

General procedure for synthesis of aryldiazoium ferrite sulfate salts

An aromatic amin (1 mmol), nano-CuFe₂O₄–SO₃H (0.8 g) and a few drops of water (0.2 mL) ground in a mortar with a pestle to afford a homogeneous mixture, then NaNO₂ (2 mmol) was added. The reaction mixture was ground smoothly for 5–10 min. During this time the starting amine was consumed that was established by TLC monitoring.

General procedure for synthesis of azo compounds

The as-synthesized aryl diazonium salt was added to active compound (1 mmol) and the mixture was ground at room temperature for appropriate time; the color of the reaction will change [for the preparation of salt of 2-hydroxynaph-thalene-1,4-dione and naphthol, we mixed 1 mmol from the former compounds with 0.8 mL water and NaOH (0.1 g, 2.5 mmol) in the other vessel and then added to the aryl diazonium salts]. After completion of the reaction (TLC), the mixture was washed by distilled water (50 mL) and the nano-CuFe₂O₄–SO₃H was separated using an external magnet. The solid products were filtrate and washed with EtOH. The most of the product were recrystallized from appropriate solvents and gave corresponding products in high yields. Some of them need purification with short column chromatography.

CAUTION! Although aryldiazoium ferrite sulfate salts are stable in the dry state, and we did not experience any problems, the operation needs to be conducted carefully, especially when they are subjected to grinding.

Spectroscopic data and physical properties of some selected compounds:

N,*N*-Dimethyl-4-[(2-nitrophenyl)diazenyl]aniline (**8a**) ¹H NMR (400 MHz, CDCl₃) δ : 17.90 (d, 2H, J = 9.2 Hz); 7.87 (d, d, 1H, J = 4 Hz, J = 1.2 Hz); 7.74 (d, d, 1H, J = 4 Hz, J = 1.2 Hz); 7.64 (t, d, 1H, J = 4 Hz, J = 1.2 Hz); 7.47 (t, d, 1H, J = 4 Hz, J = 1.2 Hz); 6.76 (d, 2H, J = 9.2 Hz); 3.14 (s, 6H, Me); 1-(Phenyldiazenyl)naphthalen-2-ol (**10a**): 1H NMR (400 MHz, CDCl₃) δ : 16.31 (s, 1H); 8.59 (d, 1H, J = 8.4 Hz,); 7.8 (s, 1H,); 7.6 (s, 1H,); 7.4 (s, 1H); 7.64– 7.57 (m, 2H); 8.59 (t, 2H, J = 7.52 Hz); 7.43 (t, d, 1H, J = 7.6 Hz, J = 1.2 Hz); 7.34 (t, 1H, J = 7.6 Hz); 6.9 (d, 1H, J = 9.2);

2-[(4-Nitrophenyl)diazenyl]malononitrile (**2b**): bright red color; UV–Vis (DMSO) λ max1 (π – π *):478 nm; FTIR (KBr, cm⁻¹): υ 3222, 2229, 1598, 1342, 1510; ¹H NMR (400 MHz, DMSO): δ 8.25 (2H, d, J = 9.2 Hz), 7.61 (2H, d, J = 9.2 Hz), ¹³C NMR (100 MHz, DMSO): δ 88.9; 109.8, 114.2, 117.1, 125.9, 144.3, 147.1; Anal. Calcd for C₉H₅N₅O₂: C, 50.23; H, 2.32; N, 32.55; found: C, 50.12; H, 2.45; N, 32.41.

Ethyl 2-cyano-2-(4-nitrophenyl)acetate (**5b**): yellow color; UV–Vis (DMSO) λ max1 (π – π *):494 nm; FTIR (KBr, cm⁻¹): υ 3215, 2200, 1699; ¹H NMR (400 MHz, DMSO): δ 12.61 (0.52 H, s), 8.30 (2H, t, J = 8.8 Hz), 7.76–7.64 (2H, m), 4.33 (2H, q, J = 7.2 Hz), 1.31 (3H, t, J = 7.2 Hz); ¹³C NMR (100 MHz, DMSO): δ 14.56, 62.50, 108.22, 111.33, 116.56, 126.11, 143.75, 160.70; Anal. Calcd for C₁₁H₁₀N₄O₄: C, 50.38; H, 3.81; N, 21.37; found: C, 50.22, H, 3.65; N, 21.26.

2-[(4-Chlorophenyl)diazenyl]cyclohexane-1,3-dione (**8b**) brown color; UV–Vis (DMSO) λ max1 (π – π *):387 nm; ¹H NMR (400 MHz, DMSO): δ 7.48 (2H, d, J = 8.8 Hz), 7.387(2H, d, J = 8.8 Hz), 2.60 (4H, s), 1.13 (6H, s).

6-Amino-5-[(4-bromophenyl)diazenyl]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (**15b**) Orange color; UV–Vis (DMSO) λ max1 (π – π *):378 nm; ¹H NMR (400 MHz, DMSO): δ 10.27 (1H, s br), 9.63 (1H, s br), 7.46 (2H, d, J = 7.2 Hz), 7.10(2H, d, J = 7 Hz), 3.4 (3H, s), 3.2 (3H, s).

2-Hydroxy-3-(p-tolyldiazenyl)naphthalene-1,4-dione (**17b**) red color; UV–Vis (DMSO) λ max1 (π – π^*):429 nm; FTIR (KBr, cm⁻¹): υ 3600–3200 (br), 1697; ¹H NMR (400 MHz, DMSO): δ 8.21 (1H, d, J = 7.6 Hz), 8.1 (1H, d of d, J = 7.4 Hz, J = 0.8 Hz), 7.96–7.85 (2H, m), 7.67 (2H, d, J = 8 Hz), 7.33 (2H, d, J = 8.4 Hz), 2.35 (3H, S); ¹³C NMR (100 MHz, DMSO): δ 21.16, 118.29, 127.47, 130.79, 134.53, 135.46, 137.80, 139.51, 175.73; Anal. Calcd for C₁₇H₁₂N₂O₃: C, 69.86; H, 4.10; N, 9.58; found: C, 69. 71; H, 4.29; N, 9.41.

2-[(4-Chlorophenyl)diazenyl]-3-hydroxynaphthalene-1,4-dione (**18b**) red color; UV–Vis (DMSO) λ maxl (π – π *):379 nm; FTIR (KBr, cm⁻¹): υ 3600–3200 (br), 1699;¹H NMR (400 MHz, DMSO): δ 14.98 (0.23 H, s, br), 14.83 (0.23 H, s br), 8.23–8.12 (m, 2H), 7.99–7.80 (m, 4H), 7.60 (2H, d, J = 8.4 Hz); ¹³C NMR (100 MHz, DMSO): δ 79.66, 119.66, 127.52, 128.13, 130.23, 131.32, 131.49, 133.65, 134.03, 134.43, 134.83, 135.16, 135.36, 135.49, 140.90, 141.07, 175.82, 179.29, 179.58, 181.85; Calcd for C₁₆H₉N₂O₃Cl: C, 61.44; H, 2.88; N, 8.96; found: C, 61.04, H, 2.92; N, 8.76.

Results and discussion

Characterization of nano-CuFe₂O₄-SO₃H

FT-IR and UV spectra

The infrared spectra of $CuFe_2O_4$ and $CuFe_2O_4$ -SO₃H are depicted in Fig. 1. In Fig. 1a the band observed at 574 cm⁻¹ indicated the Fe–O stretching vibration [23]. The characteristics peaks from the OSO₃H group of chlorosulfonic acid were observed at 3300, 1581, 1288 and 1064 cm⁻¹ that corresponding to O–H, S=O and S–O groups, which clearly indicates the presence of –OSO₃H group over magnetic surface [24].The absorption spectra of CuFe₂O₄ and CuFe₂O₄–SO₃H in comparison with the unprotonated indicator (4-nitroaniline) are presented in Fig. 2, which confirms the presence of SO₃H groups and acidity strength of magnetic nano-CuFe₂O₄–SO₃H [25].

FE-SEM, EDX and DLS analysis

FE-SEM images of $CuFe_2O_4$ and $CuFe_2O_4$ -SO₃H are shown in Fig. 3, which shows uniform-sized magnetic nanoparticles with somewhat spherical morphology and it has marked tendency to form large clusters. The nanoparticles that almost entirely separable from each other are apparent. It can be observed that there is no change in the shape of $CuFe_2O_4$ MNPs after being functionalized with sulfonic acid and the surface morphology is also retained (Fig. 3c). The elemental compositions of the $CuFe_2O_4$ from EDX

Fig. 1 The FTIR spectra of a nano-CuFe₂O₄ and b nano-CuFe₂O₄–SO₃H

Fig. 3 The FEG-SEM–EDS analysis of \mathbf{a} , \mathbf{b} nano-CuFe₂O₄ and \mathbf{c} , \mathbf{d} nano-CuFe₂O₄–SO₃H

analysis also exhibited in Fig. 2b and show the presence of Cu, Fe and O elements. The presence of sulfur peak in addition of Cu, Fe and O in Fig. 2d, clearly indicate the successful functionalization of $CuFe_2O_4$. According to DLS results the size distribution of particles were significantly narrow (Fig. 4).

Fig. 6 XRD patterns of a nano-CuFe_2O_4 and b nano-CuFe_2O_4-SO_3H

Fig. 7 TGA of nano-CuFe $_2O_4$ -SO $_3H$

VSM analysis

The saturation magnetization of $CuFe_2O_4$ and $CuFe_2O_4$ -SO₃H was 33.85 and 24.11 emu/g, respectively. Obviously, after the preparation of $CuFe_2O_4$ -SO₃H, its magnetic response was affected due to coating with non-magnetic materials [26] (Fig. 5). Nonetheless, this magnetic property is enough and the $CuFe_2O_4$ -SO₃H could be completely and quickly separated from the reaction mixture when an external magnetic force was applied.

X-ray diffraction spectrum (XRD)

The XRD spectrum of $CuFe_2O_4$ clearly matches well with the literature data (Fig. 6). Six peaks at 18.3, 30.3, 35.6, 42.8, 57.1 and 62.98 can be assigned to the (101), (200), (211), (221), (303) and (224) diffraction peaks of $CuFe_2O_4$ spinel, respectively (Fig. 6a) [27]. Notably, the same peaks were also observed in $CuFe_2O_4$ –SO₃H XRD spectra, which indicate the structural stability of $CuFe_2O_4$ with SO₃H modification. The crystallite size of the nanoparticles was calculated to be around 29 nm from the XRD results using the Debye–Scherrer equation.

Thermo-gravimetric analyses (TGA)

The thermal stability of the CuFe₂O₄–SO₃H was observed by TG analysis (Fig. 7). In the TG curve of acidic MNPs, the first weight loss below 150 °C is due to remove of trapped solvent molecules from the lattice. Another weight loss of approximately 9 % beginning from 150 up to 700 °C can be attributed to the decomposition of sulfonic acid groups from the CuFe₂O₄ surface. Thus, the catalyst was stable sufficiently and could be used in organic reactions at elevated temperatures.

Preparation of stable aryl diazonium ferrite sulfate salts

After the successful characterization of heterogeneous magnetic acid, the acid activity of $CuFe_2O_4$ -SO₃H was examined for its ability to produce the stable aryl diazonium ferrite sulfate salts from aromatic amines. In order to optimize the amount of solid acid, different quantity of $CuFe_2O_4$ -SO₃H used to confirm its effects in prepare of diazonium salts. As shown in Scheme 2, a mixture of 4-nitroaniline (1 mmol), $CuFe_2O_4$ -SO₃H (0.8 g), water (0.2 mL) and

sodium nitrite (2 mmol) in grinding condition, gave an excellent yield of stable 4-nitro benzene diazonium ferrite sulfate salt (99 %) at room temperature (Scheme 2).

Coupling of stable aryl diazonium ferrite sulfate salts with active compounds: synthesis of azo dyes

Coupling with active aromatic compounds

The reaction of stable aryl diazonium ferrite sulfate salts with a number of active aromatic compounds was investigated and results depicted in Table 1. All the reactions were carried out under solvent-free condition at room temperature in mild and heterogeneous conditions. The corresponding azo dyes were obtained in good to high yields. The reactions were completed within 10–15 min, with good isolated yields. Aryl diazonium ferrite sulfate salts with electron-withdrawing groups or electron-donating groups also reacted effectively. The Steric effects of *ortho* substituents had little influence on the yields and reaction times. In addition, it was observed that the reaction of phenolic compounds have higher yields in basic media. The diazonium salts with an electron-withdrawing substituent provided better results in comparison to those having electron-donating substituent.

Coupling with active non-aromatic compounds

After the successful synthesis of azo dyes from the reaction of stable aryl diazonium ferrite sulfate salts with active aromatic compounds, we decided to investigate the efficiency of coupling of these diazonium salts with non-aromatic active compounds. For this purpose, a

Entry	G	Active aromatic compounds	Product	Yield %	Mp (Lit) °C	Color
1	Н	N,N-Dimethylaniline	1a	82	110–113 [28]	Yellow
2	p-NO ₂	N,N-Dimethylaniline	2a	95	218–220 [29]	Deeply colored
3	<i>p</i> -Et	Phenol	3a	75	270 [<mark>29</mark>]	Yellow
4	p-NO ₂	Phenol	4 a	90	207–210 [29]	Brown
5	<i>p</i> -SO ₃ H	N,N-Dimethylaniline	5a	90	300–303 [30]	Brown
6	p-Cl	β -Naphthol	6a	85	75 [<mark>31</mark>]	Red
7	$o-NO_2$	β -Naphthol	7a	83	280–282 [32]	Orange
8	$o-NO_2$	N,N-Dimethylaniline	8 a	85	130–132 [29]	Orange
9	$p-NO_2$	Aniline	9a	85	198–203 [33]	Orange
10	Н	β -Naphthol	10a	87	130–131 [29]	Red
11	<i>p</i> -Cl	Phenol	11a	82	188–190 [34]	Black

Table 2Condensation of
aryl diazonium ferrite sulfate
salts with non-aromatic active
compounds

 Table 1
 Condensation of aryl

 diazonium ferrite sulfate salts
 with various active aromatic

compounds

Entry	G	Active methylene compounds	Product	Yield %	Mp (Lit) °C	Color
1	Н	Malononitrile	1b	92	136–138 [36]	Red
2	p-NO ₂	Malononitrile	2b	99	141–143	Yellow
3	p-Cl	Malononitrile	3b	95	184.5–186 [<mark>36</mark>]	Yellow
4	m-Cl	Malononitrile	4b	85	170–173 (dec.) [37]	Yellow
5	p-NO ₂	Ethyl cyanoacetate	5b	98	179–180	Yellow
6	p -NO $_2$	Dimedone	6b	90	157–158 [38]	Red
7	m-NO ₂	Dimedone	7b	80	124–125 [38]	Yellow
8	p-Cl	Dimedone	8b	87	216–219 [38]	Brown
9	Н	Dimedone	9b	85	119 [<mark>40</mark>]	Yellow
10	Н	Barbituric acid	10b	80	317-318.5 (dec.) [39]	Orange
11	<i>p</i> -Me	Barbituric acid	11b	88	194–196 [40]	Yellow
12	<i>p</i> -Br	Barbituric acid	12b	75	245–248 [41]	Yellow
13	p -NO $_2$	Uracil	13b	77	310–313 [42]	Orange
14	<i>p</i> -Me	Uracil	14b	75	259.7–261.7 [42]	Yellow
15	<i>p</i> -Br	Uracil	15b	78	238–239	Yellow
16	2-Pyridine	Uracil	16b	73	258–259 [42]	Red
17	<i>p</i> -Me	2-Hydroxy quinoline	17b	75	237-237.5	Red
18	p-Cl	2-Hydroxy quinoline	18b	80	208–209	Red

Scheme 3 Synthesis various azo dyes using nano-CuFe $_2O_4$ -SO $_3H$

Fig. 8 The stability of aryl diazonium ferrite sulfate salts at room temperature (reaction condition: aryl diazonium ferrite sulfate salts, malononitrile)

Fig. 9 Recyclability of CuFe₂O₄-SO₃H after four runs

series of active non-aromatic compounds involves dimedone, barbituric acid, uracil, malononitrile, 2-hydroxy quinoline and ethyl cyanoacetate were selected and the coupling reaction of stable aryl diazonium ferrite sulfate salts were examined. We mixed the diazonium salt and active compounds in stochiometric amounts in a mortar and ground the mixture with the help of a pestle until the completion of the reaction. The corresponding results are summarized in Table 2. As it can be seen in Table 2, our method was highly efficient and general in the synthesis of diverse azo compounds; a series of active non-aromatic compounds including malononitrile, ethyl cyanoacetate, dimedone, barbituric acid and uracil coupled efficiently and the desired products were produced in high yields and purity (Scheme 3). Also the reaction times were short. Fortunately, the coupling of aryl diazonium ferrite sulfate salts with 2-hydroxynaphthalene-1,4-dione gave the corresponding azo compounds in excellent yields (17e, 18e) that is different from previously reported procedure [35].

Stability of aryl diazonium ferrite sulfate

In an attempt to study the stability of aryl diazonium ferrite sulfate salts, the reaction of them with malononitrile was investigated after the times specified in Fig. 8. As shown in Fig. 8, the addition of malononitrile to the stored diazonium ferrite sulfate salts (they stored in a desiccator at room temperature) provided almost the same yield of product as that from freshly prepared salt. Obviously, because of the instability of aryl cation, the aryl diazonium salts with electron-withdrawing group has the higher stability [43].

Recycling of the nanomagnetic solid acid

To explore the extent of recyclability of our acidic nanomagnetic particles, its recyclability was tested by recycling of CuFe₂O₄–SO₃H in the coupling reaction of malononitrile and 4-nitrophenyl diazonium ferrite sulfate. In each cycle the MNPs was separated magnetically and washed several times with water and ethylacetate to ensure the organic and inorganic reagents do not remain on the surface of magnetic nanoparticles. Then, the recovered MNPs reused in subsequent runs. It was found that the performance of MNPs retains for a minimum four reaction cycles and displayed almost high catalytic performance with over 89 % product yield. Moreover, the XRD pattern of recycled catalyst showed that the nano-CuFe₂O₄–SO₃H was the similar to the initial one after four runs (Fig. 9).

Conclusions

In conclusion, we have prepared a new nanomagnetic solid acid catalyst via grafting of sulfonic acid groups on nano- $CuFe_2O_4$ magnetic particles. The catalyst is stable under air atmosphere and can readily be recovered by an external magnet field. This new heterogeneous catalyst showed many advantages including simple synthesis, easy magnetic separation, excellent reusability, high loading of H⁺ and tolerability of a broad range of functional groups.

Acknowledgments The authors gratefully acknowledge Semnan University Research Council for financial support of this work.

References

- A. Zarei, A.R. Hajipour, L. Khazdooz, B.F. Mirjalili, A.N. Chermahini, Dyes Pigments 81, 240 (2009)
- G. Kurtoglu, B. Avar, H. Zengin, M. Kose, K. Sayin, M. Kurtoglu, J. Mol. Liq. 200, 105 (2014)
- K. AL-Adilee, A. Ghali, A.S. Hussein, J. Chem. Eng 6, 651 (2012)
- 4. E.O. Moradi, M. Rufchahi, J. Mol. Liq. 199, 393 (2014)
- M.B. Gawande, Y. Monga, R. Zboril, R.K. Sharma, Coord. Chem. Rev. 288, 118 (2015)
- 6. I. Fechete, Y. Wang, J.C. Vedrin, Catal. Today 189, 2 (2012)
- 7. Wang D. Astruc, Chem. Rev. 114, 6949 (2014)
- 8. R. Narayanan, Green Chem. Lett. Rev. 5, 707 (2012)
- 9. R.B.N. Baig, R.S. Varma, Green Chem. 15, 398 (2013)

- M.B. Gawande, V.D.B. Bonifácio, R.S. Varma, I.D. Nogueira, N. Bundaleski, C.A.A. Ghumman, O.M.N.D. Teodorod, P.S. Branco, Green Chem. 15, 1226 (2013)
- 11. A. Kazaei, A. Ranjbaran, F. Abbasi, M. Khazaei, A.R. Mousavizare, RSC Adv. 5, 13643 (2015)
- 12. E. Rafiee, S. Eavania, Green Chem. 13, 2116 (2011)
- A.S. Kumar, B. Thulasiram, S.B. Laxmi, V.S. Rawat, B. Sreedhar, Tetrahedron 70, 6059 (2014)
- 14. L. He, G. Qiu, Y. Gao, J. Wu, Org. Biomol. Chem. 12, 6965 (2014)
- K.S. Nalivela, M. Tilley, M.A. McGuire, M.G. Organ, Chem. Eur. J. 20, 6603 (2014)
- N. Oger, E. Le Grognec, F.X. Felpin, Org. Chem. Front. 2, 590 (2015)
- 17. F. Nemati, M.M. Heravi, A. Elhampour, RSC Adv. 5, 45775 (2015)
- F. Nemati, A. Elhampour, H. Farrokhi, M.B. Natanzi, Catal. Commun. 66, 15 (2015)
- 19. F. Nemati, M.M. Heravi, R. Saeedirad, Chin. J. Catal. 33, 1825 (2012)
- 20. F. Nemati, A. Elhampour Sci. Iran 19, 1594 (2012)
- 21. F. Nemati, A. Elhampour, J. Chem. Sci. 124, 889 (2012)
- 22. S.M. Baghbanian, M. Farhang, RSC Adv. 4, 11624 (2014)
- 23. K. Pradhan, S. Paul, A.R. Das, Catal. Sci. Technol. 4, 822 (2014)
- M.B. Gawande, A.K. Rathi, I.D. Nogueira, R.S. Varma, P.S. Branco, Green Chem. 15, 1895 (2013)
- 25. A. Amoozadeh, S. Rahmani, J. Mol. Catal. A 396, 96 (2015)
- N. Koukabi, E. Kolvari, M.A. Zolfigol, A. Khazaei, BSh Saghasemi, B. Fasahati, Adv. Synth. Catal. 354, 2001 (2012)
- 27. Gh Imani Shakibaei, R. Ghahremanzadeh, A. Bazgir, Monatsh Chem. **145**, 1009 (2014)

- H. Valizadeh, M. Amiri, A. Shomali, F. Hosseinzadeh, J. Iran. Chem. Soc. 8, 495 (2011)
- 29. H. Valizadeh, A. Shomali, Dyes Pigments 92, 1138 (2012)
- Q. Zhang, S. Zhang, S. Liu, X. Ma, L. Lu, Y. Deng, Analyst 136, 1302 (2011)
- B.F. Mirjalili, A. Bamoniri, A. Akbari, Curr. Chem. Lett. 1, 109 (2012)
- 32. M.J.D. Long, H.J. Prochaska, P. Talalay, Med. Sci. 83, 787 (1989)
- M.L. Rahman, C. Tschierske, M. Yusoff, S. Silong, Tetrahedron Lett. 46, 2303 (2005)
- O.O. Ajani, O.E. Akinremi, A.O. Ajani, A. Edobor-Osoh, W.U. Anake, Phys. Rev. Res. Int. 3, 24 (2013)
- 35. J. Asselin, P. Brassard, P. L'ecuyer, Can. J. Chem. 44, 2563 (1966)
- 36. P.C. Tsai, I.J. Wang, Dyes Pigments 64, 259 (2005)
- P.G. Heytler, W.W. Prichard, Biochem. Biophys. Res. Commun. 7, 272 (1962)
- M. George, M. Jolocam, B. Odongkara, H. Twinomuhwezi, G.B. Mpango, Res. J. Chem. Sci. 1, 102 (2011)
- N. Noroozi-pesyan, J. Khalafy, Z. Malekpoor, J. Chin. Chem. Soc. 2, 61 (2009)
- 40. H.G. Garg, R.A. Sharma, J. Pharm. Sci. 59, 1691 (1970)
- 41. G. Kaupp, A. Herrmann, J. Schmeyers, Chem. Eur. J. 8, 1395 (2002)
- M. Yazdanbakhsh, M. Abbasnia, M. Sheykhan, J. Mol. Struct. 977, 266 (2010)
- F. Mo, G. Dong, Y. Zhanga, J. Wang, Org. Biomol. Chem. 11, 1582 (2013)